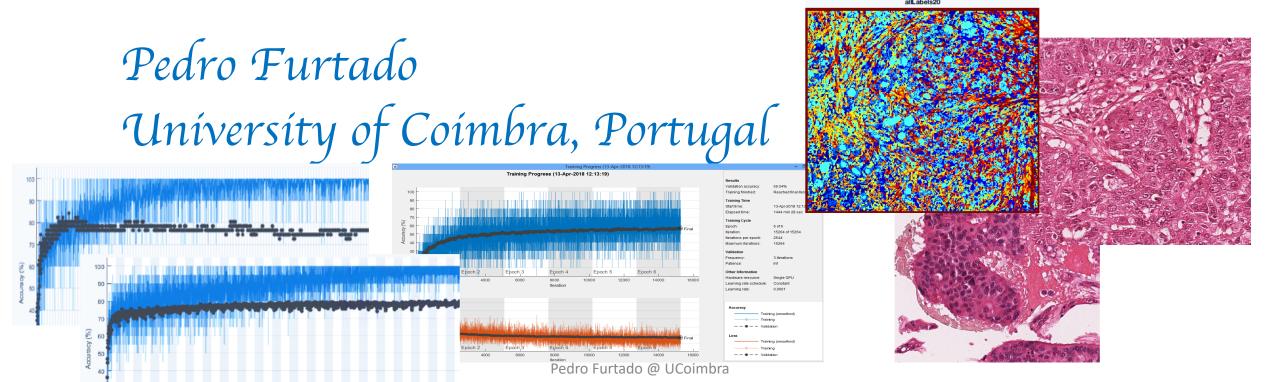
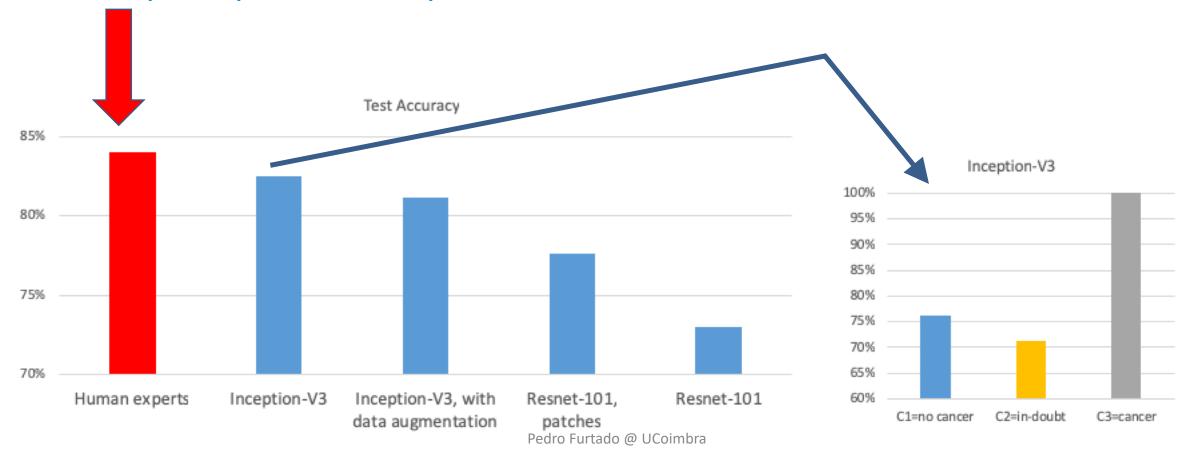
Objects Characterization to Detect Degree of Malignancy in Breast Cancer Histopathology



Cancer-grading, hystopathology images, mytos atypia public dataset

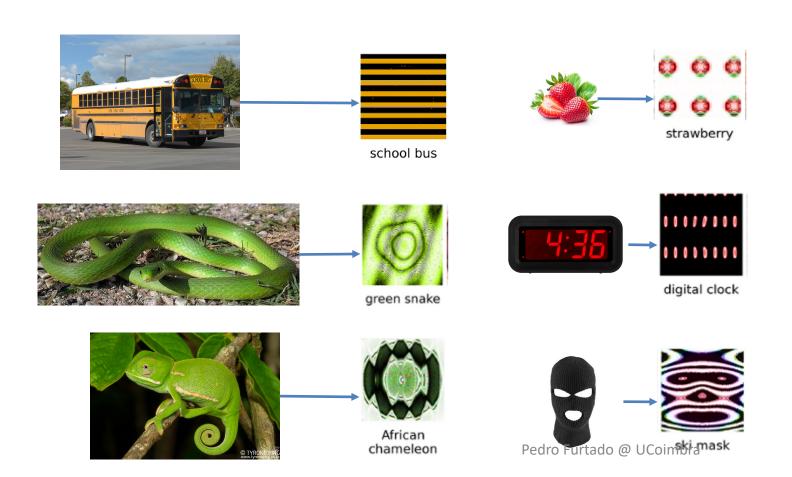
- CNNs are easy to use and very accurate...
- But they need tons of labelled data...
- AND perhaps human experts detect details and variations well...



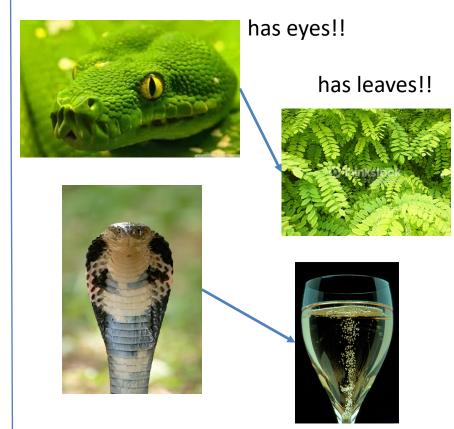
And some funny CNN problems?

in: Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR '15), IEEE, 2015.

The mean DNN confidence scores for these images is 99.12% for the listed class, meaning that the DNN believes with near-certainty that the image is that type of thing.



Some examples we got sometime ago:



Some non-CNN work had TOP ACCURACIES

- E.g. Breast Cancer Wisconsin (Diagnostic) Data Set
 - Measured Geometries
 - Involved some human intervention

!!Precision 97%, recall 97%!!

Cell characteristics:

- a) radius, perimeter, area
- b) texture (standard deviation of gray-scale values)
- e) smoothness (local variation in radius lengths)
- f) compactness (perimeter^2 / area 1.0)
- g) concavity (severity of concave portions of the contour)
- h) concave points (number of concave portions of the contour)
- i) symmetry

• •

Classificador	Precisão	Recall
BayesNet	96.7%	97.3%
NaiveBayes	95.4%	96.2%
LibSVM	95.0%	96.2%
Logistic	96.3%	96.3%
MultilayerPerceptron	94.8%	95.1%
SimpleLogistic	95.8%	95.6%
supportVector.PolyKernel	96.7%	96.9%
Nearest Neighbour 1	94.9%	94.6%
KStar	95.4%	94.7%
AdaBoost	94.5%	94.4%
J48	94.2%	94.2%
RandomForest	96.1%	96.3%
RadomTree	92.5%	92.1%

[2] W.H. Wolberg, W.N. Street, D.M. Heisey, and O.L. Mangasarian. Computer-derived nuclear features distinguish malignant from benign breast cytology. Human Pathology, 26.792-796, 1995.

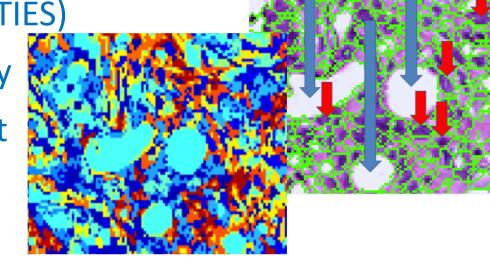
OBI= object-based identification

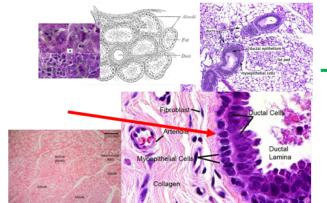
Structures have characteristic props in healthy versus ill tissue

Automate:

1. Discriminate objs into types (SEMANTIC ENTITIES)

- 2. Characterize objs and object types adequately
- 3. Characterize normality/abnormality from that
- 4. Use that for better detection from images



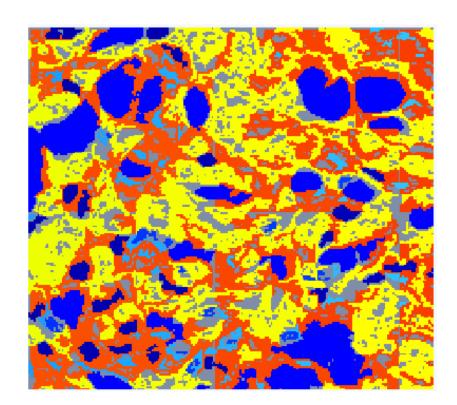


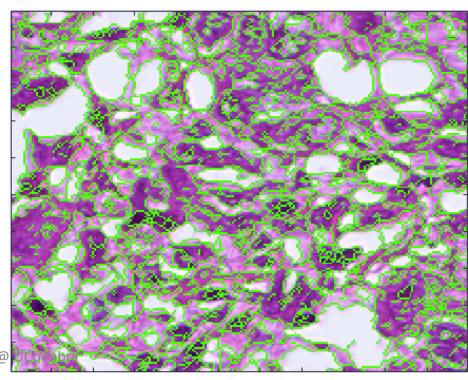
There is LOTS OS SEMANTICS in breast hysto

Lots of specific simple and composite objects/structures
Lots of atypia conditions

1. discriminate objects/structures

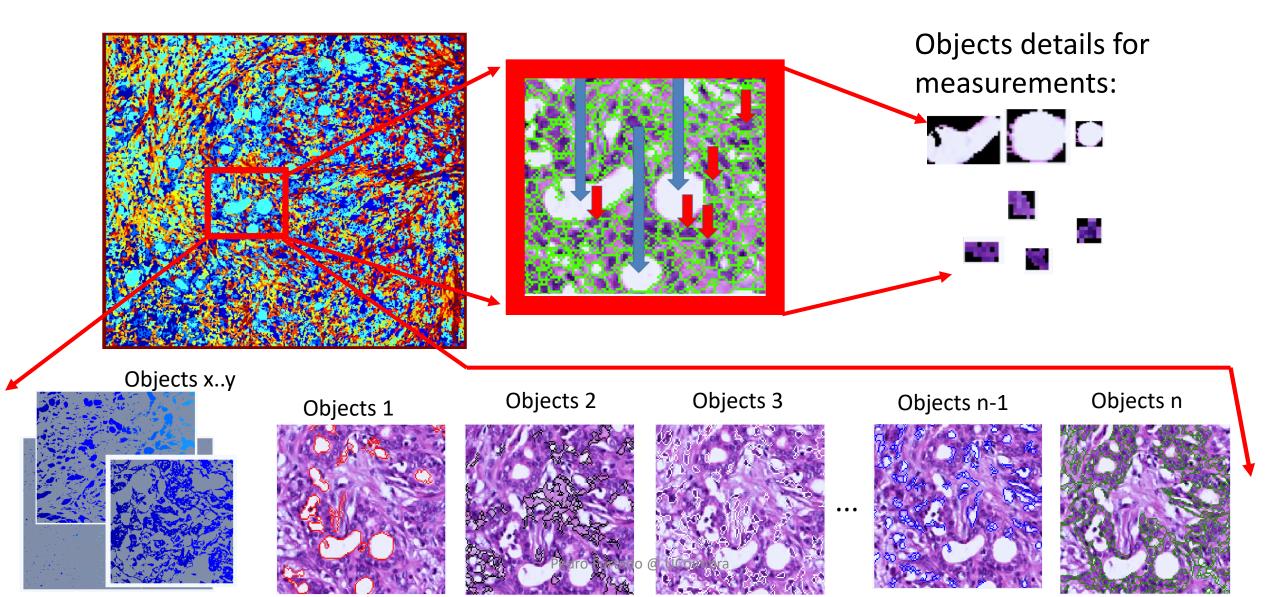
In image/images





Pedro Furtado @

Segment, label and separate into types



2. Object type characterization...

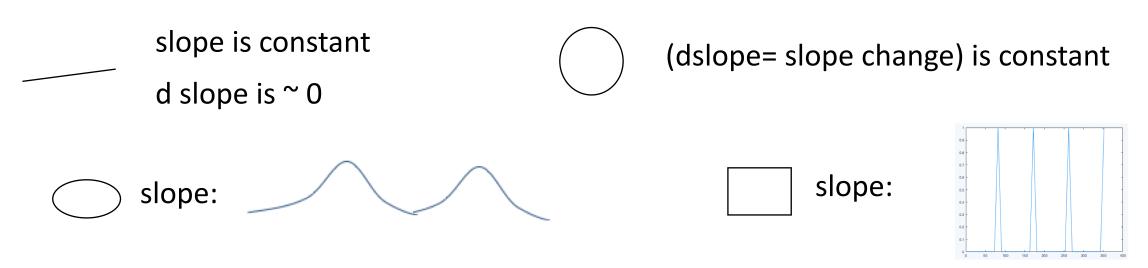
Capture characteristics

- Vacuoles, Adipocits
- Mammarian cells
- Clusters of cells
- Intersticial Tissue
- Other Cells

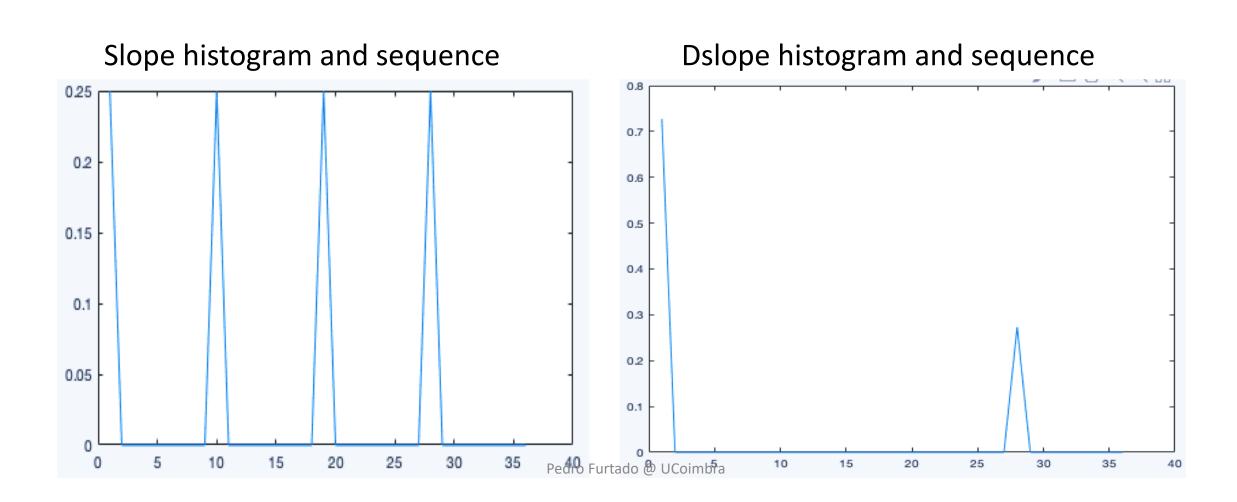
•

Characteristics are captured by features...

- Instead of low-level, try to capture shape, geom, texture semantics
- Some features are very "descriptive"
 - e.g. characterize shape based on slope and slope derivative



Shape slope/dslope histograms & seqs

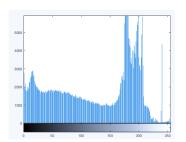


Features=measures can completely characterize regions

~600 feature values => NCGTS

Feature types:

- Number per unit area
- Colour histograms (r,g,b,L,a,b,gray)



- Geometry (shape generic)
 - Area, Solidity, mAxis, MAxis, Eccentricity, ConvexArea, Extent

Texture =

- gray-level co-occurrence matrix, co-occurence properties with rotation invariance
- colour-spatial distance "texture" 2D histogram

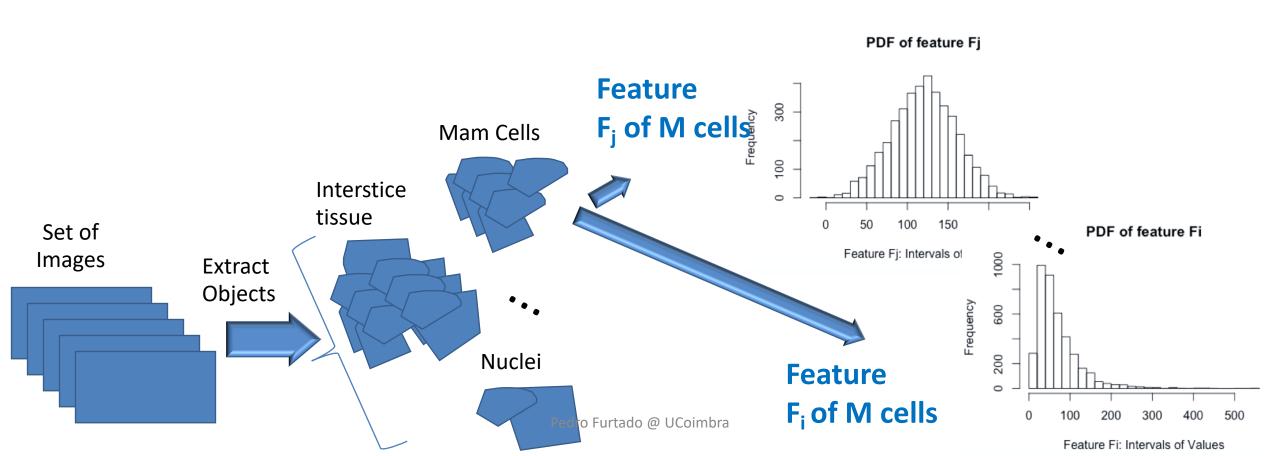
- Histograms of slopes, dSlopes and ddSlopes (variation of slopes in consecutive edge points)
- 2D histograms (slope, dslope, ddslope) X spatial distance
- Slope sequence histograms Slope sequences + histograms of slopes sequences

3. Characterize Normality/Abnormality...

Classes distinguish disease conditions

How to characterize OBJ (e.g. Mammarian Cells)

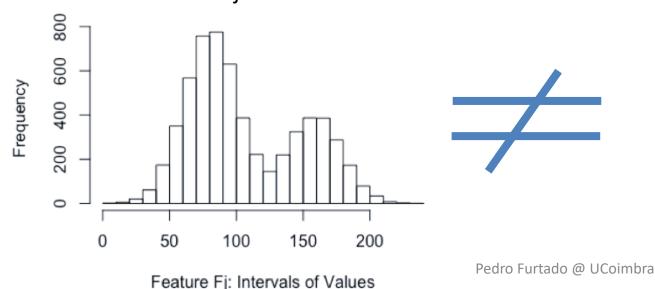
- Based on a transformation:
- Get distribution of each feature value: (PDF) => histogram



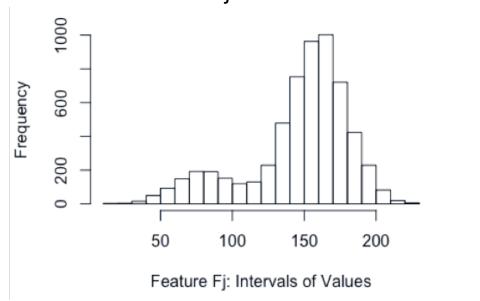
How to characterize degree of disease?

- Variations in distribution (PDF) (normal/abnormal, degree)
 - e.g. "Sizes, shapes, textures, density of each type of object

PDF of value F_i in normal images



PDF of value F_i in cancer images



Which translates to ...

• Detecting which distribution details distinguish better the degree of disease

Which translates to ...

Keeping histogram intervals with TOP degree of correlation to class = degree

Which is done by...

Data reduction indepedently for each OBJ TYPE

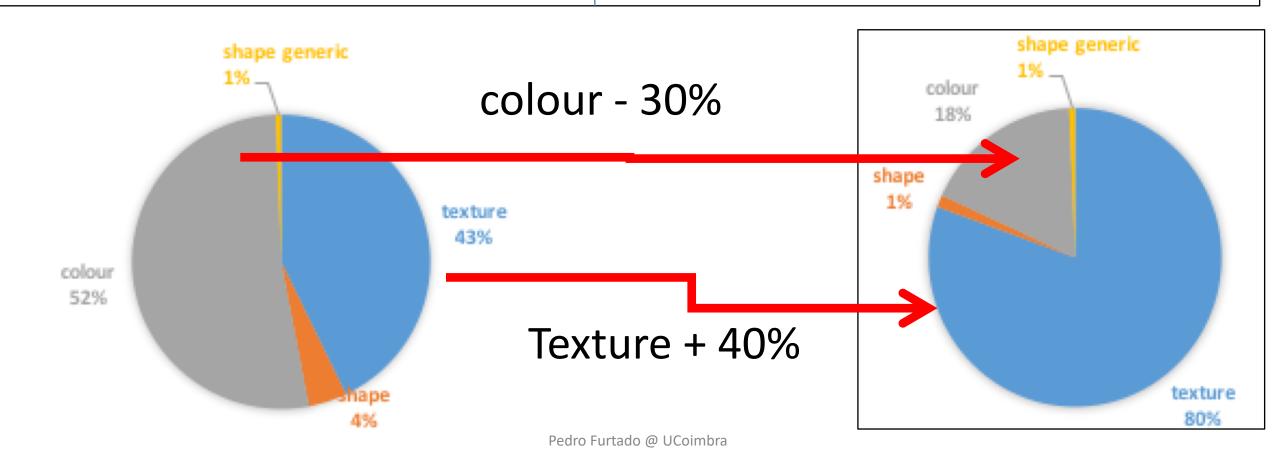
Data reduction ...

- Reduce huge amount of feature values ~72000 (72K)
 - Each feature value (600) for each object type (6) has 20 histo intervals (PDF)
- Approach: CORRELATION
 - Keep top corr with the class = degree of malignancy
 - Drop 1 of redundant = highly correlated pairs
- Runtime optimized alg was needed
 - Corr with class => O(n)
 - Pair-wise corr non-class $= >_{Ped} \Omega_{rtd} \Omega_{UCdmbra}^2$

Also tested PCA and others, Corr was the best

Unsurprisingly, Texture in Intersticial Tissue helps a lot detecting abnormality!

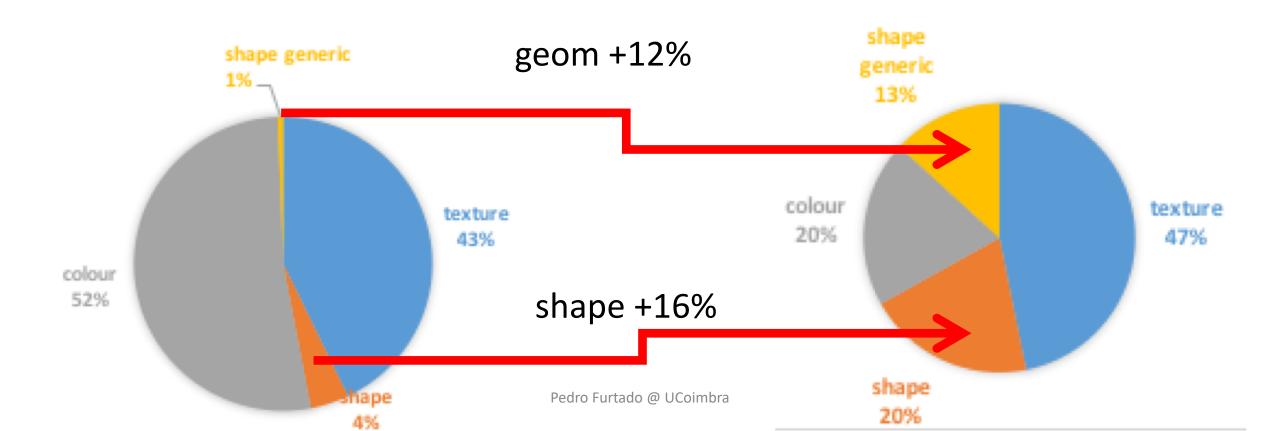
Intersticial Tissue



Unsurprisingly, Shape+geo X Cells (also texture) helps a lot detecting abnormality!

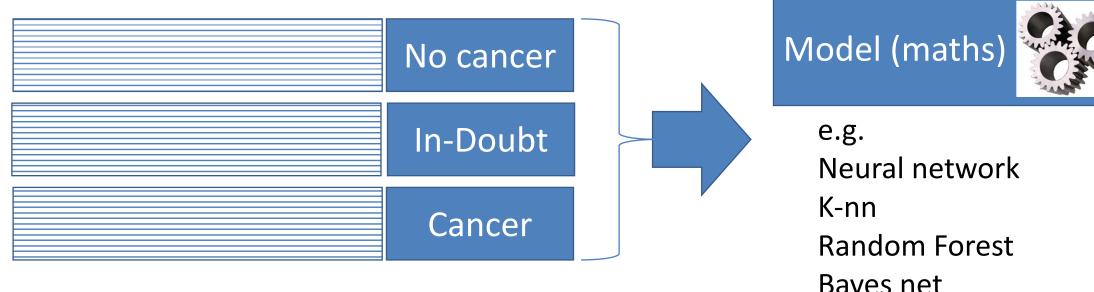
All objs

Mammarian cells



4. Create a Classifier for malignancy

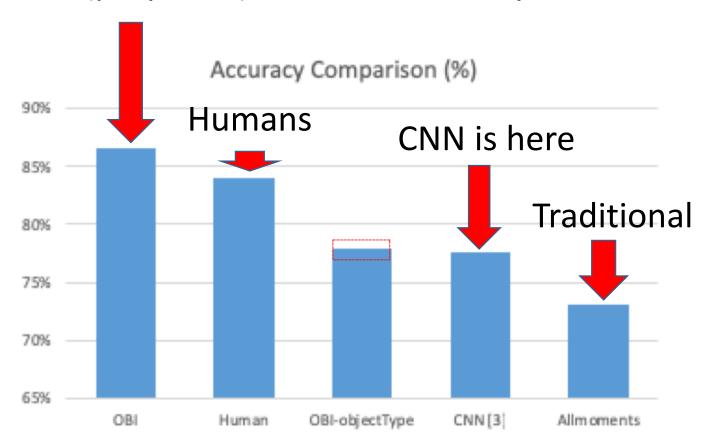
- Training Dataset was labeled by medical doctors
- Create a classifier (random forests, neural net, logit,...)



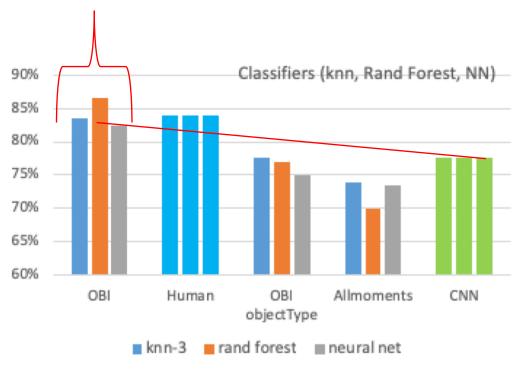
Bayes net

Results (mytos atypia dataset 1136 frames)

OBI (proposed) had best accuracy



Small variation with different classifier models, still best



[3] Recognition rates with MITOS-ATYPIA-14 by using CNN features. by Kenji

Watanabe

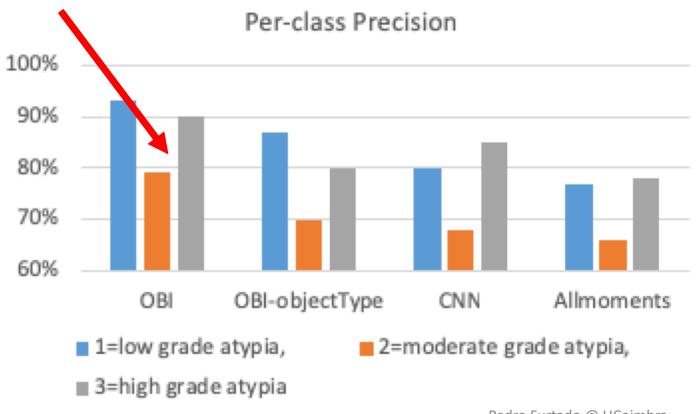
Takumi Kobayashi, Toshikazu Wada

Pedro Furtado @ UCoimbra

Detail: Per-class precision

OBI (proposal) had best accuracy on each degree (class)

Class 2 = moderate grade atypia, is the most difficult and lowers overall accuracy



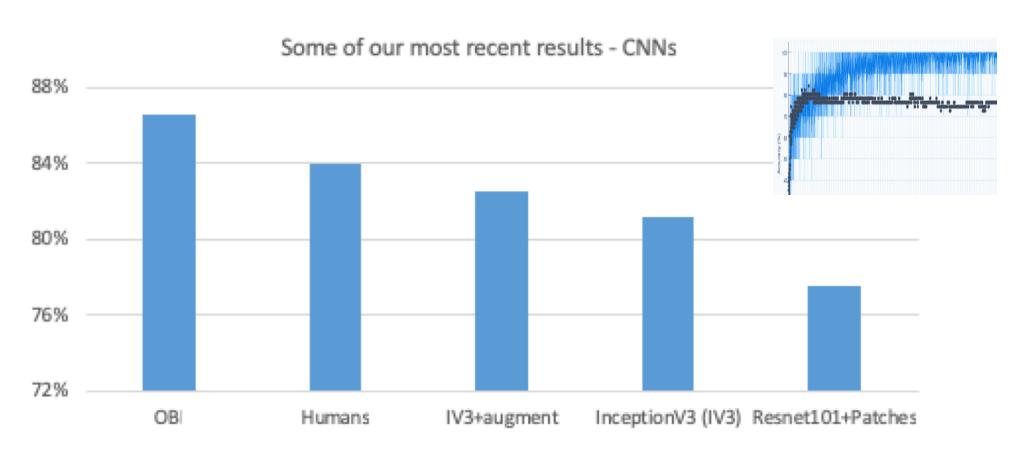
Variations with the data

Variation	Accuracy	
OBI	86,50%	
OBI 2 classes	91%	
OBI no balancing	95%	

Pedro Furtado @ UCoimbra

After this work, we continued experimenting...

- More comparison with CNNs ...included transfer L, patching and augmentation
- CNNs improved, but still below OBI



Conclusions

- OBI (the proposal) is able to achieve top accuracy on the tested problema
- Completely automatic
- Characterize structures
- Detect variations to detect degree of malignancy/atypia
- This can be improved a lot further => FUTURE= increase use of semantic structures

Our future work on this...

- Further domain knowledge => identify complex structures and normal VS disease
 VARs -> need pathologist
- Improve segmentation, add elicitation of complex structures
- Speedup feature extract and characterization
- Merge this with Deep Learning

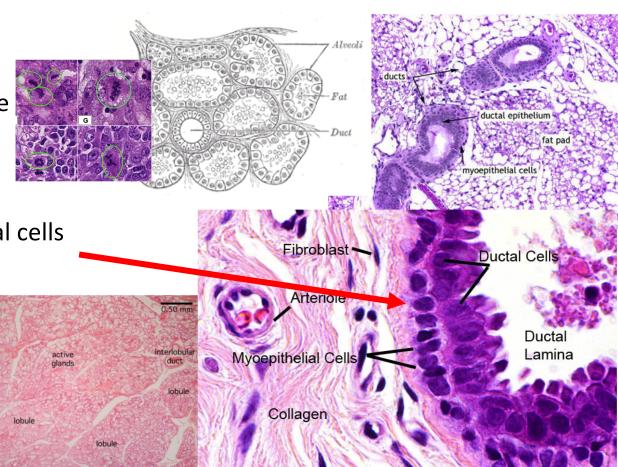
There is a lot more Semantics to explore ...

Object types = structures

- cell, cell nucleous, cytoplasm, membrane
- cell nucleous mytosis (division into 2)
 mytosis phases: metaphase, anaphase, telophase
- ducts, lobules, alveoli
- mamarian cells, lymphocites
- ductal cells
- inner cuboidal epithelial + outer layer myoepithelial cells
- intersticial tissue
- vacuoles, adipose tissue

More specific identification of atypia

- Ductal hyperplasia
- Atypical ductal hyperplasia
- Ductal carcinoma in-situ (dcis)
- DCIS with microinvasion
- Invasive ductal cancer

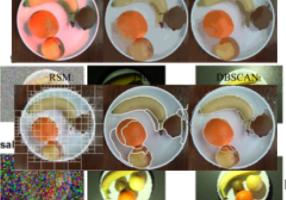


Thank you!

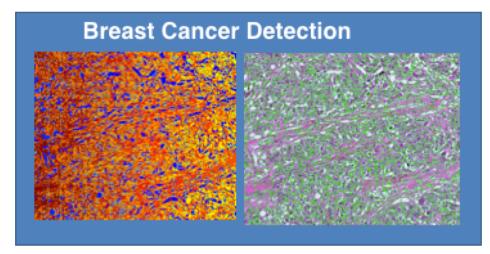
<u>pnf@dei.uc.pt</u> https://eden.dei.uc.pt/~pnf/

Self-management Of Di

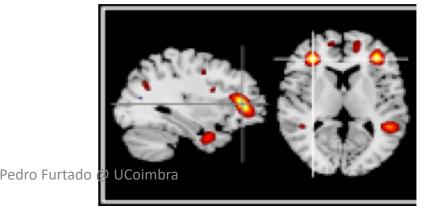
Automated CHC In



Pedro Furtado, U. Coimbra, Portugal



Seizures Detection



Beautiful pictures ...

Appendix

Setup: Dataset

Mytos-Atypia

284x4 RGB frames at X20 magnification.

Nuclear atypia score 1=low grade atypia, 2=moderate grade atypia, 3=high grade atypia.

Score given independently by two different senior pathologists. There were some frames for which the pathologists disagree and gave a different score.

Methods tried

- OBI = our approach = object-based identification
- allMoments = Standard classification pipeline
- Human = classification done by humans
- OBI-objectType = OBI with just one of the object types

Execution time problems (again)

Example nr of regions for segmentation in image = 3400

- time PreProcess Colour:1.8231 secs
- time extract Colour:3.7685 secs -> 0.93 secs
- time extract GLCM: 29.0835 secs-> 13.6 secs
- time extract tDSD Texture:3.3383 secs -> 2.44 secs
- time extract Shape: 16.8656 secs -> 12.9 secs
- ~ 54 secs per image, just for feature extraction => 23 secs

- CONCLUSIONS:
- We had to cut a huge lot of detail everywhere for processing time

We also want to add later (computation-hard):

• Complex Objects, Groups, topology, neighborhood, spatial relations ...

• e.g. spatial characteristics of invasive carcinoma

• e.g. cell has a nucleous, cytoplasm and a membrane=> id cells

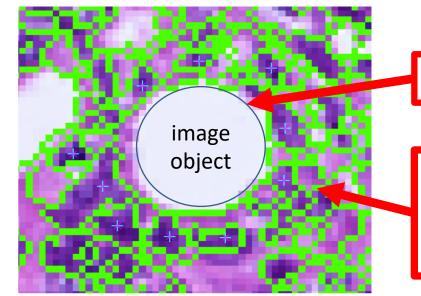
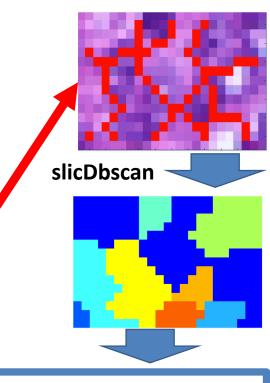


image object features

close neighborhood, layout, obj relations features



Extract complex objs, topology relations