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Abstract–This paper describes the application of a non-linear 

adaptive constrained model-based predictive control scheme to 
the distributed collector field of a solar power plant at the 
Plataforma Solar de Almería (Spain). This methodology 
exploits the intrinsic non-linear modelling capabilities of non-
linear state-space neural networks and their online training by 
means of an unscented Kalman filter. Tests on the ACUREX 
field illustrate the great engineering potential of the proposed 
control strategy. 

Index Terms–Solar power plant; state-space neural 
networks; online training; constrained model-based predictive 
control; dual unscented Kalman filter. 

I. INTRODUCTION 

In a solar thermal power plant (SPP) solar radiation is 
used to heat a working fluid as it circulates through the 
receivers. The heated fluid may then be used to generate 
high-pressure superheated steam to feed a conventional 
turbine/generator system for producing electricity or heating 
water for industrial use, just to name a few applications. 
Thus, using solar energy to produce industrial process heat, 
not only conserves non-renewable energy sources but also 
reduces anthropogenic gas emissions. 

One drawback of solar energy, apart from its 
intermittency, is that the sun’s direct beam radiation at the 
earth’s surface is profoundly influenced by climate 
conditions, such as clouds and fog, and atmospheric 
turbidity, not to mention the fact that it changes considerably 
throughout the daylight. In such a scenario, maximising the 
usage of available energy, while maintaining desired 
operating conditions for the heat consumer process, should 
be a primary concern of the control policy. The main control 
prerequisite in a SPP is to maintain the outlet temperature of 
the heat transfer fluid at a prescribed value by suitably 
manipulating its flow rate through the receivers. Since the 

SPP dynamics depends mainly on the working fluid flow 
rate and beam radiation at the mirror aperture varies 
throughout the daylight and additionally it is subject to the 
mentioned atmospheric disturbances, substantial variations 
in the SPP dynamics (e.g. the response rate and the time 
delay) will occur. 

For dealing with this inherent feature of the plant, several 
control schemes have been proposed and implemented on 
real SPPs. Using a linear indirect adaptive control scheme 
Rubio et al [1] have reported the implementation of a self-
tuning PI controller based on a pole placement approach, 
whereas Camacho and Berenguel [2] implemented an input 
constrained model predictive control strategy combined with 
a robust identification methodology. Also in a predictive 
control framework, a number of other control schemes have 
successfully been applied to real SPPs (see e.g. [3]–[5]). 
Using a different methodology by combining intelligent 
techniques with conventional control methodologies, 
Henriques et al [6] have proposed a control strategy based 
on a fuzzy logic switching of PID controllers. 

In the past few years the development of artificial neural 
networks (NN) methodologies have been receiving a great 
deal of attention in a variety of scientific fields, owing to the 
approximation capabilities of multi-layer networks [7]. 
Neural modelling is one of their applications in the 
mathematical approximation theory realm with relevance to 
the control field [8]–[10]. In this context, Sørensen et al [11] 
reported a neural input-output black-box model in a 
generalised predictive control framework, while Gil et al 
[12] have described an implementation of a neural model-
based predictive control methodology that provides zero 
static offsets by incorporating a pre-filter in the control loop. 
In a different approach the same authors propose to carry out 
an online NN weights adaptation [13] in order to eliminate 
the model/plant mismatch responsible for steady state 
deviations from set points.  
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Fig. 1. The distributed solar collector field at PSA. 
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Fig. 2. Distributed solar collector field schematics. 

 
In the present work this direction was followed in 

developing an adaptive constrained model-based predictive 
control scheme to the distributed solar collector (DSC) field 
of a solar thermal power plant at the Plataforma Solar de 
Almería. The methodology consist in an online NN weights 
adaptation and state estimation methodology by means of a 
dual unscented Kalman filter (DUKF) within a model-based 
predictive control framework. 

The paper is organized as follows: Section 2 gives a short 
description of the DSC field. Section 3 focuses on the state 
space neural network architecture and training. In Section 4 
the model based predictive control problem is covered. 
Section 5 presents experimental results obtained on the 
PSA’s ACUREX field and Section 6 provides some 
concluding remarks. 

II. THE SOLAR THERMAL POWER PLANT 

The ACUREX distributed solar collector field is part of 
the Plataforma Solar de Almería (PSA), Fig. 1. It is a center 
for testing thermal solar energy applications, located on the 
desert of Tabernas, in south of Spain. The DSC field 
consists of 480 parabolic trough collectors arranged in 20 
rows aligned on a West-East axis and forming 10 
independent loops as depicted in Fig. 2. Every solar collector 
has a linear parabolic-shaped reflector that focuses the sun’s 
beam radiation on a linear absorber tube located at the focus 
of the parabola. Each of the loops is 172 m long, with an 
active part of 142 m, while the reflective area of the mirrors 
is around 264.4 m2. 

The heat transfer fluid used to transport the thermal 
energy is the Santotherm 55, which is a synthetic oil with a 
maximum film temperature of 318 °C and an autoignition 
temperature of 357°C. The thermal oil is heated as it 
circulates through the absorber tube before entering the top 
of the storage tank. The colder inlet oil is extracted form the 
bottom of the tank. A three way valve located at the field 
outlet enables the oil recycling (by-passing the storage tank) 

until its outlet temperature is high enough to be sent to the 
storage tank. The thermal energy storage in the tank can be 
subsequently used to produce electrical energy in a 
conventional steam turbine/generator or in the solar 
desalination plant operation. 

The DSC field is provided as well with a sun tracking 
system, which causes the solar collector to revolve around 
an axis parallel to the receiver in order to follow the yearly 
variation of the sun’s declination. 

III. NEURAL NETWORKS MODELLING 

Consider a deterministic discrete-time non-linear system 
having the general form: 

( ) ( ) ( )( )
( ) ( )( )kkxhky

kkukxfkx
,

,,1
=
=+

 (1) 

where nmnf ℜ→ℜ×ℜ×ℜ:  and pnh ℜ→ℜ×ℜ:  are 

non-linear functions, assumed to be smooth; ( ) mku ℜ∈ , 

( ) nkx ℜ∈  and ( ) pky ℜ∈  are, respectively, the input vector, 
the state vector and the output vector, at a discrete time k . 

The aim in NN modelling is to find a parameterised structure 
that emulates the non-linear mappings ( )⋅f  and ( )⋅h . 

A. The Architecture for the DSC Field 

The DSC non-linear model is obtained by training, in a 
supervised way, a non-linear state space neural network 
comprising 3 layers of neurons, Fig. 3. Both the input and 
the output layers incorporate one neuron, corresponding to 
the same number of inputs and outputs, while the number of 
neurons in the hidden layer was chosen as 2 by means of a 
trade-off between the generalisation performance and the 
training error. This NN architecture is of recurrent type 
consisting of a feedforward main body where signals are 
propagate forward from the input neuron to the hidden units 



and from this layer to the output neuron to produce the 
network output. Additionally, within the hidden layer are 
allowed time-delayed (q-1) feedback connections. 
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Fig. 3. State-space neural network block diagram. 

Such a structure for ϕ as a hyperbolic tangent function 
can be described in the state space form by the following 
equations: 

( ) ( )( ) ( ) ( ) ( )
( ) ( )kWky

kuWkWkWk
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=++=+
ˆ
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where ( ) Nnk ℜ∈ξ  denotes the network internal hyperstate, 

( ) Noky ℜ∈ˆ  is the network output, ( ) Niku ℜ∈ is the external 
input; Ni , Nn  and No  are, respectively, the number of 
neurons in the input layer, hidden layer and output layer. 
The synaptic weights between neurons, namely, BW , CW , 

DW  and EW  are real-valued matrices with appropriate 
dimensions. 

B. Training 

A number of methods for training neural networks have 
been proposed for either offline parameters estimation or 
real-time adaptation (see e.g. [14] [15] [16] [17] and the 
many references therein). These algorithms fall basically 
into two different categories: gradient based methods and 
second order methods. Since gradient based methods are 
slow and ineffective at finding a good solution they should 
be avoided when training recurrent neural networks. 

In the present work the PSA’s DSC field identification is 
carried out in two levels. First, a parameterisation is 
obtained for the selected topology by training the neural 
network on a batch mode, following an online estimation of 
weights in order to get rid of any model/plant mismatch due 
to the quality of the offline training set or the time variant 
nature of some plant’s parameters such as the oil thermal 
capacity or the global coefficient of thermal losses, just to 
name a few. 

In the offline NN training, the Levenberg-Marquardt 
algorithm is applied in minimising a cost-function given by 
the sum of square errors. The model parameters updating 
law is given by: 

( ) ( )iii wJww ∇+−=
−+ 11 ~

ΙλH  (3) 

where w  is the model parameters vector; H~  denotes the 
approximation of the Hessian matrix; ( )iwJ∇  is the cost-

function gradient, +ℜ∈λ  is the Marquardt factor; Ι  is an 
identity matrix of appropriate dimensions. By means of the 
Marquardt factor, this algorithm provides a compromise 
between the speed of convergence of the Newton’s method 
and the guarantee of convergence of steepest descent 
algorithm. 

Regarding the online weights adjusting, the present work 
follows the dual Kalman filter approach based on the 
unscented transformation [18]. Like all Kalman filter based 
algorithms, in the DUKF approach both states and 
parameters of a given dynamical system are computed 
simultaneously in two stages: i) in the time update one step-
ahead predictions for the estimates are computed; ii) in the 
measurement update a correction is provided to these 
estimates on the basis of current noisy measurement. The 
dual filter equations are given by: 

Weights estimation 

Time update: 
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Measurement update: 
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States estimation 

Time update: 
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Measurement update: 
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where µ  denotes the forgetting factor, Ω  the sigma points 
matrix of w, Γ  the corresponding weight vector, K the 
Kalman gain and X the sigma points matrix of x. 

IV. MODEL-BASED PREDICTIVE CONTROL 

Model-based predictive control is a discrete-time 
technique for which an explicit dynamic model of the plant 
is used to predict the system’s outputs over a finite 
prediction horizon P  when control actions are manipulated 
over a finite control horizon M. At time step k, the optimiser 
computes an open-loop control action sequence in such a 
way that the predicted output follows a pre-specified 
reference while taking into account possible hard and soft 
constraints. Only the current control action ( )kku |  is 
actually fed to the plant over time [ )1, +kk . Next, the 
prediction and control horizons are shifted ahead by one step 
and a new optimisation problem is solved. 

Let a first order Taylor expansion of (2) be given as: 

( ) ( ) ( )
( ) ( )kxky

kukxkx
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where NnNn×ℜ∈Φ , NiNn×ℜ∈Ξ and NnNo×ℜ∈Η  denote, 
the state, the input and the output matrices, respectively; 

Nnℜ∈Ε  is the first term of the Taylor series expansion. 
The constrained open-loop optimisation problem can be 

stated as follows: 
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subject to the system dynamics (8) and to the following 
constraint inequalities: 

( )
( )

( )
( ) 0,1,..,,0  

0,1,..,0,  

0,1,..,0,

0,,..,1,

max

maxmin

maxmin

≥−==+∆

≥−=∆≤+∆

≥−=≤+≤

≥=≤+≤

kPMikiku

kMiukiku

kPiukikuu

kPiykikyy

 (10) 

with NoNo
i

×ℜ∈Q , NiNi
i

×ℜ∈R , NiNi
i

×ℜ∈S ; Niu ℜ∈∆  is 

the control action moves and ( ) Nokr ℜ∈  the reference 
vector. 

As a result of the optimisation problem convexity, the 
open-loop optimal control problem can be rewritten as a 
quadratic programming problem (11). 

minimise ( ) uuuhuJ TT ~~
2
1~~ ∆∆+∆=∆ H  

Subject to buAT ≤∆~  
(11) 

where ( ) ( )PNoMNiMNiA ⋅+⋅×⋅ℜ∈ 24 , ( )PNoMNib ⋅+⋅ℜ∈ 24 ; 
MNiu ⋅ℜ∈∆~  denotes the extended control moves over the 

control horizon. The cost function gradient MNih ⋅ℜ∈  and 
Hessian ( ) ( )MNiMNi ⋅×⋅ℜ∈H  expressions can be found in 
[12]. 

V. DSC FIELD CONTROL TEST 

The proposed adaptive constrained non-linear MPC 
scheme was tested on the Plataforma Solar de Almería DSC 
field on 13 September 2001. In order to maintain (or drive) 
the outlet oil temperature at a pre-specified level despite 
variations in the sun’s beam radiation and in inlet oil 
temperature, the control system manipulates the thermal oil 
flow rate pumped to the solar collector field. 

Given the complexity and memory requirements of this 
approach it was considered to run the online identification 
and states estimation, as well as the open loop optimisation 
routines, in a separate computer, a laptop computer in the 
case. Thus, these routines were able to be implemented in 
MATLAB 5.3 taking advantage of its programming 
flexibility and using the optimisation toolbox for solving in 
real-time the required open loop constrained quadratic 
optimisation problem. 

This laptop computer was then connected with the 
ACUREX field computer (a Pentium PC with DOS 
operating system) via a RS232 communication system 



providing the means for the exchange of data. In this 
framework the ACUREX PC provides the DSC field data to 
the laptop computer where a new control action will be 
evaluated. Next, this new oil flow rate value is sent to the 
laptop’s COM and read by the ACUREX field PC which 
forwards it to the pump PI remote controller. 

Communication routines for “synchronisation”, “sending” 
and “reading” have been implemented in both C code for the 
ACUREX software package and in MATLAB to be called 
within the main control program, being used in this case the 
Real Time Toolbox from HUMUSOFT. 

The training data set considered for offline adaptation of 
the NN weights has been collected from the plant on 8 June 
2001 and the Levenberg-Marquardt algorithm used in 
minimising the error cost-function. Due to lack of space it is 
merely mentioned that the neural predictor for the cross 
validation data performs in a satisfactory way. 

With respect to the constrained open-loop optimal control 
problem (11) the prediction horizon and the control horizon 
were chosen as 7=P  and 1=M  time steps, the sampling 
time was set to 15 seconds, while the cost functional weight 
matrices were chosen as: 
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For safety reasons while solving the open loop 
optimisation problem, constraints were imposed in both the 
oil flow rate, which should be within 2 ls-1 and 10 ls-1 and 
the outlet oil temperature which is limited to 300°C. 
Additionally, the oil flow rate (control action) moves were 
constrained to 0.1 ls-1 in order to enable a smoother pump 
operation, thus rendering a controller not much aggressive. 

Concerning the dual unscented Kalman filter, the most 
relevant configuration parameters were chosen as follows: 

( ) NnxxP Ι=0  

( ) NwwwP Ι6100 −=  

NoR Ι310−=  

NnQ Ι310−=  
9999.0=µ  

(13) 

Figures 4.a) and b) depict the outlet oil temperature 
( outT ), set point ( refT ), oil flow rate through each DSC loop 

(V& ), the inlet oil temperature ( inT ) and the solar radiation 
( I ) during the control tests on this particular day. 
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Fig. 4. ACUREX field test on 13 September 2001: a) set point, outlet oil 
temperature and oil flow rate; b) solar radiation and inlet oil temperature. 

As can be inferred from the above plots, the adaptive 
MPC scheme provides a very interesting dynamic response 
of the outlet oil temperature, being the control system quite 
stable in all the operating points. An exception occurs for 

( )15,5.14∈t  hour, when the radiation felt down abruptly 
due to passing clouds. However, despite the satisfactory 
controller performance, static offset errors are not entirely 
removed. They are manly due to the model/plant mismatch 
not completely compensated by the online identification. 
The reason why this happens is related to the small gain 
adaptation of the model parameters as a result of a small 
initial covariance matrix. Yet, it is also perceptible that, as 
time goes by, since the modelling errors are becoming less 
significant by means of an online identification, which 
results in decreasing static deviations from the set points. 
Possibly, static offsets would be entirely eradicated in the 
course of time. 



VI. CONCLUSIONS 

In this paper an adaptive constrained model-based 
predictive control scheme is applied to the distributed 
collector field of a solar power plant at the Plataforma Solar 
de Almería. The black-box model is derived by means of a 
state-space neural network and the real-time training and 
states estimation is based on a dual unscented Kalman filter. 
Experimental results on a particular day, shows the validity 
of the proposed control scheme. 
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