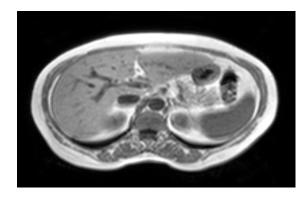
Magnetic Resonance Sequences: Experimental Assessment of Achievements and Limitations



Pedro Furtado @ ICDIP 2020 pnf@dei.uc.pt

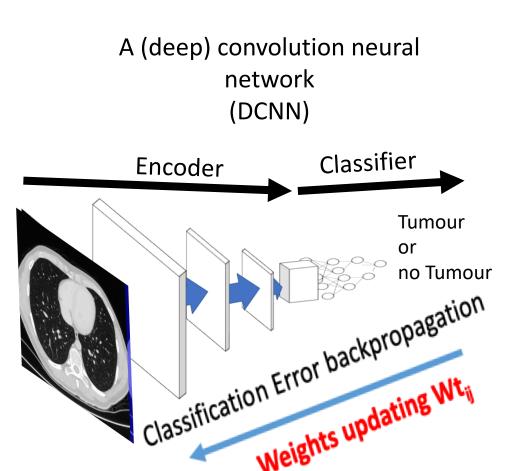
Pedro Furtado Faculty of Science and Technology, DEI/CISUC, University of Coimbra. Portugal MRI images of abdominal organs:

Liver Spleen Left kidney Right kidney

Background

Convolution neural networks are used for classification and segmentation

Classify an image



Classify each pixel in an image

Decoder

Segmentation Error backpropagation

Weights updating Wt_{ij}

wn

A deep segmentation network

(segmentation DCNN)

hz

Encoder

wij

What is the issue we investigate?

• STATEMENT: A feedforward network with a single layer is sufficient to represent any function, ... but the layer may be infeasibly large and may fail to learn and generalize correctly.

—Ian Goodfellow, <u>DLB</u>

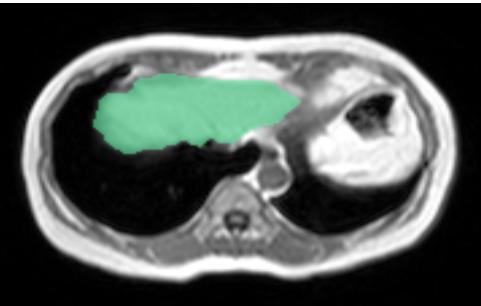
- Convolution neural networks (DCNNs) seem very well adapted to learn from images in a supervised manner, from training images
- Most people like to think that segmentation DCNNs are almost 100% perfect

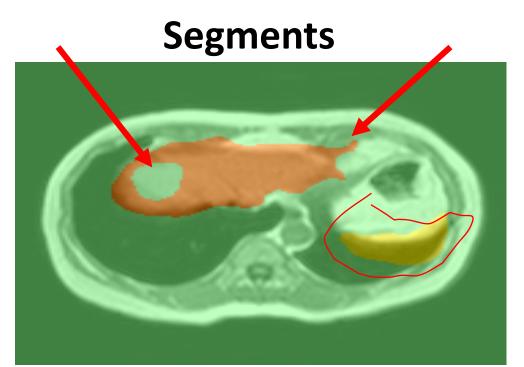
SORRY, DATA IS NOT PERFECT → ITS A FACT OF LIFE!

What is the problem?

- Deep convolutional neural network are very useful to segment medical images... but they are not perfect
- And please, don't blame me... and don't blame data size

GNDtruth





Some related work results segmenting abdominal organs from MRI: • VERY FAR FROM 100% perfect

• Sometimes COMPLEX mix of METRICS is used, with thresholds??

E.g. CHAOS segmentation metrics:

- Sørensen–Dice coeficiente = degree of overlapping (0-100)
- Relative absolute volume difference (RAVD): (0-100)
- Average symmetric surface distance (ASSD), Average symmetric surface distance (ASSD), Maximum symmetric surface distance (MSSD): converted to (0-100)

Other abdominal organs- segmentation results:

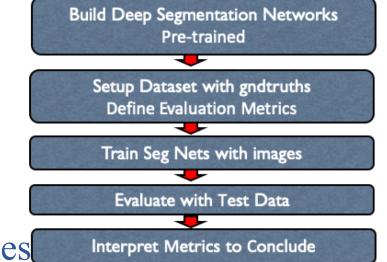
PKDIA	66.463
mountain	60.200
ISDUE	56.251
OvGUMEMoRIAL	44.343
IITKGP-KLIV	25.632

What we do:

• We believe it is important to try to UNDERSTAND where things fail

- We study the quality of segmentation of the Abdominal organs on MRI sequences, trying to determine where it is successful and where it is not so successful
 - (1) have an initial quantification of segmentation of the organs
 - (2) compare DCNN networks;
 - (3) understand limitations of some metrics
 - (4) Understand where approaches still need improvements

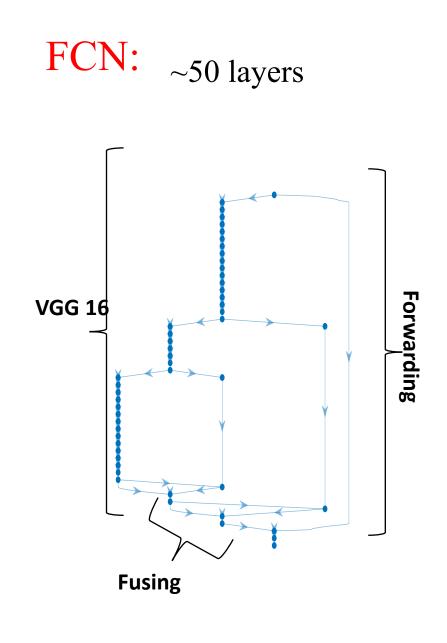
Our own current work includes optimizing the approaches



Magnetic Resonance Imaging data used ...

- MRI sequences of the abdominal region including the kidneys, spleen and liver, 256x256 resolution.
- Acquisition used T1-DUAL modality, a fat suppression sequence using difference of T1 times between fat and water protons.
- 1594 slices from four patients sequences acquired and used in the experiments
- For evaluation, the slices were divided randomly into train and test folds (80%/20%).

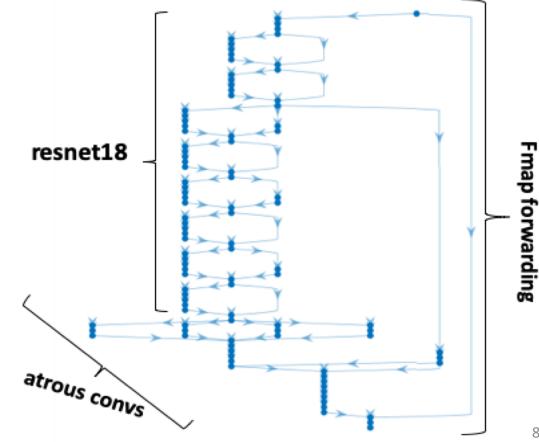
• CHAOS data ([6][7][13])



~100 layers

Resnet-18 feature extract = 71 layer Atrous Spatial Pyramid Pooling (ASPP), Conditional Random Field

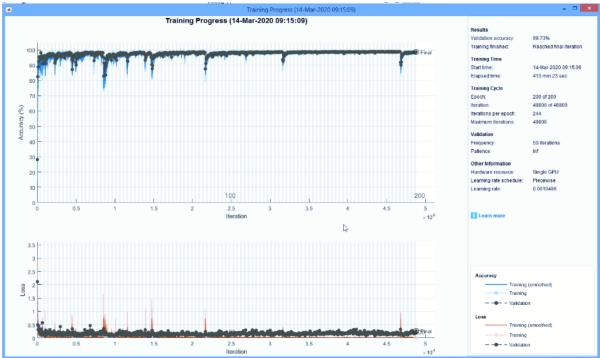
Improve segm multiscales + local object boundaries



DeepLabV3:

We tested and adjusted best training options, etc...

- Type of learn rate schedule = 'piecewise' (rate decreases after period)
- Learn rate drop period=10 (time to decrease), factor=0.8 (how much), Momentum=0.9, Initial learn rate= 0.001;
- Maximum number of epochs= 500, batch size= 8 (4 to 64), Shuffle every epoch,...
- We adjusted class weights as required
- Data augmentation
- We tested several loss functions



Metrics results...

• Accuracy and weighted IoU seem perfect... Most people already know accuracy is not a good metric... but why, and why this IoU?

	Global	Weighted	Mean
	Accuracy	loU	Accuracy
DEEPLABV3	0.98	0.97	0.98
FCN	0.97	0.96	0.91

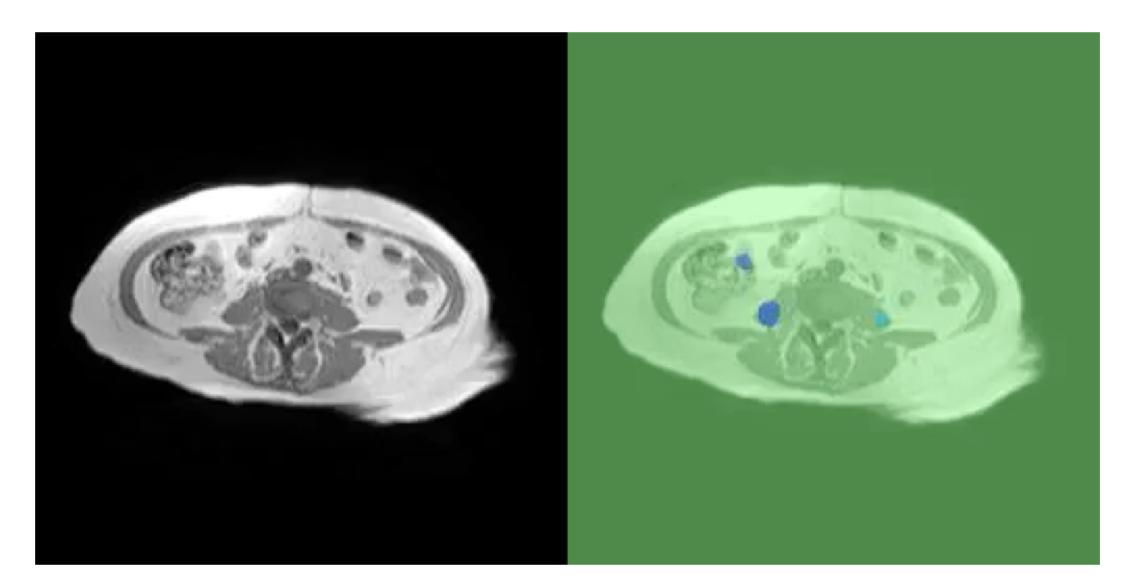
A "normalized" confusion matrix output by tool:

- Also seems almost perfect ... Because it is given as relative to rows !!!!...
 - Meanw 99% of all lkidney were classified as such
 - BUT What about other things (e.g. bkgnd, others) classified as lkidney??? (FP_{lkidney})

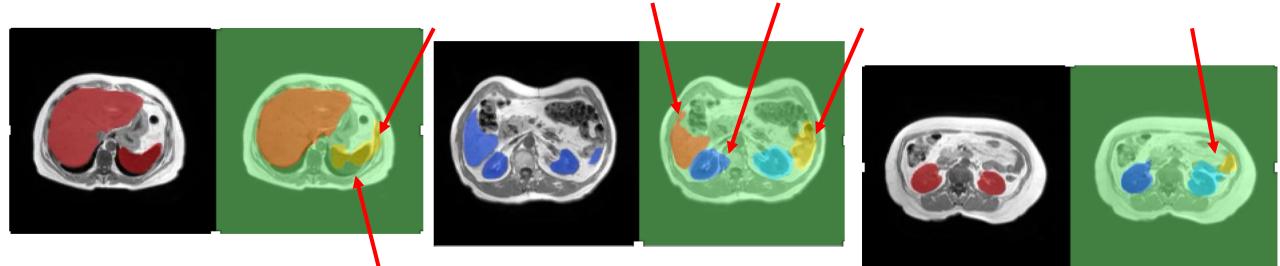
DEEPLAB	BackGrd	liver	spleen	rkidney	lkidney
BackGrd	0.98	0.01	0.00	0.00	0.01
liver	0.03	0.97	0.00	0.00	0.00
spleen	0.01	0.01	0.98	0.00	0.00
rkidney	0.04	0.00	0.00	0.95	0.01
lkidney	0.01	0.00	0.00	0.00	0.99

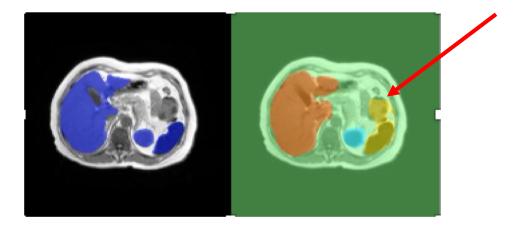
TABLE II. CONFUSION MATRIX DEEPLABV3

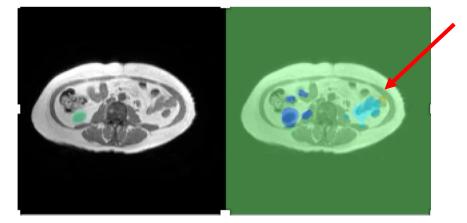
Some sequence of slices...



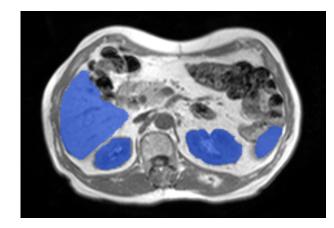
DeepLabV3 example slices..

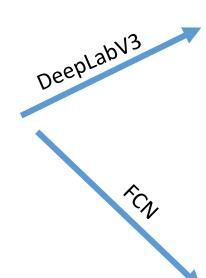


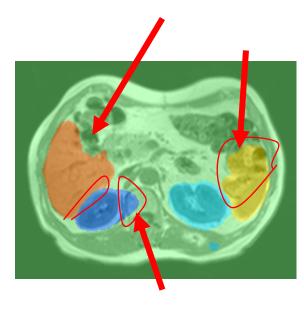


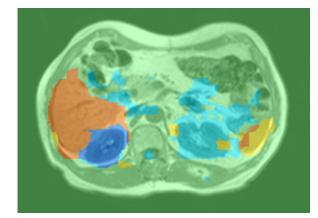


Visualization of some results...

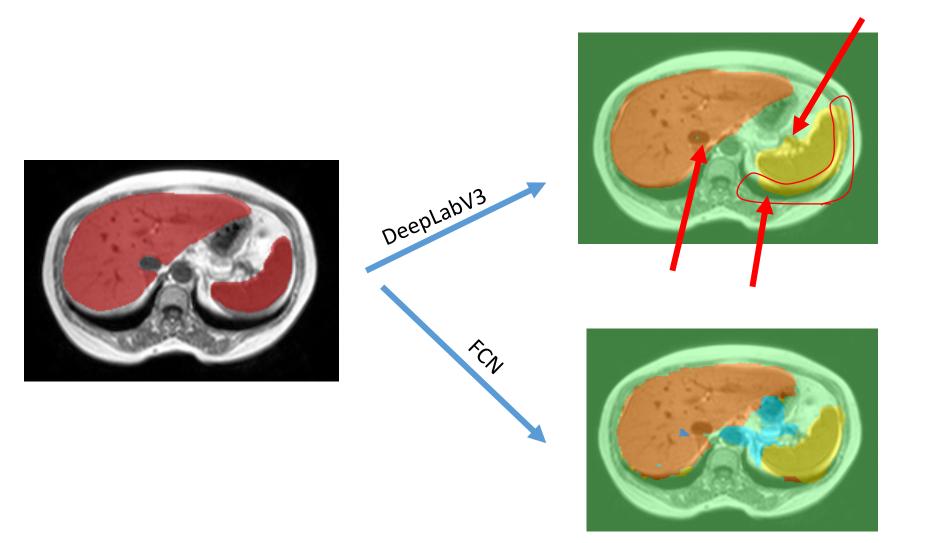








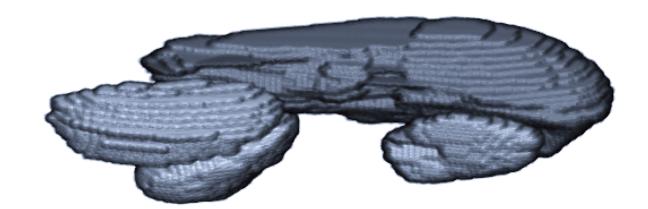
Visualization of some results... Worse in FCN



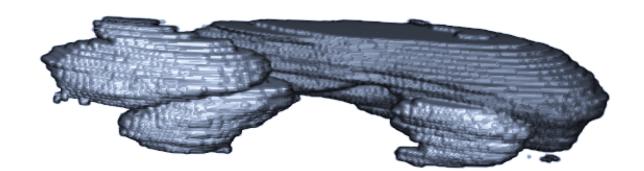
Another visualization:

Liver:

Groundtruth GND



DeepLabV3 seg DL



Why we need IoU...

Accuracy (over all pixels) = recall = fraction of correct pixels classifications acc= (TP+TN)/ALL Background is BIG=> 98% well classified

• Accuracy or recall of liver = fraction of correct classifications of liver pixels acc(organ X) = recall(x) = $TP_x/(TP_x+FN_x) => \sim97\%$, GOOD also,

organ pixels are well classified

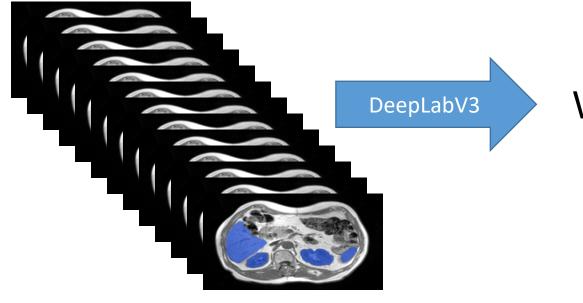
 IoU = degree of "exact matching" of regions = ratio of pixels of object well classified by all IoU(organ x)= TP_x / (TP_x + FN_x + FP_x) => adds FP_x = OTHER PIXELS as ORGAN
BUT WE MUST USE IoU of each organ

• Note: other metrics can also help: Precision, BF-Score, dice would also reveal FP_X

Even with IoU we need to be careful!!

In the following real case segmenting MRI with deepLabV3...

- IoU, measured as "weighted IoU", was 97%
- IoU measured as "mean IoU" is 69%
- true "quality" segmenting organs ranges between **41% and 78%**



Weighted IoU ~=97% left kidney IoU=41%

Quantification of those problems...

DEEPLABv3	Accuracy(%) IoU(%)	BFScore(%)
BackGrd	97	97	90
liver	96	78	60
spleen	97	59	56
rkidney	94	66	56
lkidney	98	41	36

TABLE IV. PER CLASS PERFORMANCE DEEPLABV3

- Accuracy of any class and IoU of bckgnd are perfect -> BCKGND 97%, easy
- IoU of each organ not very good 41%, 59%, 66%, 78%
- BF-Score also reveals problems
- FCN is much worse

TABLE V. PER-CLASS PERFORMANCE FCN

FCN	Accuracy(%)	IoU(%)	BFScore(%)
BackGround	0.96	0.96	0.81
liver	0.90	0.68	0.46
spleen	0.90	0.49	0.39
rkidney	0.88	0.18	0.18
lkidney	0.86	0.35	0.36

Conclusions

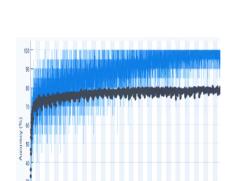
- Deep segmentation networks are amazing, they can learn to segment everything and with good quality...
- But they are not perfect, far from that...
- Significant number of BKGROUND and organ pixels were classified as other organs...
- DeepLabV3 was much better than others... Probably the innovations in DeepLabV3, e.g. to improve object boundaries, improved the results
- Conclusion: more research is needed into ways to improve current DCNNs further

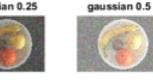
Our current work: loss functions, architectures, post-processing, False positives filtering

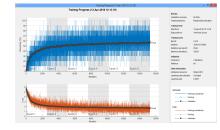
Thank you!

pnf@dei.uc.pt

https://eden.dei.uc.pt/~pnf/

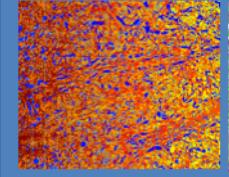


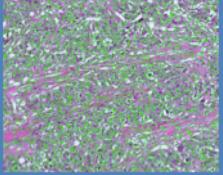




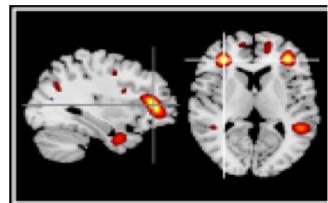
Pedro Furtado, U. Coimbra, Portugal

Breast Cancer Detection



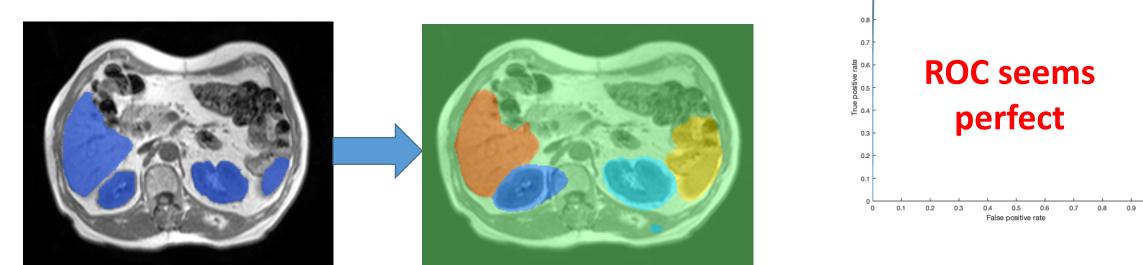


Seizures Detection



ROC also strange!!

- Everybody loves ROC with TPR/FPR...
- In the next case segmenting the spleen in MRI scans using DeepLabV3, ROC and AUC was 91%, but the true quality was 12%



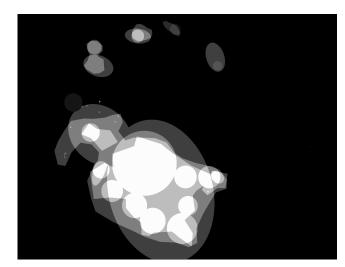
AUC = 0.9091

ROC for MR T1-DUAL, DeepLabV3:252

Semantic segmentation and rough segmentation

- I have often seen tolerant assumptions used in publications, such, for instance,
 - that a lesion found within a large GNDTRUTH region is a TRUE POSITIVE
 - A pixel in the GNDTRUTH background region "close" to the lesion (less than 10x the size of th elsion) is a lesion TRUE POSITIVE...
- Same with TN, FP, FN ->

results nearing perfection... But its not Semantic Segmentation



Why do some metrics make it seem so perfect?

- The background is about 93% of all slides
- Vast majority of the background is easy to segment well by learning
- => Any pixel or class aggregate metric is going to eval mostly background
- Accuracy is especially bad...

- We needs metrics on EACH INDIVIDUAL ORGAN
- And metrics must be used carefully