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Abstract 
A feedback linearisation control scheme is proposed an 
implemented on a real solar power plant. This structure is 
based on a non-linear control methodology combined with a  
recurrent neural predictor. Given model plant mismatches it 
is crucial to provide the control system with an off-set 
compensation, being an internal model controller strategy 
used for this purpose. Experimental results collected on the 
solar power plant at Plataforma Solar de Almeria, in south of 
Spain, illustrate how this methodology can be successfully 
applied in practice. 

 

1. INTRODUCTION 

he main control requirement in a solar power plant is 
to maintain the outlet oil temperature of the collector 

field at a constant pre-specified value. The main feature of 
the plant is that its primary energy source, the solar 
radiation, can not be manipulated by the control system. 
Moreover, since the solar radiation changes substantially 
during the plant operation and it is subject to 
disturbances throughout the daily solar cycle, significant 
variations in the dynamics will occur. Therefore, it is 
difficult to obtain a satisfactory control performance over 
the whole operating range with a sole fixed controller 

One possibility to overcome these difficulties is to use 
adaptive control schemes on the basis of local linear 
models of the plant, which can mimic changes during the 
operation, which can be used for self-tuning or within a 
predictive control framework (Camacho et al, 1994; 
Pickhardt and Silva, 1998).  

The distributed solar collector field is a process where 
the main disturbances, the solar radiation and the inlet oil 
temperature, are measurable. Having this in mind, Coito 
et al (1997) have presented simulation and experimental 
results concerning the design of a predictive controller 
(MUSMAR), and Cardoso et al (1999) have proposed a 
fuzzy supervisor strategy that takes into account this 
disturbances. Others have suggested intelligent control 
techniques (Arahal et al, 1997), (Berenguel et al, 1997), 
(Rubio et al, 1995), (Oksanen and Juuso, 1999). 

Henriques et al (1999) have suggested a control strategy 
based on a PID control design with fuzzy logic-switching 
supervisory. The supervisor is built upon a Takagi-Sugeno 
fuzzy model to implement an on-line switching between 
several PID controllers, according to the real time 
measured conditions. The PID controllers were previously 
tuned using different models of the plant for specific 
relevant operating points. 

In the past years neural networks (NN) have been 
attracting a great deal of attention owing to their ability 
to learn non-linear functions from input-output data 
examples (Cybenko, 1989).  

Concerning control strategies, there are basically two 
ways in which neural models can be used. In one 
approach towards the control design the neural network is 
itself a neural controller and in the other neural networks 
provide a model to be used in model based control 
methodologies.  

Recurrent neural networks (RNN), introduced by 
Hopfield (1982) and further developed by other authors 
(Poznyak et al, 1999), (Kulawski and Brdys, 2000) have 
some advantages with respect to static NN, in modelling 
dynamic processes. This type of NN can be used to 
replace the unknown system, transforming the original 
control problem into a non-linear control problem suitable 
to be designed by non-linear control techniques. In this 
context the geometric approach has provided a variety of 
tools for the analysis and design of control systems. A 
well-known technique is the feedback linearisation. 

In the present work a feedback linearization based 
control using a recurrent neural network is investigated. 
Given the model plant mismatch impossible to eradicate 
in practice, it is required either to provide an on-line 
adaptation of the neural networks weights or to 
incorporate a static offset compensation within the control 
structure. Here an internal model approach (IMC) scheme 
was followed. Simulation and experimental results 
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collected from the solar power plant at Almería show the 
viability and effectiveness of the proposed methodology. 

The paper is organised as follows: in the section 2 the 
proposed NN architecture and the learning algorithm is 
presented; the feedback linearisation theory is reviewed in 
section 3; section 4 gives a short description of the solar 
power plant. In section 5 some simulation and 
experimental results collected from the solar power plant 
are presented. Finally, in section 6 some conclusions are 
drawn. 

2. RECURRENT NEURAL NETWORKS 

The plant is assumed to be described by the following 
equations: 

§ xp(k+1)=ƒ ( xp(k), u(k) ) 
y(k) = C xp(k) 

(1)

where f:ℜnp×ℜnu→ℜnp defines a non-linear function. The 
vector xp∈ℜnp is the state vector (assumed to be unknown 
and inaccessible), u∈ℜnu and y∈ℜny are, respectively, the 
process input and output.  

2.1 Proposed Recurrent Neural Architecture 

Given the approximation capabilities of RNN (Jin et al, 
1999) it is assumed that there exist a RNN, described in 
(2) and shown in Fig. 1, that is able to describe the 
plant’s dynamics.  

xn(k)

xn(k+1) yn(k+1)

A q-1

u(k) B

D C

 
Fig. 1: Recurrent neural network structure. 

§ xn(k+1) = A xn(k) + D σ( xn(k) ) +B u(k) 
yn(k) = C xn(k) 

(2)

The vector xn∈ℜn is the output of the hidden layer, 
known as the network hyper-state and yn∈ℜny is the 
network output. A∈ℜn×n, B∈ℜn×nu, C∈ℜny×n, D∈ℜn×n are 
interconnection matrices or weights and the neural 
activation function σ(⋅) is the hyperbolic tangent function. 

This architecture can be seen as a modification of the 
original discrete time RNN proposed by Hopfield, with an 
additional exogenous input. On the other hand, this 
architecture can be seen as well as a hybrid model with a 
linear and a non-linear parts.  

2.2 Neural Network Training 

With respect to the neural network’s weights 
estimation, as pointed out by Hagan and Menhaj (1994), 
the Levenberg-Marquardt is more efficient than other 
techniques when the network contains no more than a few 
hundred parameters. Due to its effectiveness this 
algorithm has been applied for the off-line training of 
RNN’s. According to this algorithm, the neural network 
weights are updated iteratively as follows:  

§ 
∆W=-(H+λ I )-1 ∇J(W) (3)

where H denotes de Hessian of the cost function J(w), 
∇J(w) is the gradient and λ is the Marquardt coefficient. 
The Levenberg-Marquardt algorithm has a very attractive 
feature has it spans from a steepest descent type method 
for large values of λ, to a Gauss-Newton method for λ→0. 
A straightforward strategy for selecting λ is proposed in 
Hagan and Menhaj (1994).  

3. FEEDBACK LINEARIZATION  

Linearization by feedback is a well-established approach 
to the control of non-linear systems. The main idea is to 
transform a non-linear state space model of the plant into 
to new coordinates system where the non-linearities can 
be cancelled by feedback. In this context the aim of 
feedback linearisation is cancelling the non-linearities of 
the system and imposing a desired linear dynamics. 

Here the unknown system is described by a non-linear 
state space neural network model.  

3.1 Problem Formulation 

Given the plant described by (2), assume the following 
relationships: 

§ ∆xn(k+1)= xn(k+1)-xn(k) (4)

§ ∆u(k)= u(k)-u(k-1) (5)

§ 
∆σ(xn(k+1))= σ(xn(k+1))-σ(xn(k)) (6)
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By using the above expressions follows: 
§ ∆xn(k+1)=A ∆xn(k)+B ∆u(k) + D ∆σ(xn(k)) (7)

The increment ∆y(k) is defined by: 
§ ∆yn(k+1)= yn(k+1)-yn(k) (8)

§ 
∆yn(k+1)=CA ∆xn(k)+CB ∆u(k)+CD ∆σ(xn(k+1)) (9)

From (8) follows: 
§ CB ∆u(k)= ∆yn(k+1)-CA ∆xn(k)-CD ∆σ(xn(k+1)) (10)

Then, 
§ ∆u(k)= {CB}-1 [ ∆yn(k+1)-CA ∆xn(k) 

-CD ∆σ(xn(k)) ] 
(11)

and finally the control action can be given by: 
§ u(k)  = u(k-1) + ∆u(k) (12)

In equation (8) since the term yn(k+1) is unknown it is 
replaced by the reference signal at instant k+1, yd(k+1). 
Thus, by this means, the non-linearities of the neural 
network model are appropriately cancelled in order to 
obtain a linear input-output mapping. As a result, the 
control structure incorporates an integral action, which 
enables in theory a free steady state off-set for the model 
description. 

As the cancellation is not exact for the solar plant due 
to modelling uncertainties an internal model control 
scheme is incorporated within the feedback linearisation 
control framework, as shown in Fig. 2. 
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Fig. 2: Control structure. 

4. THE SOLAR POWER PLANT 

The Acurex distributed solar collector field at 
Plataforma Solar de Almería (PSA) is quite well 
described in literature (Kaltz, 1982; Camacho et al, 1992) 

and is located at the desert of Tabernas, in south of 
Spain. The field consists of 480 distributed solar collectors 
arranged in 20 rows, which form 10 parallel loops. Each 
loop is 172 m long and the total aperture surface is 2672 
m2. The plant is able to provide 1.2 MW peak of thermal 
power. A schematic diagram is shown in Fig. 3. 
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Fig. 3: Schematic diagram of the Acurex field. 

Each collector uses parabolic mirrors to concentrate the 
radiation in a receiver tube. Synthetic oil is pumped 
through the receiver tube and picks up the heat 
transferred through the tube walls. The cold inlet oil is 
collected from the storage tank and is pumped through 
the field. The heated fluid is introduced into the storage 
tank to be used for electrical energy generation or feeding 
a heat exchanger of the desalination plant. The 
manipulated variable in the plant is the oil flow rate Qin, 
being the main goal to drive the outlet field oil 
temperature Tout to a prescribed value Tref. The main 
disturbances are the solar radiation Irr and the inlet oil 
temperature Tin. 

5. RESULTS 

Experiments were carried out on the Acurex solar 
collector field of the Plataforma Solar de Almería on 13 
June 2001. The proposed control scheme was implemented 
in C code and linked within a software package developed 
at PSA (López, 1996), also in C code. In order to assess 
the feasibility of the proposed control scheme simulations 
were first carried out using the model developed at the 
University of Sevilla (Berenguel et al, 1993). 
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5.1 Neural Network Training 

The distributed solar collector field is a process where 
the main disturbances, the solar radiation and the inlet oil 
temperature, are measurable. Therefore, it makes sense to 
incorporate this knowledge in the design of a feedforward 
compensator, which has shown interesting properties. In 
the present work the relation (13), characterising the 
steady state behaviour, was used.  

§ 
Qin= 

 11423×102 Irr 
 (903-0.67 Tref) (1820+3.47 Tref ) ( Tout-Tin)  (13)

A schematic diagram of the compensator is presented in 
Fig. 4. 

Tout
Compensator Acurex Field

Irr Tin

Tref Qin

 
Fig. 4: Feedforward compensator. 

To obtain an initial estimation of the neural network 
parameters a number of inputs were fed to the plant. The 
goal in designing the test inputs was to cover the 
operating range of the plant to as great and extend as 
possible.  By a trial and error approach it was found that 
a selection of two hidden neurons, n=2, is quite suitable 
to provide a good model for the Acurex plant.  

The network training was performed via the Levenberg-
Marquardt algorithm, considering that input and output 
data were appropriately  scaled.  

5.2 Simulation Results 

Simulations were carried out in view of two main goals. 
On one hand, to assess the global performance of the 
control scheme in a wide range of operating conditions, 
and on the other hand to support the tuning of the 
control parameters. 

From the results shown in Fig. 5, it can be seen that 
the proposed strategy is able to perform fairly well in 
different nominal operating conditions. In the simulations 
were used the data collected on 8 June 2001 (climacteric 
data and the oil temperature). 
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 (a) Reference, output temperature and pump flow rate. 
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(b) Solar radiation. 
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(b) Inlet oil temperature. 

Fig. 5: Simulation results. 
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5.3 Experimental Results 

The experiments on the Solar Power Plant were carried 
out on 13 June 2001. The sampling time was chosen as 15 
seconds and the output temperature (Tout) was considered 
as the maximum oil temperature for the active loops. 

As can bee seen, in Fig. 6 the control system output is 
stable and the deviation from the set-points is not 
significant.  
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(a) Reference, output temperature and pump flow rate. 
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(b) Solar radiation. 
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(b) Inlet oil temperature. 

Fig. 6: Experimental results obtained on 13 June 2001. 

6. CONCLUSIONS  

A feedback linearisation control scheme based on a 
recurrent neural network was implemented in real-time 
and applied to a distributed collector field of a solar 
power plant. The proposed strategy is a systematic one, 
which can be readily applied to a wide variety of processes 
without having to know in advance the first principle 
model of the plant. To cope with the plant/model 
mismatches an IMC approach was designed and 
incorporated within the control scheme.  
Experimental results confirm the simulation results and 
show that the system has robustness with respect to 
changes in solar radiation, inlet oil temperature and 
operating conditions. This experimental study has shown 
that neural networks are an important methodology for 
many industrial control applications. The simplicity and 
reliability of neuro-control presents a high potential for 
the development of efficient and intelligent control 
systems.  
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