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Abstract - The problem of order evaluation for an affine state–
space neural network or equivalently the estimation of the 
number of neurons to be inserted in the hidden layer in a 
recurrent neural network is here addressed. The proposed 
method is based on a singular value decomposition applied to 
an oblique subspace projection given as the projection of the 
row space of future outputs into the past inputs–outputs row 
space, along the future inputs row space. 

I. INTRODUCTION 

The increasing necessity for modelling high complex 
dynamic systems has been a major driving force towards 
the development of robust black-box methodologies to deal 
with nonlinearities and uncertainty. One of the research 
directions that have been pursued in the context of system 
identification focus on the synthesis of nonlinear model 
structures and their approximation capabilities. 

Among nonlinear black–box models (see e.g. [1] and 
references therein) artificial neural networks (or simply 
neural networks) have attracted considerable attention as an 
invaluable nonlinear structure choice mainly due to their 
inherent well known approximation capabilities [2]–[5]. As 
proven, a three–layered feedforward neural network (MPL) 
incorporating in the hidden layer a sufficient number of 
processing units (neurons) with sigmoidal activation 
function can theoretically approximate to any level of 
accuracy a given continuous nonlinear mapping. 

Although MPL are inherently static structures, they have 
extensively been applied in modelling and control of 
nonlinear dynamic systems (see e.g. [7]–[10]). The way 
these structures are able to approximate spatio–temporal 
sequences is artificially carried out by providing to the 
network input layer a sequence of past inputs and outputs. 
The current neural network output is then given by 
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where ( ) mu k ∈  and ( ) ny k ∈  represent the input vector 
and the output of the system at time k  and un  and yn  the 
lag window orders and Φ  a real vector valued function. 

One well known drawback of this approach is that it can 
only encode a finite number of previous inputs and outputs 
[11]. On the other hand, the so called tapped delay line 
representation suffers from high sensitiveness to the lag 
windows not to mention its susceptibility to noisy input and 
output signals. 

An alternative to MPL structures involves the incorporation 
of feedback connections within the hidden layer. This 
recurrent neural network structure, which conceptually 
represents a broader class of nonlinear dynamic systems, 
not only is less vulnerable to noise, since the input vector 
provided to the network does not include previous outputs, 
but also the whole system’s history can intrinsically be 
embedded into the model dynamics. Recurrent neural 
networks topologies provide universal identification models 
in the restricted sense that they can approximate uniformly 
any MIMO nonlinear dynamic system over finite-time 
intervals for every continuous and bounded input signal 
[12]–[16]. Applications of recurrent neural networks 
topologies can be found elsewhere, see e.g. [17]–[21]. 

An important issue concerning the generalization 
capabilities of a given neural preditor is the size of the 
underlying network or, by other words, the number of 
neurons in the hidden layer. As pointed out by Lawrence 
and Giles [22] neural networks are intrinsically prone to 
overfitting as a converging result of an excessive number of 
weights and the unconstrained minimisation of the 
empirical loss function [23]. 

One method known to control the smoothness of the fit is to 
add a regularization term to the loss function being 
minimised (see e.g. [24] and references therein). Other 
techniques, which are devoted to selecting the number of 



 

 

hidden-layer neurons, include the network pruning and 
constructive methods [25], statistical approaches such as the 
Network Information Criteria (NIC) [26] and methods 
based on the application of Vapnik–Chevornenkis 
dimension [27]. 

This paper presents a conceptually new approach to the 
problem of order estimation for state–space neural 
networks. The proposed method is based on subspace 
projections and on the formal specificity of the nonlinear 
model structure. The involved subspaces are accordingly 
generated using input/output data collected form the system 
to be modelled and the order extracted by means of a 
singular value decomposition (SVD) applied to a non–
orthogonal space projection. 

II. AFFINE NEURAL NETWORK ARCHITECTURE 

The general class of discrete-time dynamic neural networks 
considered in this work comprises three layers, as depicted 
in Fig.1. As this neural network topology is here regarded 
as a nonlinear model structure in the context of system 
identification, the input and output layers must incorporate 
as much neurons as the number of the inputs and outputs of 
the system to be modelled. In what the hidden layer is 
concerned, this particular architecture consists of neurons 
presenting two types of activation functions, namely, 
sigmoidal activation functions and linear activation 
functions. The number of neurons to be incorporated within 
the hidden layer should be accordingly selected in order to 
provide good generalization capabilities for the neural 
predictor. In fact, a neural network consisting of a deficient 
number of neurons in the hidden layer may not be feasible 
to appropriately emulate the encapsulated nonlinear 
dynamics, while a neural network larger than required 
might suffer from poor generalization performance or 
overfitting. 
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Fig.1. Affine state–space neural network. 

The neural network presents in a topological sense hybrid 
features, which are provided by the two kinds of activation 
functions (sigmoidal and linear) included in the hidden 
layer. The incorporation of both neurons is known to 
improve the neural predictor’s modelling performance in 
case of mild nonlinear dynamics.  

Mathematically, the discrete-time nonlinear model can be 
expressed in state–space form as 
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where nx∈  denotes the neural state-space vector, 
py∈  the neural output and mu∈  the input vector. A , 

B , C , D  and E  are real-valued matrices of appropriate 
dimensions. The nonlinear activation function ( )σ ⋅  is here a 
continuous and differentiable sigmoidal function, upper and 
lower bounded satisfying the following conditions:  

( )lim 1t tσ→±∞ = ± ; ( ) 0 0t tσ = ⇐ = ; ( ) 0tσ ′ > , 

( )lim 0t tσ→±∞ ′ =  and ( )( )max 1tσ ′ ≤ , at 0t = . 

In [28] the proposed affine state-space neural network 
structure is used within a model-based predictive control 
framework and applied to a solar power plant while in [29] 
some stability results using the Lyapunov theory and the 
contraction mapping theorem are presented. 

III. ORDER ESTIMATION 

Consider the affine state-space model described by (2) and 
assume that the nonlinear term associated to the sigmoidal 
activation function accomplishes a spatio-temporal 
compensation to the linear part prediction. Thus, by 
removing the nonlinear term contribution one comes up 
with a discrete-time invariant linear system for which it is 
possible by means of subspace techniques to obtain a vector 
basis for a given state–space realization. On the other hand, 
the estimated order can be regarded as a bound on the 
number of hidden neurons. 

A finite dimensional discrete–time linear system can be 
represented in state–space form as 
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where nx∈ , py∈ , mu∈ , n nA ×∈ , n mB ×∈ , 
p nC ×∈  and p mC ×∈ . nη ∈  and pϑ∈  are 

unobserved, Gaussian distributed, zero mean, white noise 
vector sequences. Assume also that (3) satisfies the 
orthogonality property, that is 
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In subspace approaches (see e.g. [30]) the central paradigm 
involves a row space projection of block Hankel matrices 
generated using the available input-output data. The future 
input block Hankel matrix f |2 -1i iU U=  is defined as 
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while the future output block Hankel f |2 -1i iY Y=  matrix is 
given by 
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The number of block rows i  should be larger than the 
“expected” maximum order of the system under 
identification ( )n i<  and j →∞ . 

Definition 1 (Oblique projection): The oblique projection of 
the row space of p j×Α∈  along the row space of q j×Β∈  
on the row space of q j×Γ∈  is given by 
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Theorem 1 [30]: Assume that: 

a. The deterministic input is uncorrelated with the 
process noise and measurement noise; 

b. The process noise and the measurement noise are 
not identically zero; 

c. The exogenous input is persistently exciting of 
order 2i ; 

d. The data set is large ( j →∞ ). 

Then 

a. The weighted projection iΠ  can be defined as the 
oblique projection of the row space of fY  on the 
past input/output row space given as 
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b. The order of the system is given by the number of 
singular values of iΠ  different from zero 
( ( )in rank= Π ). 

After the projection is obtained the singular values can 
easily be retrieved using a SVD approach, 
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When applying the above method to finite data-sets 
embedding nonlinear dynamics the result is a full rank 
matrix S , irrespective to the number of row blocks i . In 
this case, the vector space dimension would be n p i= ⋅  and 
so a complexity reduction should be considered in order to 
get a lower vector basis. The way the problem of 
complexity reduction is here dealt with involves a 
comparative magnitude analysis of singular values. This is 
accomplished by looking at the ratio of each singular value 
to the largest singular value ( maxσ ). Consider the singular 
value , 1, ,j j p iσ = ⋅  such that the ratio jη  to the largest 
one is given as 
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and define  as the number of significant decimal digits in 
the data. All singular values for which 10jη −<  are 
associated to the noise subspace and should be accordingly 
discarded. In case all the computed ratios are above that 
aforementioned threshold it means that the linear 
simplification cannot be applied in modelling the dynamics 
embedded in the data (extremely severe nonlinearities). In 
these situations other heuristics should be considered, such 
as cross-validation or constructive techniques. 

IV. CASE STUDY 

To illustrate the proposed approach for order estimation in 
the model structure represented here by a state-space neural 
network it is presented the identification of a distributed 
solar collector field (DSC). This solar power plant (Fig.2) is 
located at Plataforma Solar de Almería in the desert of 
Tabernas, South of Spain.  



 

 

 
Fig.2. The distributed solar collector field. 

The DSC field (ACUREX) consists of 480 parabolic trough 
collectors arranged in 20 rows aligned on a West-East axis 
and forming 10 independent loops. Each solar collector has 
a linear parabolic-shaped reflector that focuses the sun’s 
beam radiation on a linear absorber tube located at the focus 
of the parabola. The loops are 172 m long, with an active 
section of 142 m, while the reflective area of the mirrors is 
around 264.4 m2. 

The heat transfer fluid used to transport the thermal energy 
is the Santotherm 55, which is a synthetic oil with a 
maximum film temperature of 318°C and an auto–ignition 
temperature of 357°C. The thermal oil is heated as it 
circulates through the absorber tube before entering the top 
of the storage tank (Fig.3), while the colder inlet oil is 
extracted form the bottom of the tank. A three way valve 
located at the field outlet enables the oil recycling (by-
passing the storage tank) until the outlet temperature is high 
enough to be sent to the storage tank. The thermal energy 
stored up in the tank can be subsequently used to produce 
electrical energy in a conventional steam turbine/generator 
or in the solar desalination plant operation. 

In order to follow the yearly variation of the sun’s 
declination, the solar collector field is provided with a sun 
tracking system, which causes the solar collector to revolve 
around an axis parallel to the receiver. 
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outT
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Fig. 3. Distributed solar collector field schematics. 

The DSC’s dynamics is approximated by using the affine 
state-space neural network structure proposed in this work. 
The data-set used in the training process was collected from 
the ACUREX field on July 23, 2002 (Fig.4). 
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Fig.4. Training set. 

By applying the proposed heuristics for order estimation 
and setting the number of block rows as 15 the following 
singular value vector σ  was obtained. 
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Assuming 3= , it follows that just the first three entries of 
the vector η  are actually above the prescribed threshold 

310− , and according to the proposed approach the order of 
the affine state-space model should be selected as 3.  
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Fig.5. Real plant vs. simulation. 

In order to find a parameterization for the neural predictor 
the neural network was training using the Levenberg–
Marquardt algorithm. Figure 5 shows the simulated solar 
collector field output temperature and the outlet oil 
temperature measured on the plant. As can be observed the 
state–space neural predictor with a complexity determined 
by the proposed approach is able of capturing the system 
dynamics embedded in the collected data. 

V. CONCLUSIONS 

A new approach for complexity control in affine recurrent 
neural networks based on subspace techniques and applied 
to mild nonlinear systems was presented in this paper. The 
estimated neural network order can be regarded as a bound 
on the number of hidden neurons. 
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