

Naghmeh Ramezani Ivaki

Reliable Distributed Communication:

Design Solutions and Protocols

Tese de doutoramento
do Programa de Doutoramento em Ciências e Tecnologias da Informação

orientada pelo Professor Doutor Filipe João Boavida de Mendonça Machado de Araújo
e apresentada ao Departamento de Engenharia Informática

da Faculdade de Ciências e Tecnologia da Universidade de Coimbra

Abril de 2016

Reliable Distributed
Communication: Design Solutions

and Protocols

Naghmeh Ramezani Ivaki

Dissertation submitted to the University of Coimbra

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

April 2016

Department of Informatics Engineering

Faculty of Science and technology

University of Coimbra

file:naghmeh@dei.uc.pt

This research has been developed as part of the requirements of the Doctoral Program
in Information Science and Technology of the Faculty of Sciences and Technology of
the University of Coimbra. This work is within the Dependable Distributed Systems
specialization domain and was carried out in the Software and Systems Engineering
Group of the Center for Informatics and Systems of the University of Coimbra (CISUC).
Funding for this work was partially provided by the Portuguese Foundation for Science
and Technology through the contract SFRH/BD/67131/2009, and by the project iCIS -
Intelligent Computing in the Internet of Services (CENTRO-07-ST24 FEDER-002003),
co-financed by QREN, in the scope of the Mais Centro Program and European Union’s
FEDER.

This work has been supervised by Professor Filipe João Boavida de Mendonça
Machado de Araújo, Assistant Professor of the Department of Informatics Engi-
neering of the Faculty of Sciences and Technology of the University of Coimbra.

iii

No problem can be solved from the same level of consciousness that created it.

Albert Einstein

Abstract

From entertainment to personal communication, and from business to safety-critical
applications, the world relies on distributed systems more than ever. Despite looking
simple on the surface, distributed systems hide many subtleties, specially when they
must provide reliable communication. A major source of complexity comes from the
fact that any component involved in a distributed communication may fail. Tolerating
crashes and recovering to a consistent state is a very difficult task, if possible at all,
mainly due to the incomplete and inconsistent knowledge of the peers involved.

The need to overcome this problem and provide reliable communication, proved to
be a huge research effort, which outputted a vast body of protocols, communication
stacks, middleware, etc. Despite all the best efforts of the last few decades, TCP and
HTTP stand firmly as the cornerstones of reliable communication on the Internet, in
spite of their shortcomings. For instance, TCP does neither handle connection crashes,
nor provide any information to facilitate the recovery. Moreover, neither TCP, nor
HTTP provide any support to process non-idempotent requests exactly-once. On the
other hand, alternative solutions often try to modify or replace TCP, or require special
software or hardware that may not be readily available or mature for deployment in
all platforms and languages. This indeed paved the way for continued research in this
area.

In this thesis, we argue that the best approach for the recurrent reliability problem of
distributed point-to-point applications is precisely to leverage on TCP and HTTP to
build reusable design patterns that are completely detached from operating systems,
libraries, programming languages or other sorts of middleware, thus having the property
of being available for all platforms.

To support this idea, we first survey and classify a wide set of popular distributed
applications, requiring reliable communication, and a large number of reliable commu-
nication solutions that might be used to implement such applications. This is done
in order to build a knowledge base, by identifying matches and gaps that may exist
between applications requirements and solutions.

We then propose a reusable solution, named Connection Handler design pattern, to
enable the existing connection-oriented protocols, in particular TCP, to recover from

vii

connection crashes. This solution can be used, independently of the platform and pro-
gramming language, and provides support not only for TCP, but for other technologies,
like WebSockets. We then use the Connection Handler design pattern and propose
a reusable, extensible, and efficient design solution to stream-based applications, re-
quiring reliable transmission of byte streams (e.g., multimedia streaming) even in the
presence of connection crashes. We also propose design solutions to message-based ap-
plications, following the one-way messaging paradigm, to tolerate connection crashes
and track the status of sent messages. Furthermore, we propose an exactly-once pro-
tocol and design solution for conversation-based applications with request-response in-
teraction patterns, tolerating both connection and endpoint crashes. Finally, we create
a comprehensive taxonomy of reliable request-response protocols offering exactly-once
and at-most-once semantics.

We believe that the positive outcome of our experimental evaluation demonstrates that
this thesis advances the state of the art in reliable point-to-point distributed commu-
nication, by providing a set of designs and protocols for different forms of interactions
from one-way to reliable request-response, including non-idempotent interactions with
exactly-once or at-most-once semantics. The design patterns we propose help devel-
opers to implement more reliable distributed communication simply, correctly, and
independently of the platform, programming language, and application’s business logic.

Keywords:
Reliability, Fault-tolerance, Point-to-Point Communication, One-way Interaction,
Request-Response Interaction, TCP, Connection Crashes, Reliability Semantics, At-
least-once, At-most-once, Exactly-once, Reliability Targets, Stream-Based Communi-
cation, Message-Based Communication, Conversation-Based Communication, Design
Pattern, Protocol, Taxonomy

Resumo

Do entretenimento à comunicação pessoal, passando por aplicações críticas para negócio
e segurança, o mundo depende cada vez mais dos sistemas distribuídos. Apesar de
parecerem simples, os sistemas distribuídos escondem muitas subtilezas, especialmente
quando a comunicação tem de ser fiável. A origem da complexidade está no facto de que
qualquer componente envolvido na comunicação distribuída poder falhar. Tolerar falhas
e regressar a um estado coerente é uma tarefa bastante difícil, por vezes impossível,
principalmente devido ao conhecimento incompleto e inconsistente dos pares envolvidos
na comunicação.

A necessidade de disponibilizar comunicação fiável, mostrou ser uma tarefa de investi-
gação imensa, que resultou num largo conjunto de protocolos, pilhas de comunicação,
middleware, etc. No entanto, mesmo com todo este esforço, TCP e HTTP permanecem
como as pedras angulares da comunicação fiável na Internet, isto apesar das suas evi-
dentes limitações. Por exemplo, o TCP não consegue lidar com falhas nas ligações, nem
disponibiliza informação que possibilite a recuperação. Adicionalmente, nem TCP, nem
HTTP disponibilizam suporte para processar pedidos não-idempotentes uma e uma só
vez.

Por outro lado, muitas das soluções alternativas tentam modificar ou substituir o TCP,
ou requerem software ou hardware especial que pode não estar imediatamente disponível
ou que nunca atingiu um grau de maturidade que permitisse a utilização em todas as
plataformas e linguagens. As limitações das soluções dominantes por um lado, e as
evidentes limitações das alternativas, por outro, ditaram que a investigação nesta área
se mantivesse extremamente ativa.

Nesta tese, defendemos que a melhor abordagem para o problema recorrente da fiabili-
dade em aplicações distribuídas ponto-a-ponto é precisamente partir de TCP e HTTP
para criar padrões de desenho completamente desligados de sistemas operativos, bib-
liotecas, linguagens de programação ou outros tipos de middleware, podendo, dessa
forma, ser implementadas em todas as plataformas.

Para suportar esta ideia, primeiro analisamos e classificamos um grande conjunto de
aplicações distribuídas, que necessitam de comunicação fiável, e um grande número

ix

de soluções de comunicação fiável, que podem ser usadas para implementar essas apli-
cações. Isto é feito com o objetivo de construir uma base de conhecimento, identificando
correspondências e lacunas entre requisitos de aplicações e soluções.

Propomos então uma solução reutilizável, denominada de padrão de desenho Connec-
tion Handler, para permitir que os protocolos existentes orientados a ligações, nomeada-
mente TCP, possam recuperar de falhas nas ligações. Esta solução pode ser usada, in-
dependentemente da plataforma e linguagem de programação, e disponibiliza suporte
não apenas para TCP, mas para outras tecnologias como WebSockets. Usamos en-
tão o padrão de desenho Connection Handler e propomos uma solução de desenho
reutilizável, extensível, e eficiente para aplicações baseadas em fluxos de dados, que ne-
cessitem de transmissão fiável de fluxos de bytes (e.g., streaming multimédia), mesmo
na presença de falhas nas ligações. Também propomos soluções de desenho para apli-
cações baseadas em mensagens, que seguem um paradigma de comunicação unidire-
cional, para tolerar falhas de ligação e seguir o estado de mensagens enviadas. Adi-
cionalmente, propomos um protocolo uma e uma só vez e solução de desenho para
aplicações baseadas em conversação, com padrões de interação pedido-resposta, que
tolera falhas na ligação e nos participantes. Finalmente, criamos uma taxonomia ex-
austiva de protocolos fiáveis pedido-resposta, oferecendo semânticas uma e uma só vez
e no máximo uma vez.

Acreditamos que o resultado positivo da nossa avaliação experimental demonstra
que esta tese representa um progresso no estado da arte em comunicação fiável
ponto-a-ponto, ao disponibilizar um conjunto de desenhos e protocolos para diferentes
formas de interações desde unidirecional a pedido-resposta fiável, incluindo interações
não-idempotentes, com semânticas uma e uma só vez e no máximo uma vez. Os
padrões de desenho que propomos ajudam os programadores a implementar comuni-
cação distribuída mais fiável de forma simples, correta e independente da plataforma,
linguagem de programação e lógica de negócio da aplicação.

Keywords:
Fiabilidade, Tolerância a falhas, Comunicação ponto-a-ponto, Interação unidirecional,
Interação Pedido-Resposta, TCP, Falha de Ligação, Semânticas de Fiabilidade, Pelo
menos uma vez, No máximo uma vez, Uma e uma só vez, Alvos de Fiabilidade, Co-
municação Baseada em Fluxo, Comunicação Baseada em Mensagens, Comunicação
Baseada em Conversação, Padrão de Desenho, Protocolo, Taxonomia

x

Acknowledgements

I would like to thank all those who gave me comments and support during my work.

Foremost, I would like to express my special appreciations to my advisor, Professor
Filipe Araújo, for his continuous support of this research, motivation, immense knowl-
edge, and patience. Without his orientation, this work would never be possible.

Besides my advisor, I would like to thank Professor Nuno Laranjeiro, Professor
Raul Barbosa, and Professor Fernando Barros for their partial participation in this
research and their insightful comments.

I also thank to all the anonymous reviewers for their comments that helped to improve
the quality of the work developed.

Special thanks go to Nuno, for his endless encouragement during this research and my
life far from my family.

Last but not the least, I would like to express my gratitude to my parents
Sayareh Esmaeili and Ali Mohammad Ramezani Ivaki, for supporting me throughout
my life.

List of Publications

This thesis relies on the published scientific research present in the following peer re-
viewed papers:

• Naghmeh Ivaki, Nuno Laranjeiro, Filipe Araújo, “A Design Pattern for Recovering
from TCP Connection Crashes in HTTP Applications”, The International Journal
of Services Computing (IJSC), 2016.

• Naghmeh Ivaki, Nuno Laranjeiro, Filipe Araújo, “Towards Designing Reliable
Messaging Patterns”, The 15th IEEE International Symposium on Network Com-
puting and Applications (NCA 2016), Cambridge, MA USA, October 31 - Novem-
ber 2, 2016.

• Naghmeh Ivaki, Nuno Laranjeiro, Filipe Araújo, “A Design Pattern for Reliable
HTTP-Based Applications”, The 12th IEEE International Conference on Services
Computing (SCC 2015), New York City, USA, June 27 - July 2, 2015.

• Naghmeh Ivaki, Nuno Laranjeiro, Filipe Araújo, “A Taxonomy of Reliable
Request-Response Protocols”, The 30th ACM/SIGAPP Symposium On Applied
Computing (SAC 2015), Salamanca, Spain, April 13-17, 2015.

• Naghmeh Ivaki, Filipe Araújo, Fernando Barros, “Session-Based Fault-Tolerant
Design Patterns”, The 20th IEEE International Conference on Parallel and Dis-
tributed Systems (ICPADS 2014), Hsinchu, Taiwan, December 16-19, 2014.

• Naghmeh Ivaki, Filipe Araújo, “Fault-Tolerant Bi-Directional Communications in
Web-Based Applications”, The 2014 International Symposium on Ubiquitous and
Cloud Computing Frontiers (UCCF 2014), In the 20th IEEE International Con-
ference on Parallel and Distributed Systems (ICPADS 2014), Hsinchu, Taiwan,
December 16-19, 2014.

• Naghmeh Ivaki, Filipe Araújo, Fernando Barros, “Design of Multi-Threaded
Fault-Tolerant Connection-Oriented Communication”, The 20th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC 2014), Sin-
gapore, November 18-21, 2014.

xiii

• Naghmeh Ivaki, Serhiy Boychenko, Filipe Araújo, “A Fault-Tolerant Session Layer
with Reliable One-Way Messaging and Server Migration Facility”, The Third
IEEE Symposium on Network Cloud Computing and Applications (NCCA 2014),
Rome, Italy, February 5-7, 2014.

• Naghmeh Ivaki, Filipe Araújo, Raul Barbosa, “A Middleware for Exactly-Once
Semantics in Request-Response Interactions”, The 18th IEEE Pacific Rim Inter-
national Symposium on Dependable Computing (PRDC 2012), Niigata, Japan,
November 18-19, 2012.

Table of Contents

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Problem Statement and Motivation . 2
1.2 Main Objectives and Approach . 5
1.3 Results and Contributions . 8
1.4 Thesis Structure . 12

2 State of the Art on Reliable Distributed Communication 15
2.1 Reliability in Distributed Interactions 18

2.1.1 Distributed Interaction Patterns 19
2.1.2 Failure Types . 22
2.1.3 Reliability Semantics . 24
2.1.4 Reliability Targets . 26
2.1.5 Reliability Mechanisms . 29

2.2 Solutions for Reliable Communication 33
2.2.1 Stream-Based Solutions . 33
2.2.2 Message-Based Solutions . 38
2.2.3 Object-Based Solutions . 44
2.2.4 Conversation-Based Solutions . 46
2.2.5 Design Solutions . 47

2.3 Applications and Reliability Requirements 52
2.4 Discussion . 58
2.5 Conclusion . 61

3 A Reliable Stream-Based Solution for Distributed Interactions 65
3.1 Basic Design for Connection-Based Applications 66

3.1.1 Components . 67
3.1.2 Collaboration Between the Components 68

3.2 Connection Handler Design Pattern . 69

xv

xvi Table of Contents

3.2.1 Reliable Endpoint . 69
3.2.2 Buffer . 70
3.2.3 Connection Handler . 71
3.2.4 Handlers Synchronizer . 71
3.2.5 Event . 73

3.3 Connection Handler In Stream-Based Applications 73
3.3.1 Stream buffer . 73
3.3.2 Reliable Transporter . 76
3.3.3 Reliable Stream-Based Application 81

3.4 Concurrent Connection Handling . 85
3.4.1 Supporting High Concurrency . 85
3.4.2 Scalable Design of Reliable Stream-Based Applications 88

3.5 Conclusion . 92

4 Reliable Message-Based Solutions for One-way Interactions 95
4.1 Overview of the Design Solutions . 97
4.2 Messenger Design Pattern . 98

4.2.1 Components of the Messenger Design Pattern 99
4.2.2 Message Flow Diagram . 101

4.3 Trackable Messenger Design Pattern . 101
4.3.1 Components of the Trackable Messenger Design Pattern 103
4.3.2 Collaboration between the Components 105

4.4 Reliable Messenger Design Pattern . 106
4.4.1 Components of the Reliable Messenger Design Pattern 108
4.4.2 Message Flow Diagram . 108
4.4.3 Handling Connection Crashes . 110

4.5 Conclusion . 111

5 A Reliable Conversation-Based Solution for Request-Response Inter-
actions 113
5.1 At-Least-Once Request-Response Interaction 115
5.2 At-Most-Once Request-Response Interaction 117
5.3 Exactly-Once Request-Response Interaction 119

5.3.1 Exactly-Once Protocol . 120
5.3.2 Demonstration of Correctness . 122

5.4 Exactly-Once Request-Response Middleware 124
5.4.1 Session-Based Exactly-Once Protocol 124
5.4.2 Demonstration of Correctness . 126
5.4.3 Design of an Exactly-once Middleware 129

5.5 Conclusion . 131

6 Taxonomy of Reliable Request-Response Protocols 133
6.1 Approach Overview . 134

xvi

Table of Contents xvii

6.2 Definitions and Assumptions . 136
6.3 Generation and Organization of Reliable Protocols 140

6.3.1 Generating the Protocols . 140
6.3.2 Eliminating Invalid Protocols . 142
6.3.3 Organizing the Valid Protocols 143

6.4 Analyzing and Classifying the Reliable Protocols 143
6.4.1 Reliability Semantics . 143
6.4.2 Memory Utilization . 144
6.4.3 Timeout-Based Deletion of Interaction State 146

6.5 Reliable Protocols in Real Services . 149
6.6 Conclusion . 151

7 Experimental Evaluation and Discussion 153
7.1 Experimental Setup . 154
7.2 Evaluation of the Stream-Based Solution 156

7.2.1 Demonstration of Applicability 156
7.2.2 Evaluation of Correctness . 158
7.2.3 Evaluation of Performance . 159
7.2.4 Evaluation of Complexity and Overhead 165
7.2.5 Discussion . 167

7.3 Evaluation of the Message-Based Solution 168
7.3.1 Evaluation of Correctness . 168
7.3.2 Evaluation of Performance . 168
7.3.3 Evaluation of Complexity and Overhead 171
7.3.4 Discussion . 173

7.4 Evaluation of the Conversation-Based Solution 174
7.4.1 Evaluation of Correctness . 175
7.4.2 Evaluation of Performance . 175
7.4.3 Evaluation of Complexity and Overhead 177
7.4.4 Discussion . 179

7.5 Evaluation of the Taxonomy: Cost Analysis 179
7.5.1 Analysis of Implementation Complexity 180
7.5.2 Evaluation of Performance . 180

8 Conclusion and Future Work 183
8.1 Summary of the Thesis . 183
8.2 Future Work . 186

xvii

List of Figures

Figure 2.1 Reactor design pattern . 48
Figure 2.2 Observer design pattern . 49
Figure 2.3 Acceptor-Connector design pattern 50
Figure 2.4 Leader-Followers design pattern 51

Figure 3.1 Basic design of a connection-based application 67
Figure 3.2 Collaboration between the components of the connection-based

application . 68
Figure 3.3 Connection Handler design pattern 70
Figure 3.4 Connection handlers synchronizer 72
Figure 3.5 Sender and receiver buffers . 74
Figure 3.6 Buffers in a sender-receiver communication model with proxies . 75
Figure 3.7 Stream Buffer and its implementation details 77
Figure 3.8 Reliable Transporter and connected components 78
Figure 3.9 Handshake message format in Connection Handler 79
Figure 3.10 Handshake message configured for HTTP protocol 81
Figure 3.11 Reliable Transporter design pattern 82
Figure 3.12 Collaboration between the components of the Reliable Trans-

porter design pattern . 84
Figure 3.13 Multi-Threaded Acceptor-Connector design pattern 86
Figure 3.14 Collaboration between the components of the Multi-Threaded

Acceptor-Connector design pattern . 87
Figure 3.15 Scalable design of a reliable stream-based application 90
Figure 3.16 Connection establishment and service initialization with Multi-

Threaded Acceptor-Connector design pattern 91
Figure 3.17 Collaboration between the components in the presence of connec-

tion crashes . 92

Figure 4.1 External view of the design process of the solution 98
Figure 4.2 Messenger design pattern for synchronous message-based appli-

cations . 100
Figure 4.3 Message flow diagram in a one-way communication using the

Messenger . 102
Figure 4.4 Trackable Messenger design pattern 104

xix

xx List of Figures

Figure 4.5 Reliable Messenger design pattern 107
Figure 4.6 Message flow diagram in a one-way communication using the

Reliable Messenger . 109
Figure 4.7 Recovery from connection crashes with the Reliable Messenger . 110

Figure 5.1 At-least-once request-response protocol 116
Figure 5.2 At-most-once request-response protocol 119
Figure 5.3 Exactly-Once request-response protocol 121
Figure 5.4 Session-based exactly-once request-response protocol 125
Figure 5.5 Design of exactly-once request-response middleware 129

Figure 6.1 Organization of the reliable protocols in a prefix tree 144
Figure 6.2 Taxonomy of exactly-once and at-most-once protocols 145

Figure 7.1 Latency of the application using the single-threaded Acceptor-
Connector design pattern . 159

Figure 7.2 Throughput of the application using the single-threaded
Acceptor-Connector design pattern . 160

Figure 7.3 Latency of the unreliable (without FSocket) and reliable appli-
cations (with FSocket) using the Multi-Threaded Acceptor-Connector
design pattern . 162

Figure 7.4 Throughput of the unreliable (without FSocket) and reliable ap-
plications (with FSocket) using the Multi-Threaded Acceptor-Connector
design pattern . 162

Figure 7.5 Latency of unreliable and reliable HTTP servers in the scenarios
with and without proxy . 163

Figure 7.6 Throughput of unreliable and reliable HTTP servers in the sce-
narios with and without proxy . 164

Figure 7.7 CPU utilization for unreliable and reliable HTTP servers in the
scenarios with and without proxy . 166

Figure 7.8 Memory utilization for unreliable and reliable HTTP servers in
the scenarios with and without proxy . 166

Figure 7.9 Latency of the Messenger, Trackable Messenger, and Reliable
Messenger . 169

Figure 7.10 Throughput of the Messenger, Trackable Messenger, and Reliable
Messenger . 170

Figure 7.11 CPU utilization with Messenger, Trackable Messenger, and Reli-
able Messenger . 172

Figure 7.12 Memory utilization with Messenger, Trackable Messenger, and
Reliable Messenger . 173

Figure 7.13 Latency without and with the Exactly-once Middleware 176
Figure 7.14 Throughput without and with the Exactly-once Middleware . . . 176
Figure 7.15 CPU utilization without and with the Exactly-Once Middleware 178
Figure 7.16 Memory utilization without and with the Exactly-Once Middleware178

xx

List of Tables

Table 2.1 Stream-based reliable solutions and their characteristics 34
Table 2.2 Message-based reliable solutions and their characteristics 39
Table 2.3 Object-based reliable solutions and their characteristics 44
Table 2.4 Conversation-based reliable solutions and their characteristics . . 46
Table 2.5 Applications and their objectives, characteristics and reliability

requirements . 52

Table 6.1 Client and server set of actions . 138
Table 6.2 Storage actions for the reliable protocols 139

Table 7.1 Systems used in the experiments 154
Table 7.2 Implementation complexity of FSocket 165
Table 7.3 FSocket among other stream-based solutions presented in Chapter 2167
Table 7.4 Implementation complexity of the messengers 171
Table 7.5 FTSL among other message-based solutions presented in Chapter 2174
Table 7.6 Implementation complexity of EoMidd 177
Table 7.7 EoMidd among other conversation-based solutions presented in

Chapter 2 . 179
Table 7.8 Throughput of exactly-once version of jTPCC compared with un-

reliable ones . 182

xxi

Chapter 1

Introduction

It is not an overstatement to say that modern society stands on distributed systems.
From basic grid services, such as electricity, water and telecommunications, to business,
health, and leisure, it is difficult to come up with a human activity that does not
rely on distributed systems in some form. Their growing importance in people’s life
and businesses, including e-commerce, financial services, healthcare, government, and
entertainment, increases the need for more “dependable” distributed applications.

Dependability can be defined as the ability to deliver a service that can be justifiably
trusted (Avizienis et al., 2004). It includes the following attributes: reliability (con-
tinuity of correct service), availability (readiness for correct service), safety (absence
of catastrophic consequences on the user(s) and the environment), confidentiality (ab-
sence of unauthorized disclosure of information), integrity (absence of improper system
state alterations), and maintainability (ability to undergo repairs and modifications)
(Avizienis et al., 2004). In this thesis, we focus on the reliability of distributed ap-
plications, which should continually deliver service, even in the presence of faults and
partial failures. Fault-tolerance is, therefore, vital to such applications.

Despite looking straightforward at surface, correctly programming a reliable distributed
application is anything but simple. Crashes, in pretty much any component involved
in the communication (Birman, 1997), turn distributed programming into a complex
and subtle task. According to Leslie Lamport, “A distributed system is one in which
the failure of a computer you did not even know existed can render your own computer
unusable.” (Lamport, 1987). This simple definition contains two important facts about

1

Chapter 1

distributed systems. First, it clearly mentions that a distributed system contains faulty
components. Second, it points out the consequences of transparency in distributed
systems (Linington et al., 2011). Hiding the components and their communication is
a fundamental aspect of distributed systems, but makes fault detection and tolerance
more complex.

Within distributed systems, there are several forms of communication, each having its
own concerns regarding reliability. In this thesis, we focus on “point-to-point com-
munication”, which is perhaps the most used communication model in reliable dis-
tributed systems, including mission-critical, safety-critical, business-centric, service-
oriented, and transactional applications, where reliability is a primary concern (Garro
and Tundis, 2015; Rushby, 1994). The number of protocols, middleware, libraries, and
in general terms, communication stacks, offering “reliability” in point-to-point com-
munication is quite large (Bilorusets et al., 2005; Ekwall et al., 2002; Hintjens, 2013;
Marwah et al., 2005; Postel, 1981; Reis and Miranda, 2012; Richards et al., 2009; Scharf
and Ford, 2013). This is mainly due to the increasing need for highly reliable applica-
tions, the diversity in reliability requirements (e.g., exactly-once semantics), the diver-
sity in interaction patterns (e.g., one-way versus request-response), and also because
implementing this communication model reliably is a difficult task (Halpern, 1987).

Over the last few decades, among all protocols, middleware, and libraries proposed for
building reliable communication, TCP and to some extent HTTP are, surprisingly, the
most widely used protocols, despite their lack of reliability features. This has, in fact,
triggered our research effort to look for solutions that incorporate this reality, instead
of searching for yet another alternative.

1.1 Problem Statement and Motivation

A distributed application may fail due to an unexpected crash of some component.
Since distributed applications comprise so many components, ensuring their reliability
in a distributed environment is a very difficult task, if possible at all, especially con-
sidering the unreliable nature of the Internet (Fekete et al., 1993; Gray, 1979; Halpern,
1987). Furthermore, applications need widely different interaction patterns (e.g., one-
way or request-response, synchronous or asynchronous) and require different reliability

2

Introduction

semantics (e.g., at-most-once, at-least-once, or exactly-once), depending on their char-
acteristics and goals (Tanenbaum and Steen, 2006).

At the heart of most distributed applications, especially of those requiring reliable
communication, we find the Transmission Control Protocol (TCP) (Postel, 1981). The
popularity of TCP is unquestionable, as any major operating system provides a TCP/IP
communication stack with Application Programming Interfaces (APIs) for a large num-
ber of programming languages. At first glance, TCP looks as a simple and powerful
solution to overcome the unreliability of the network, which is true up to a certain
point. Despite providing reliable connections in distributed environments, TCP does
not handle connection crashes, when the connectivity is lost for some time, even if
both endpoints are still running. In fact, TCP does not provide any information to
applications regarding data that was already written or read. Thus, to recover from
connection crashes, developers must rollback the application peers to some coherent
state, many times with error-prone, ad hoc, or custom application-level solutions. It
is worth mentioning that this problem is not only associated to the applications that
directly use TCP Sockets for exchanging data, but also extends to any middleware or
session-based communication stacks that use TCP or any TCP-like transport protocol
(i.e., a protocol that establishes a connection and buffers the data) for communication.

TCP exposes more limitations in message-based applications, particularly when ap-
plication peers do not follow a request-response interaction (e.g., event-driven appli-
cations). As a stream-based protocol, TCP has no means to place application data
into an envelope, in order to be sent and received as a “Message”. Furthermore, with
TCP, there are no means for a sender to track the status of sent messages. This leads
many developers to either use heavy-weight middleware (e.g., JMS (Richards et al.,
2009)), or implement request-response protocols (e.g., HTTP (Fielding et al., 2009))
for applications that only require one-way interactions.

TCP’s limitations also extend to request-response interactions with strong reliability
requirements, in which the server should execute all requests but must not execute
a given request more than once. This type of interaction is important in business
and safety-critical sectors, such as banking, e-commerce, or healthcare. Guaranteeing
exactly-once semantics in these applications requires a fault-tolerant mechanism, en-
suring that each request is processed once (and not more than once) and its response is
reliably delivered to the client, even in the presence of endpoint and connection crashes.

3

Chapter 1

The aforementioned problems are widely acknowledged in the literature, where we can
find many attempts to tolerate TCP connection crashes. Some of these try to use mul-
tiple alternative paths between the client and the server (Liao et al., 2008; Scharf and
Ford, 2013; Stewart and Metz, 2001), others chose to replicate components (Marwah
et al., 2003; Shenoy et al., 2000), checkpoint the sate of the connections (Jin et al.,
2003), or use a middle layer to intercept TCP system calls (Alvisi et al., 2001; Bicakci
and Kunz, 2012; Ekwall et al., 2002; So-In et al., 2009; Zandy and Miller, 2002). Despite
their merits, we can point out limitations in all these approaches. For example, the
solutions that use multiple connections (e.g., cmpSCTP (Liao et al., 2008), or MPTCP
(Scharf and Ford, 2013)), are orthogonal to the problem we are considering. They do
not overcome connection crashes, despite offering more than one path between peers, if
available (i.e., basically to increase the data transfer rate). The solutions that require
server replication or checkpointing are quite expensive, respectively in terms of infras-
tructure cost and performance. The solutions allowing the TCP API to be unchanged
(e.g., RSocket (Ekwall et al., 2002)) seem appealing, but they are often not mature, or
not available for all the computational platforms.

For one-way messaging, we can find solutions in the literature that offer reliability, but
they usually are complex and enable loosely-coupled (offline) asynchronous communi-
cation (e.g., JMS (Richards et al., 2009), MSMQ (Horrell, 1999)), typically using a
persistent broker between the peers. Regarding request-response interactions requiring
strong reliability semantics, there are only a few solutions (e.g., EOS2 (Shegalov and
Weikum, 2006)), mainly due to their complexity. They usually require special hardware
or software that is not readily available or mature for deployment.

The sheer number of options for reliable communication and their diversity demonstrate
the importance and the difficulty of providing reliable distributed communication, con-
sidering the unreliable nature of the Internet, the differences in the interaction patterns
and reliability semantics. Building reliable applications can, therefore, become an ex-
tremely complicated task for developers, which have to make the right design and
development choices, to meet the reliability requirements of applications.

Developers must either build their own solution from scratch, or use an existing solu-
tion that involves selecting and configuring the right reliability guarantees. To make
informed decisions, developers must be supported by an appropriate knowledge base,
or otherwise they will design and develop applications that implement the wrong reli-
able communication mechanisms. In fact, the lack of synthesized information and of an

4

Introduction

appropriate knowledge base about the existing solutions and applications requirements
often leads developers to create their own ad hoc and custom solutions for reliable
communication, which is an error-prone task.

Given the above explanation, the problem we tackle in this thesis can be summarized
as follows: reliable communication is a fundamental requirement for many distributed
applications; among the many protocols, libraries, and middleware offering reliable
communication, almost none of them, except for TCP and HTTP, gained strong accep-
tance among developers; development of reliable communication in the faulty Internet
is difficult and fallible; and finally there is no straightforward solution helping develop-
ers to correctly implement reliable distributed communication and meet the application
requirements in the presence of faults. We believe that the need for reliable commu-
nication is shared among most distributed applications, regardless of the platform and
programming language. This is a recurrent problem, which should, therefore, have a
general reusable solution.

1.2 Main Objectives and Approach

There are several solutions for building reliable communication over faulty networks,
but none of them is widely used, apart from TCP and HTTP, which do not provide
enough reliability guarantees for a large number of applications. Thus, as explained in
the previous section, there are still several key issues regarding reliable communication
that need to be properly addressed. These issues map to the objectives of this thesis,
as follows:

1. To build a knowledge base for researchers and developers involving the main con-
cepts in reliable distributed communication, reliability requirements of distributed
applications, reliable communication solutions and protocols, and reliability se-
mantics offered by existing solutions, to identify the gaps between applications
requirements and solutions features.

2. To propose a straightforward and reusable solution for tolerating connection
crashes that may occur in any kind of distributed application, using a TCP-like
connection, for communication.

5

Chapter 1

3. To propose a reliable, efficient, and reusable solution to stream-based applications,
such as file and multimedia streaming systems, necessary to complete streaming
of data, even in the presence of connection crashes.

4. To propose a reusable solution to message-based applications with one-way inter-
actions that allows them to track messages sent without losses in the presence of
connection crashes.

5. To propose a reliable protocol and reusable design solution for developing
conversation-based applications with request-response interactions, requiring
exactly-once execution of requests, even in the presence of connection and end-
point crashes.

In order to achieve the first objective, we collect and try to clarify the main concepts
and aspects involved in reliable distributed communication. We survey and synthesize
a wide set of popular distributed applications, and a large number of reliable com-
munication solutions that might be used to implement such applications. We then
select or define some key reliable communication aspects, to characterize and classify
the applications and the solutions. Finally, we perform an analysis to find out the
main gaps between application requirements and features provided by the solutions,
and accordingly, provide insights into research possibilities.

We then particularly focus on the reliable request-response interaction pattern, due
to their importance in business and safety-critical applications, and also due to the
complexity involved in providing exactly-once semantics to this type of interactions. We
build a knowledge base about the protocols offering exactly-once, their characteristics,
and implementation complexity. One possible approach would be to collect the existing
protocols from real applications, by analyzing their implementation or by studying their
specifications. We believe that this is an exhaustive and impractical task, first because
many critical applications do not provide the necessary details about their systems,
and second because we would be left with no coverage guarantees regarding all possible
protocols. For these reasons, we chose a different approach, which is based on the
formal definition of all reliable request-response protocols. This approach contains
several important stages. We first need to define a valid set of client and server actions.
We then generate all possible protocols by interleaving the client and server actions. In
the next step, we need to eliminate the invalid or unreliable protocols and categorize

6

Introduction

the remaining valid protocols. At the end, we perform an analysis over the protocols
based on the reliability semantics and memory requirements.

To achieve the remaining objectives of this thesis, we argue that using design patterns
is the best way to present a correct solution to a commonly occurring problem in
distributed communications, such as connection crashes. Since implementing reliable
communication in a faulty distributed environment is a very common, but difficult and
error-prone task, this thesis proposes several design patterns for that purpose.

The second objective targets the problem of connection crashes. For this, we first build
a simplified model of connection-based applications apart from their business logic,
interaction pattern (e.g., one-way or request-response), and platform. We then propose
a solution, based on buffering and acknowledgment mechanisms, that can be applied
to this model, enabling automatic reconnection and retransmission of data when a
connection crash occurs.

The third objective focuses on stream-based applications, like file transfers or video
broadcast. To handle connection crashes in these applications, we apply the previ-
ously proposed solution to connection-based applications, and use an efficient buffering
mechanism that eliminates the needs for explicit acknowledgments. We also address
several challenges involved in supporting proxies and legacy endpoints, when consider-
ing HTTP.

The fourth objective of this thesis has to do with the message-based one-way inter-
action pattern. We argue that the right solution for achieving a messaging service
that allows the sender to track their messages is somewhere in-between the extremes
of no-feedback (i.e., never sending any feedback from receiver to sender) and request-
response messaging paradigm (i.e., sending one feedback for each message). On one
hand, closing the loop and letting the sender know the result of its invocations enables
the creation of more reliable applications. On the other hand, we must not do it on
a synchronous single-message basis (i.e., one response for each request), because this
is too costly. This approach offers end-to-end reliability to one-way operations, by
using an asynchronous acknowledgment mechanism. This decouples the sender from
the receiver and lets them progress independently. Moreover, to resolve the problem of
connection crashes, we resort to our previously proposed solution to connection-based
applications.

7

Chapter 1

The fifth objective is about the conversation-based request-response interaction pat-
tern, typically containing three different roles, including client, server, and channel,
which must engage in a very rigid manner, to ensure reliability. Some common reli-
ability semantics used in this interaction pattern are at-least-once, at-most-once, and
exactly-once, which respectively refer to the server executing the request once or more
than once; once but not more than once; and once and only once. Among these se-
mantics, the exactly-once semantics is the most challenging one to be ensured. It needs
that all components involved in an interaction work correctly, even in the presence of
failures, which is difficult to guarantee and error-prone to implement. This is because
the client, server, or communication channel may fail, potentially requiring diverse and
complex recovery procedures. Furthermore, there is no global knowledge that could
be used to facilitate recovery procedures. For this reason, we propose an exactly-once
protocol, then transform it to a session-based protocol, to factor out the main com-
plexities involved in the implementation of conversation-based applications requiring an
exactly-once request-response interaction pattern. We further propose a design solution
facilitating the implementation of the session-based exactly-once protocol. Technically,
in this design, we resort to reliability mechanisms like buffering, logging and retrans-
mission, rather than complex and heavy approaches involving distributed transactions,
to ensure the reliability semantics required by these applications. To efficiently recover
from connection crashes, we use the solution previously proposed to connection-based
applications.

1.3 Results and Contributions

In our survey of Chapter 2, we classify the solutions for reliable distributed systems into
four groups, based on their reliability target (e.g., stream, message, object, and conver-
sation), and characterize them by considering the interaction pattern they support, the
reliability mechanisms they use, the failures they may tolerate (e.g., connection crashes,
endpoint crashes), and finally, the reliability semantics they offer. The classification
of the applications is done by considering several key features, including the objective
(e.g., user-centric, business-centric), the interaction pattern (e.g., one-way vs. request-
response), the timeliness (e.g., soft real-time, hard real-time), the reliability target,
the criticalness (business-critical, safety-critical), and the reliability requirements (e.g.,
at-most-once).

8

Introduction

We observe in our survey that there is a large variety of applications requiring reliable
communication, but at the same time have quite distinct objectives, different interac-
tion patterns and different reliability semantics. We also observe that there is a clear
mismatch between the features offered by communication solutions and the features
needed by applications, thus noting that standards and implementations are lagging
behind real application requirements. In fact, in most cases, the more elaborate com-
munication solutions offering a larger number of guarantees are purely academic efforts
that can, by no means, compete with the popularity, maturity and importance of older,
more established, albeit poorer solutions in terms of reliability, like TCP. Thus, the
developers must either use some existing solution that does not perfectly match their
needs, or implement their custom reliability mechanism on top of these more mature
and popular solutions, which is a difficult and fallible task.

Our efforts in making a general solution to connection crashes for connection-based
applications, in Chapter 3, resulted in a simple reusable design pattern, named “Con-
nection Handler Design Pattern”, that enables recovery from connection crashes and
facilitates the implementation to the developer. This design pattern includes several
components to implement the actions required to store the data sent, establish a new
connection after crashes in the client, replace a failed connection with a new one in the
server, and retransmit the data lost after a successful reconnection phase. Since this
solution is built independently of the platform, programming language, application’s
business logic, and data type, it can be used for any reliable distributed application
requiring TCP connection crash-tolerance.

We then built a design pattern, called “Reliable Transporter Design Pattern” in Chapter
3, to efficiently develop large-scale reliable stream-based applications that are able
to recover from connection crashes without losing any byte in transit, by using the
Connection Handler design pattern. The cornerstone of this solution is a stream buffer
that eliminates the need for explicit acknowledgments, although it also tackles the
challenges regarding proxies and legacy endpoints.

Regarding message-based applications, we proposed three design solutions, named
“Messenger”, “Trackable Messenger” and “Reliable Messenger” in Chapter 4. The Mes-
senger builds a message-based session layer on top of a stream-based transport layer,
and provides a simple interface to the applications, enabling them to easily send and re-
ceive messages independently of the application layer protocol. The Trackable Messen-
ger provides a strong support to applications following the one-way messaging pattern.

9

Chapter 1

It allows a sender to simply track its messages, by exchanging multi-level acknowl-
edgments at the send, receive, and processing points. The Reliable Messenger, uses
the Connection Handler design pattern, to, besides keeping track of messages, enable
recovery from connection crashes.

We also proposed an exactly-once protocol to conversation-based applications with
request-response interaction patterns. This protocol, which we present in Chapter 5,
ensures that each request is executed only once and that responses arrive to the clients,
even in the presence of failures. Based on this, we propose a session-based protocol and
design for an exactly-once middleware.

The taxonomy we created in Chapter 6 reveals three families of protocols matching
common real-world implementations that try to deliver exactly-once or at-most-once.
We accomplished a comprehensive analysis over the taxonomy of the protocols, mainly
based on two important aspects: reliability semantics and memory requirements. We
propose some solutions to all groups of protocols allowing the server to safely delete
the state of the interactions from memory and stable storage. The strict organization
of the protocols provides a solid foundation for creating correct services, and we show
that it also serves to easily identify fallacies and pitfalls of existing implementations.
We believe that the results of our analysis will provide a deeper insight on reliable
conversation-based applications.

As an overall contribution, this thesis proposes design solutions and protocols that allow
developers to implement more reliable stream-based, message-based and conversation-
based applications. In detail, the main research contributions are:

1. A Survey on the main concepts involved in reliable point-to-point communication,
characterization and classification of well-known applications requiring reliable
communication, characterization and classification of existing reliable solutions,
and identification of matches and gaps between applications requirements and
features of reliable communication solutions.

2. An efficient and reusable solution, named Connection Handler Design Pattern, for
recovering from connection crashes without losing data in transit. This solution
can be used for developing reliable distributed applications, independently of the
platform and programming language.

10

Introduction

3. An efficient and reusable solution, named Reliable Transporter Design Pattern, to
stream-based applications that require reliable transmission of byte streams even
in the presence of connection crashes. This solution uses a buffering mechanism,
thus eliminating the need for explicit acknowledgment and addressing several
challenges regarding legacy software and proxies.

4. Reusable solutions, named Messenger, Trackable Messenger and Reliable Messen-
ger Design Pattern, to the message-based applications with one-way interactions.
The Reliable Messenger, which is built based on the Messenger, Trackable Mes-
senger, and Connection Handler design patterns, allows the applications to track
the state of the messages sent and provides reliable transmission of messages,
even in the presence of connection crashes.

5. An application-level exactly-once protocol, and accordingly a session-level
exactly-once protocol for reliable request-response applications. A design so-
lution, named Exactly-Once Middleware, is proposed to implement the session-
based protocol, facilitating implementation of such applications.

6. A comprehensive taxonomy of reliable request-response protocols, including three
different families of protocols that clearly match common real-world implemen-
tations that might be used by developers, to select the right solution for their
applications. An analysis is done on the protocols, assuming unreliable and non-
FIFO (First In, First Out) channels and taking memory requirements into con-
sideration.

This thesis also has several technical contributions, which are:

1. An open-source Java implementation of the stream-based Reliable Transporter
design pattern that is available online as FSocket (Ivaki and Araujo, d)

2. An open-source Java implementation of the Reliable Messenger that is available
online as FTSL (Ivaki and Araujo, c).

3. An open-source Java implementation of the Exactly-once Middleware that is avail-
able online as EoMidd (Ivaki and Araujo, b).

In addition to the above direct contributions, we believe that this thesis helps to open
a new window toward development of distributed systems, by projecting the light of

11

Chapter 1

software design patterns over their natural complexity. This is part of the effort to
develop more dependable distributed applications, and consequently, a more trustable
world.

1.4 Thesis Structure

This first chapter introduced the problem addressed and the main contributions of the
thesis. Chapter 2 presents background knowledge and the state of the art in distributed
point-to-point interactions, with particular emphasis on reliable communication. A
classification and analysis of a wide set of popular distributed applications and reliable
communication solutions is presented too. This chapter aims to identify the gaps that
exist between the reliability requirements of reliable applications and the reliability
semantics offered by reliable solutions.

Chapter 3 presents a solution, as a design pattern, to TCP’s limitations regarding
recovery from connection crashes. Then, based on this and some other well-known
design patterns, a solution is given to the large-scale stream-based applications (e.g.,
multi-media streaming) that require reliable data transmission for streams of bytes.

Chapter 4 presents a solution for overcoming the limitations of TCP for reliable one-
way messaging. This solution aims to provide full-duplex reliable communication that
allows tracking the state of messages sent and recovery from connection crashes.

Chapter 5 presents protocols for implementing exactly-once semantics in application
layer or in session layer. It then presents a design pattern that helps to build an
exactly-once middleware for applications with reliable request-response interactions.

Chapter 6 presents a taxonomy of reliable request-response protocols. The taxonomy
is built by defining a list of client and server actions, interleaving these actions, in
order to generate all possible protocols, removing invalid protocols by applying some
constraints, and organizing the valid protocols into a prefix tree. This chapter also
presents and analyses the protocols based on two important aspects: reliability seman-
tics and memory requirements.

Chapter 7 presents the experimental evaluation accomplished to measure the correct-
ness, performance, complexity and resource utilization of the solutions proposed in this
thesis, as well as their results and related discussion. It also presents the results of the

12

Introduction

analysis done over the taxonomy of reliable protocols, to verify the applicability of the
protocols and their implementation cost.

Finally, Chapter 8 concludes the thesis and proposes topics for future research.

13

Chapter 2

State of the Art on Reliable

Distributed Communication

For many distributed applications supporting businesses and services, reliable commu-
nication, i.e., communication that can justifiably be trusted (Avizienis et al., 2004), is
of vital importance. In general, two different communication models are used to accom-
plish communication between distributed peers: point-to-point (also known as unicast),
and multicast (including broadcast communication) (Tanenbaum and Steen, 2006). In
the point-to-point communication model, a message is sent from one peer to another
peer, whereas in the multicast communication model, a message is sent from one peer
to several other peers. In most applications, including critical ones, where reliable com-
munication is a primary concern (Rushby, 1994), e.g., in healthcare, e-commerce, or
banking, the point-to-point model is, by far, the most popular means of interaction.
Even when several peers are involved in a distributed communication, e.g., for sharing a
file, or exchanging emails, communication is still predominantly point-to-point, usually
through some intermediate server, which is responsible for properly handling data for
the peers involved.

Depending on the application’s specific objectives, very different concerns may apply, if
the goal is to achieve reliable communication. Clearly, no application can deliver service
that can justifiably be trusted, if it is unreliable, or supported by unreliable communi-
cation mechanisms. Disruption in services caused by unreliable components can, not
only, result in huge direct losses, in the form of human lives, financial costs, or others,
but also bring in severe indirect costs, for example, in terms of reputation (Jones et al.,

15

Chapter 2

2000). However, ensuring the reliability of communication is very difficult, especially
considering the unreliable nature of the Internet and applications (Fekete et al., 1993;
Gray, 1979; Halpern, 1987). These can exhibit a large spectrum of failures, resulting
from pretty much any component. When the network, or one of the peers crashes and
restarts, client and server need to engage in a complex process of rolling back to some
consistent state (Chandy and Lamport, 1985). This is a complex distributed process,
almost always lacking any support from the communication stack. For instance, when
using the Transmission Control Protocol (TCP) (Postel, 1981) — usually considered
as reliable —, peers have no mechanism to know which data to resend.

Indeed, our overview of reliability in distributed interactions, in Section 2.1, makes it
clear that the acknowledgments of a transport layer protocol, such as TCP, cannot
solve all reliability problems, because applications display a large range of different
interaction patterns. For instance, messages may or may not need a response; senders
may need to wait for an acknowledgment of the application itself, or they may accept
such acknowledgment at a later time; peers may need to be running at the same time,
or they might be decoupled by persistent storage. Moreover, applications have differ-
ent reliability semantics, depending on their characteristics and goals (Tanenbaum and
Steen, 2006). For example, file sharing needs ordered and guaranteed delivery of mes-
sages — no gaps or byte swaps would be acceptable in a file; bank transfer orders need
these properties and more, because payments should be retried in case they fail, but
must not occur more than once. Furthermore, TCP only takes care of byte streams.
However, byte streams are only one of the targets to care for: different applications,
such as publish-subscribe, may also require reliability for a message or an object, while
banking applications may require an entire conversation to be reliable.

Each one of these targets, alongside with the reliability semantics, or interaction pat-
tern, requires its own specific solution, such as logging, retransmission, message filter-
ing, etc. In theory, no developer needs to implement such mechanisms from scratch:
he or she should rely on available middleware to provide (at least some of) the de-
sired goals. As we see in Section 2.2, where we review a large number of protocols,
libraries and Application Programming Interfaces (APIs) for stream, message, object
and conversation-based applications, this middleware exists in vast amounts. In prac-
tice, some of these solutions are similar to each other, but target different operating
systems and languages; some never gained traction; others are purely academic efforts.

16

State of the Art on Reliable Distributed Communication

Therefore, in Section 2.3, we provide evidence supporting the point of view that much of
that undertaking on middleware was, to some extent, in vain. We categorize distributed
applications that require reliable communication and identify their reliability require-
ments. From this effort, it becomes very clear that only a few solutions have actually
thrived. We can narrow down the successful options to TCP, HyperText Transfer Pro-
tocol (Fielding et al., 2009), and a few more, including message-oriented middleware.
The limited number of choices involves a clear penalty for developers. Depending on
the application, they must manage most communication issues: keeping track of all the
peers involved in the interaction; setting TCP connections on and off; detecting faulty
TCP connections and handling subsequent reconnections; or detecting and avoiding
duplicate HTTP requests. This is far from ideal, because it is complex, error-prone,
and requires a very high level of expertise.

In summary, in this chapter we survey and synthesize the state of the art in distributed
systems, with particular emphasis on reliable communication. We aim to: 1) outline
the body of knowledge on reliable communication, by collecting the main related con-
cepts (Section 2.1); 2) review the most important reliable communication solutions
and identify their characteristics according to key reliable communication aspects, such
as reliability semantics (e.g., at-most-once, exactly-once), or interaction patterns (e.g.,
request-response, one-way)(Section 2.2); 3) categorize well-known applications requir-
ing reliable distributed communication, according to key reliable communication as-
pects, and identify their requirements in terms of reliability (Section 2.3); and 4) dis-
cover the gaps between the applications requirements and the existing solutions, and
accordingly, provide insights into future research possibilities (Section 2.4).

The analysis carried out in this chapter ended up being especially complex, not only
given the huge amount of combinations of concepts, configurations, and solutions,
but also considering the multiple definitions, sometimes overlapping or contradictory,
present in the literature (Avizienis et al., 2004; Birman, 1997; Coulouris et al., 2005;
Elnozahy et al., 2002; Popescu et al., 2007; Tay and Ananda, 1990). As a result of this
effort, we observed that, in many cases, elaborate communication solutions offering a
larger number of guarantees are purely academic efforts that can, by no means, com-
pete with the popularity, maturity and importance of older, more established, albeit
poorer solutions. This suggests that research and development work in libraries, APIs,
and protocols is still necessary, to build the reliable distributed systems of the future.

17

Chapter 2

2.1 Reliability in Distributed Interactions

In this section, we review the main concepts concerning reliable distributed communica-
tion. In addition to the definition of “reliable communication”, we present the different
interaction patterns of distributed applications and then discuss the following key as-
pects involving reliable communication: the types of failures that can threaten reliable
communication; the reliability semantics, i.e., the conceptual levels of reliability (e.g.,
best-effort) that are expected to be offered by some solution (e.g., middleware, proto-
col); the reliability targets of solutions (e.g., a message or a byte stream); and finally
the specific reliability mechanisms that can be used to build reliable communication
(e.g., acknowledgments, buffering).

Reliability is a very broad concept as each application in a distributed environment
can have its own specific requirements (Birman, 1997). Sometimes reliability refers to
fault-tolerance (recoverability and continuity of correct service) and availability (readi-
ness for correct service) (Lee and Anderson, 2012) and some other times it may refer
to security (protection of data, services or resources against misuse by unauthorized
users) (Azaiez and Bier, 2007), privacy (protection of identity and locations of users
from unauthorized disclosure), correct specification (guarantee that a system solves
its intended problems), correct implementation (guarantee that a system correctly im-
plements its specification), predictable performance (guarantee that a system achieves
desired levels of performance) (Roman et al., 2013), or timeliness (guarantee that ac-
tions are taken within the specified time bounds) (Dantas et al., 2009). In this chapter,
reliability is discussed in the context of the communication used by distributed applica-
tions, and it mostly refers to fault-tolerance and continuity of correct service (Avizienis
et al., 2004). Thus, we define it as follows:

Reliability in distributed communication is the ability of a distributed application to
correctly accomplish an interaction, initiated by one of the peers, even in presence
of faults, which may lead to a failure in the correct delivery or processing of the
data exchanged. A reliable distributed application should either “predict and prevent”
or “detect and handle” (recover from) any failure, without performing any incorrect
behavior. In other words, a reliable distributed application should be able to achieve
its goals (e.g., delivering correct service) even during the periods when some of the
components involved in the communication have failed.

18

State of the Art on Reliable Distributed Communication

Given the above definition, implementing and ensuring reliable communication in dis-
tributed systems seems a very complex task. The major difficulties arise from the innate
uncertainties in these systems with faulty distributed components, and unexpected be-
havior in presence of failures. The next sections introduce the basic interaction patterns
in distributed communication and discuss precisely the key issues involved in ensuring
reliable communication in this context.

2.1.1 Distributed Interaction Patterns

In the point-to-point communication model, a message is sent from one point (a sender
peer) to another point (a receiver peer). The focus of this chapter is set on this model,
also known as unicast, which is the predominant form of communication in distributed
applications and systems and provides a flexible framework for implementing busi-
ness requirements. Most web and service-based applications that follow a client-server
paradigm are examples of this communication model.

Reliable Communication in distributed systems requires the involvement of an appli-
cation, a communication channel, and in many cases a middleware. The application
implements business logic and usually plays two important roles as client and server
or sender and receiver. The application peers communicate with each other using the
communication channel, sometimes using the middleware, when it is present in the sys-
tem. The middleware encapsulates a set of services underneath the application layer
and on top of the network, and it usually facilitates reliable communication and co-
ordination of the distributed application peers (e.g., RSocket (Ekwall et al., 2002)).
Middleware typically provides application developers with high-level programming ab-
stractions (e.g., the use of remote objects instead of sockets (Downing, 1998)) and it
may also provide an intermediate broker to decouple the connectivity of sender and
receiver (e.g., ZeroMQ (Hintjens, 2013)), among other possibilities.

Communication based on the point-to-point model can also vary according to the type
of interactions being used, which fit into distinct patterns, depending on the applica-
tions’ requirements. We describe these interaction patterns from a reliability point-
of-view in the next sections and according to three perspectives: messaging pattern
between the peers (one-way or request-response), synchronization between the peers
(synchronous or asynchronous), and persistency of the exchanged data between peers
in a communication (transient or persistent). When referring to these perspectives we

19

Chapter 2

aim to explain the kind of interaction perceived by the user or application layer, re-
gardless of the concrete technology that supports the interaction. As an example, most
event-driven applications, which have one-way interactions at the application layer, use
TCP for transportation that certainly uses some form of request-response (i.e., bytes
stream and its acknowledgment).

One-Way versus Request-Response Interactions

Sending data to a peer without expecting any reply, known as a one-way interaction,
is the simplest possible interaction pattern. A one-way interaction pattern is extremely
useful in event-driven systems and multimedia streaming, where data flows in a sin-
gle direction. Publish-subscribe (Eugster et al., 2003) and Complex Event Processing
(CEP) (Buchmann and Koldehofe, 2009) systems are some of the scenarios where this
interaction pattern fits rather well. One-way messaging is very simple and fast to use,
but holds one large limitation concerning reliability. When using this pattern, there is
no way for the sender to ensure that the data reached its destination (i.e., the receiver)
or that it is processed correctly.

The request-response interaction pattern seems to overcome the above-mentioned limi-
tation of one-way messaging by forcing the receiver to send a reply. Many interactions
in distributed systems are based on this pattern, where a client sends a request to a
server that, in turn, sends back a response. In contrast to one-way messaging, this
pattern allows the sender to know about the delivery and processing of requests at the
receiver, but only when a response is received. If the sender does not obtain a response,
it may re-send the request, risking duplicate execution of a non-idempotent operation.
“Idempotence” means that performing an operation multiple times will have the same
effect as performing it exactly once (Helland, 2012). On the other hand, if multiple
executions can produce a different result, the operation is “non-idempotent”. A bank
transfer order, which must not be executed more than once, is a typical example of a
non-idempotent operation.

Asynchronous versus Synchronous Interactions

In asynchronous communication, a sender continues to execute immediately after send-
ing data and does not wait to ensure the delivery of the data to the destination. In

20

State of the Art on Reliable Distributed Communication

the case of the one-way interaction pattern, communication is naturally asynchronous
because once data is sent, the sender does not expect any reply. It is also possible
to have asynchronous request-response interactions, where the response can be deliv-
ered to the sender application later (probably using a callback method). Obviously,
in many cases it is unsuitable to use asynchronous interactions with request-response
patterns because the sender may not know about the delivery and processing of its
requests. From a reliability perspective, this is due to the difficulty or impossibility of
distinguishing a crash or a loss from slow transmission or slow processing of messages
(Fischer et al., 1985).

In a scenario involving synchronous communication, the sender sends data and waits,
for a given period of time, until it is sent, delivered, processed, or the corresponding
response arrives. This time-based coordination between the sending process and the
remaining components involved in an interaction is called synchronization. There are
essentially three points where synchronization can take place (Tanenbaum and Steen,
2006): 1) the sender might be blocking in the send operation until the middleware
returns the control to the application, which means that the middleware will take care
of transmitting the data; 2) the sender may wait until its data has been received by
the receiver (usually by a confirmation message); 3) the sender may wait until its data
(or request) has been fully processed, which in practice corresponds to the receiver
returning a response back to the sender. These three points of synchronization can be
considered as key reliability points, since they allow the sender to know about the state
of interaction, which in turn allows to carry out further actions in case of crashes.

Transient versus Persistent Interactions

In persistent interactions, a message that has been sent is also stored (usually in an
intermediate broker) in a persistent storage until it is delivered to the receiver. As such,
it is not necessary for the sender to continue running after sending the message. In the
same manner, the receiver does not need to be running when the message is sent by
the sender. Thus, sender and receiver are decoupled in time. Examples of this type of
interactions include E-Mail or messaging systems, such as Java Message Service (JMS)
(Richards et al., 2009). Although a broker facilitates reliable communication between
decoupled peers, it can also become a single point of failure.

21

Chapter 2

When communication is transient, a message is kept by the communication system only
as long as the sender and receiver peers are simultaneously running and connected.
More precisely, the message is simply discarded by the communication channel (or
middleware) if any of the endpoints crashes or interrupts communication (Tanenbaum
and Steen, 2006). It is worth mentioning that, in the case of the above mentioned
persistent messaging systems, communication can also be set to transient, which means
that it is supported by messages that are stored in volatile storage. In this case, if the
broker crashes the volatile messages are lost.

2.1.2 Failure Types

The very basic elements involved in a distributed interaction include the sender (or
client), the receiver (or server), and the communication channel (in some cases, mid-
dleware is also involved as a way of moving some of the concerns outside of the ap-
plication’s code). Reliable end-to-end interaction usually requires several key actions
involving each of these parts. These key actions include: 1) the sender needs to ini-
tiate the communication process by sending a message (in the presence of network or
endpoint crashes, this might involve multiple attempts); 2) the communication chan-
nel must eventually deliver these messages (uncorrupted); and 3) the receiver needs to
process the message (this might involve filtering duplicate requests for non-idempotent
operations (Spector, 1982)).

The faulty nature of distributed systems may result in different types of failures that
prevent the overall system from communicating reliably. In a reliable communication,
the main objective is to deliver service correctly, thus in this context, the term failure
can be defined as a transition from delivering correct service to delivering incorrect
service. This may occur due to some deviation of one or more components involved
in a communication, from correct function. This deviation from correct function is
called crash (or error), which many times occurs due to faults in software or hardware
(Avizienis et al., 2004).

Here, we describe the main failure types that may occur in a distributed interaction,
allowing to better understand causes and their effects, but also allowing to understand
the necessary mechanisms to tolerate such types of failures. Several classifications of
failures can be found in the literature (Avizienis et al., 2004; Gartner, 1999; Tanenbaum
and Steen, 2006). The following paragraphs describe three failure types (also known to

22

State of the Art on Reliable Distributed Communication

some authors as failure models), according to Coulouris et al. (Coulouris et al., 2005).
We consider this classification to be particularly clear, as it emphasizes the separation
between causes (e.g., network crashes) and effects (e.g., an omission failure):

• Omission Failures occur when a process fails to send or receive data that is
expected to be sent or received. Omission failures can refer to send-omission,
receive-omission, and channel-omission failures. Send-omission failures are usu-
ally caused by lack of buffering space in the network interface or operating system,
which can cause data to be lost after the sender sends the data, but before that
data leaves the sender’s machine. Receive-omission failures are similar to send-
omission failures, but they occur when data is lost at the receiver side, often
due to lack of buffering space in the network interface or operating system. The
omission failures, in general, can also be caused by endpoint crashes (or process
crashes) (Coulouris et al., 2005), resulting from complete or partial crash of the
communicating peers.

Channel-omission failures occur when data is lost in the communication channel,
while in transit between the end peers. These failures are usually caused by
the lack of buffering space at intermediate gateways or proxies (Cristian, 1991).
Channel-omission failures can also be caused by network crashes, which refer
to the complete or partial crash or malfunction of network components. Such
failures may occur due to hardware or software faults, bad configuration, external
or internal attacks, or simply lack of power. Besides having the potential to cause
data losses, network crashes may also result in network partitioning, when the
network breaks into disconnected sub-networks, thus preventing communication
between some of the peers (Turner et al., 2011).

• Timing Failures occur when a temporal property of a system is violated, for
example, when service is delivered too late or too early. These failures generally
apply to real-time distributed systems, where the correctness of the service being
delivered depends not only on the correctness of the results but also on the time
they are actually delivered (Mok, 1983). In this context, we can have early timing
failures, in which the response arrives (or the service is completed) before the
expected deadline; or late timing failures, in which the response arrives after
the expected period (Avizienis et al., 2004). Although early timing failures can
be masked or prevented by artificially delaying the response, there is no simple

23

Chapter 2

solution to prevent or recover from late timing failures that might be caused by
endpoint and network crashes.

• Byzantine Failures (also known as arbitrary failures) capture a wide range of
failures, in which components or processes of a system may crash in an arbitrary
ways, not just by stopping, but also by processing the requests incorrectly, cor-
rupting their local state, and producing incorrect outputs. When a Byzantine
failure occurs during the execution of a service, the system may respond in any
unpredictable way. For this reason, and considering the given definition of reli-
able communication, building distributed applications that are able to tolerate
Byzantine failures is a non-trivial task (Driscoll et al., 2003).

Usually, researchers and developers assume the following two crash modes, the manner
in which crashes occur. Processes, components, and network may either crash and stop
(crash-stop, also known as fail-stop) or crash and recover (crash-recovery), but
never performing any incorrect actions, thus causing only omission or timing failures
(and not Byzantine failures). In order to allow applications to survive faulty conditions
and still ensure their specific requirements, each of the above types of failures requires
the use of the right reliability mechanism or set of mechanisms, which the following
sections further contextualize and present.

2.1.3 Reliability Semantics

Reliability semantics refers, in general, to the conceptual level of reliability that is
offered or expected to be provided by a network, protocol, mechanism, or application.
In a distributed interaction, the conceptual level of reliability usually refers to delivery of
data to a destination or to processing of data, and it may range from best-effort (lowest
reliability guarantee, also considered as unreliable in some scenarios) to exactly-once
(highest reliability guarantee).

Best-effort, which is usually (Chakradhar and Raghunathan, 2010) related to delivery
of data over the network and not to data processing, describes a semantics in which a
solution (e.g., network, protocol, system) in general does not provide any guarantees
that data is delivered but tries anyway to achieve it (Feng et al., 1998). As an example,
UDP offers a best-effort service to applications, which is a fast and simple way of

24

State of the Art on Reliable Distributed Communication

data transmission (for instance, when compared to TCP). Usually this type of data
transmission is considered as unreliable transportation (Protocol, 1980).

Correct data delivery describes a semantics, in which a given reliable communication
solution (e.g., network, protocol, system) ensures that data is delivered without any
error concerning content. Different techniques can be used to detect, or to detect and
correct the errors in data (e.g., checksums (Braden et al., 1989), error correcting codes
(Sloane and MacWilliams, 1981)). On-time delivery semantics refers to the delivery
of data within a given time frame, defined by the application (Kopetz et al., 1989).
Ordered data delivery semantics, ensures that data is received in the same order in
which they were sent. This guarantee, which is also known as First-In First-Out (FIFO),
is important and necessary for many distributed applications (Lamport, 1978).

The most popular reliability semantics that refer to the delivery and processing of data
are at-most-once, at-least-once, and exactly-once. With at-most-once semantics, data
must not be delivered and processed more than once. This can be simple to achieve:
the sender sends some data and it may or may not reach the destination; or, considering
a request-response paradigm, a client sends a request and its response may or may not
arrive. This semantics becomes more difficult to achieve when the client resends the
requests for which a reply was not received. In this case, the server needs to be able
to detect duplicate requests and prevent their re-execution. In contrast, in the at-
least-once semantics, data must be delivered and processed one or more times, even
in presence of failures. For instance, to achieve this guarantee in a request-response
application, a client must re-send the same request until it gets some response, although
it may cause multiple executions of the request.

Unfortunately, neither the at-most-once, nor the at-least-once semantics can be used
in several real-world operations, such as performing bank transfers, or buying a flight
ticket, as these represent non-idempotent operations. These are the typical cases that
require a “reliable” interaction, to ensure that each request is executed once and only
once. The exactly-once semantics is entirely appropriate for such cases.

Despite the importance of exactly-once semantics, the presence of faults makes it very
difficult, or even impossible to ensure (Fekete et al., 1993; Halpern, 1987). As a simple
example, to achieve exactly-once in a client-server application with a request-response
interaction pattern, both client and server should store their state into stable storage in
order to be able to recover from crashes, but this is not enough. While it is reasonable

25

Chapter 2

to assume that servers eventually recover, clients may not recover (e.g., a browser with a
user that gives up using a service). For this reason, what is actually provided by many
protocols and systems, claiming to provide exactly-once, is at-most-once semantics
(Ivaki et al., 2015).

2.1.4 Reliability Targets

We used the term “data” in previous sections in a generic way to refer to the information
that needs to be reliably exchanged between peers in each interaction. In practice,
“data” can refer to a stream of bytes, a message, an object, or to a set of messages
within a conversation. Thus, a solution for reliable communication may focus on these
four different aspects. In the next paragraphs, we discuss not only these different
reliability targets, but also the corresponding different middleware (which has focus on
each of the distinct targets).

In a stream, there is no concept of discrete messages, there is a flow of bytes instead.
File and multimedia systems are examples of applications that transmit data without
an envelope (i.e., without message boundaries). In such applications, if reliable com-
munication is needed, the goal is to ensure that this flow of bytes is delivered and
processed in a reliable way. As an example, TCP is a reliable transmission protocol,
whose reliability target is the stream of bytes and not individual messages.

A message refers to a discrete message that can however be sent in several chunks.
A message is placed into an envelope, including a header and a body, when sent (i.e.,
which determines the message boundaries), and it should be exactly the same when it
is read (Hohpe and Woolf, 2003). Most distributed applications exchange messages for
communication, in various types of envelopes (e.g., HTTP message, SMTP message).
Thus, in this context, the reliability objective is to deliver and process each message
reliably.

A Conversation refers to a series of messages that must be exchanged between two
peers to complete a set of related interactions. For instance, a bank transfer usually
involves exchanging several messages, first the operation details, then confirmation,
and, at the end, a security code. Thus, the reliability objective in this context is to
ensure the delivery of all of these messages, so that if one is lost or corrupted the
conversation must be repeated from the beginning.

26

State of the Art on Reliable Distributed Communication

The term Object refers to an application-level object, consisting of state and behavior,
as in the object-oriented programming definition (Rentsch, 1982). Applications might
either transmit complete objects or remotely invoke their methods. In the former
case, applications usually need to serialize the object before sending and deserialize
them before reading, and in the latter case, a client is able to request the execution
of an operation on the server by invoking a method over a reference to the remote
object. In either case, information will be transmitted through the network using the
specific mechanisms required by the client and server-side platforms involved (e.g., Java
Serialization, Java Remote Method Invocation).

In object-based communication, the reliability target is the object. From the relia-
bility perspective and depending on the interaction context, this object target can be
considered as a subclass of message or conversation. For instance, when an object is
used as data to be transmitted in a communication, the reliability concern is similar
to message-based communication because the target is the reliable delivery and pro-
cessing of the object as a whole, just like a message. When the remote invocation of
the object’s methods (or functions) is used for communication, the reliability concern is
similar to conversation-based communication, because the whole interaction from send-
ing the request to invoke the remote method until receiving the result of the invocation
must occur reliably, otherwise the client needs to invoke the remote method again.

There are currently different types of middleware that target one of the four different
targets mentioned. As previously referred, middleware is a software layer that stands
between the application and the lower layers (network and operating system), thus
aiming to separate the reliability concerns from the application logic. It provides de-
velopers with a higher level of abstraction based on primitives that are provided by the
lower layers. Many types of middleware are currently being used for several distinct
purposes. However, in this chapter, we classify them in the following four groups, based
on their distinct reliability targets:

Stream-Oriented Middleware provides a continuous data streaming abstraction
usually used by multimedia applications. In many multimedia applications (e.g., video
conferencing or Internet telephoning), reliability may not be the most important aspect.
But there are applications that allow access to multimedia products, such as music and
movies, for download (or upload), in which reliability is important. We usually do not
find the term “stream-based middleware” as a type of middleware when it comes to reli-
able stream-based communication (i.e., which is offered by TCP), because middleware

27

Chapter 2

usually is supposed to offer a higher level of abstraction than what is provided by the
transport layer. There are, however, stream-based middleware solutions (although not
very popular) that provide a higher level of reliability on top of TCP (note that TCP
is not completely reliable and can not handle connection crashes). RSocket (Ekwall
et al., 2002) is an example of this type of middleware.

Message-Oriented Middleware is a very popular type of middleware that facilitates
message exchange between distributed peers. The most well-known message-oriented
middleware solutions use a broker between sender and receiver to decouple the com-
munication parties. Message queues at the broker are used to store messages, thus
providing asynchronous communication to the peers. Microsoft MSMQ (Horrell, 1999)
and ZeroMQ (Hintjens, 2013) are two examples that fit this category. Other solutions
support synchronous message-oriented communications (without the presence of a bro-
ker). The WS-ReliableMessaging standard (Bilorusets et al., 2005) implemented by the
Windows Communication Foundation (WCF) (Smith, 2007) is an example of this type
of middleware.

Conversation-Oriented Middleware provides support to reliably complete a given
distributed conversation, which includes a set of message exchanges, such as online
bank transfer or online ticket reservation. This type of middleware may use different
mechanisms to ensure that a conversation is completed reliably. For instance, if the
conversation actually refers to a distributed transaction, the middleware may support
the two-phase commit (2PC), which is a popular protocol to ensure that a distributed
transaction either concludes successfully or nothing occurs. Message Logging is another
technique used to support the reliable completion of a conversation. This approach is
based on logging the state of the interactions and enabling the retransmission of the
messages until it is completed. Phoenix/APP (Barga et al., 2003), iSAGA (Dutta et al.,
2001), and EOS (Shegalov and Weikum, 2006) are examples of this type of middleware.

Object-Oriented Middleware is essentially built based on both the object-oriented
programming paradigm and the Remote Procedural Call (RPC) architecture (Birrell
and Nelson, 1984). We consider all middleware that is based on the RPC architecture
to be object-oriented middleware (also known as Procedural Middleware) (Sadjadi and
McKinley, 2003). Such middleware provides the abstraction of a remote object, whose
methods (or functions) can be transparently invoked as if the object was in the same
address space as its client. Java RMI (Downing, 1998), CORBA (Vaysburd and Yajnik,
1999), and DCOM (Brown and Kindel, 1998) are well-known examples that fit this type.

28

State of the Art on Reliable Distributed Communication

2.1.5 Reliability Mechanisms

Conceptually, there are several well-known mechanisms that can be implemented and
used to build reliable communication in distributed applications. In the next para-
graphs, we present and discuss these mechanisms, in general, from the more simple
ones to those that involve more complexity. Note that this type of mechanisms, or
combinations of these mechanisms are many times part of specific reliability solutions,
which we will in turn describe in Section 2.2.

Buffering-Acknowledgment-Retransmission

Buffering data, acknowledgment of reception, and retransmission of missing or damaged
data, are well-known mechanisms to tolerate omission failures and implement reliable
communication. Although these are individual mechanisms, they are frequently used
together to achieve reliable communication. The term buffering refers to storing of data
in the volatile memory. Acknowledgment is used to obtain feedback from the receiver
about the delivery or processing of the data sent. The acknowledgments can be used
by the sender to remove the data stored in the buffer. If some data is not acknowledged
after a given period of time, the sender retransmits (i.e., it sends the data again) until
the delivery of the data is confirmed.

Transmission Control Protocol (TCP) (Postel, 1981) is a concrete example that relies
on these techniques. It buffers data and retransmits if it is not acknowledged. Re-
garding the acknowledgment, several methods have been proposed in the literature,
including positive acknowledgment (ACK), negative acknowledgment (NAK), cumula-
tive acknowledgment (CACK), and selective acknowledgment(SACK) (Waldby et al.,
1998). Regardless of the the above types, acknowledgments can be performed implic-
itly where the sender uses a different method, instead of sending explicit messages, to
identify the reception of data. For instance, the reception of a response, in an applica-
tion with request-response interaction, is an implicit acknowledgment for reception of
a request.

29

Chapter 2

Logging

Logging is another technique used to ensure reliability. This approach is based on stor-
ing the data exchanged or the state of interactions into stable storage, thus enabling
the recovery of the state and retransmission of the data, if necessary. The difference be-
tween this mechanism and the previous one (buffering-acknowledgment-retransmission)
is that with logging, a system is able to ensure reliable communication, even in presence
of endpoint crashes, albeit at a higher cost, due to the operations with stable storage
(Chakravorty and Kale, 2007; Wang et al., 2009).

Filtering

Filtering is a mechanism used to detect repeated and orphan invocations and prevent
duplicate delivery or execution of data (Pleisch et al., 2003). It is mainly associated
with retransmission (and mechanisms that use retransmission). In the simplest form,
filtering is accomplished by using a unique identifier, which is associated to each request,
invocation, or transaction. Filtering is usually used by applications that require at-
most-once or exactly-once semantics (Koloniari et al., 2011).

Checkpointing

Checkpointing is a technique for building reliable applications and for supporting re-
liable communication. Using this technique, a snapshot of a system, component, or
process state is periodically stored in stable storage, so that it can be used later on,
for restarting the execution upon a crash. To recover from crashes, the system, compo-
nent, or process restarts its execution from one of the previous correct states stored in
stable storage (i.e., it restarts from one of the checkpoints) (Johnson, 1989). Although
this mechanism guarantees correct recovery from crashes, in comparison to logging, it
suffers from high overhead associated with the checkpointing process (Chakravorty and
Kale, 2007).

Broker

The use of a Broker appears usually associated with asynchronous distributed commu-
nications. In short, a broker is a node (located between the sender and receiver) that

30

State of the Art on Reliable Distributed Communication

intermediates the delivery of data to a destination, that may be off-line when the data
is being sent to the broker (i.e., the broker decouples the peers in time). In practice,
it allows to tolerate temporary peer crashes in the sense that they will be able to get
their messages later (after recovery). However, the broker may also become a single
point of failure. Microsoft’s MSMQ (Horrell, 1999), Websphere MQ (Hart, 2003) and
HornetQ (Lui et al., 2011), which implement the Java Message Service (JMS) (Richards
et al., 2009) specification are examples of specific implementations of a broker.

Transactions

A transaction usually represents a unit of work (e.g., database operation) that must
be done as a whole and respecting ACID properties. In short, it either finishes cor-
rectly and successfully or produces no effect at all (Haerder and Reuter, 1983). A
distributed ACID transaction (Thomson et al., 2012) ensures that multiple partici-
pants in a transaction actually agree on the outcome of an interaction. It usually
offers at-most-once semantics, because the operation either successfully finishes for all
participants involved, or nothing occurs and everything reverts back to the initial con-
dition. Protocols like the Two-Phase Commit (Boutros and Desai, 1996) (2PC) can
reliably implement distributed ACID transactions. However, distributed transactions
have several drawbacks: 1) they are difficult to use, as they involve a fairly complex
configuration and Application Programming Interface (API); 2) they are heavy, be-
cause they involve a coordinator process; and 3) they are slow, due to the several steps
involved in protocols like the two-phase commit.

Queued Transaction Processing is also a technique to deal with transactional operations
(Gray and Reuter, 1993). Using this mechanism, a client starts a transaction and
enqueues the request at the server’s queue. Then, the server starts another transaction,
dequeues and processes the request, and enqueues the reply at the client’s queue. A
third transaction is started and the reply is dequeued and processed by the client.
Briefly, this technique involves two queues in front of the server and client, and three
distributed commits. Transactions, in general, can resist to a large spectrum of crashes.

31

Chapter 2

Replication

Replication is a quite powerful mechanism to improve availability and reliability of dis-
tributed applications. Replication could be applied for processes, components, connec-
tions, or to whole systems. Generally there are two strategies for replication: primary-
backup and active replication. In the former strategy, one of the replicas (i.e., the
primary), plays the main role in the system. Considering a client-server scenario, the
primary replica receives the requests from the client, processes them, and sends the
response back to the client. The state of the system should be shared between all
replicas so that the primary replica can be replaced with a backup replica, in the event
of a failure. In contrast, with the active replication strategy, all replicas play the same
role in the system. All the requests go to all active replicas and all process the requests
and prepare a response (just one of the responses is sent back to client, possibly the
fastest one) (Guerraoui and Schiper, 1996).

In alternative to the above techniques, which consider that replicas are identical to each
other, lazy replication (also known as optimistic replication) allows replicas to diverge.
Replicas only converge when the system goes down (Ladin et al., 1992). Replication, in
general, can improve reliability, as its implementation allows tolerating endpoint and
network crashes.

Migration

Migration refers to the process of moving running application processes from one ma-
chine (or a more complex environment, such as a cluster or a cloud) to another and
is usually used for proactive fault-tolerance. Proactive fault-tolerance is an important
recent concept in high-performance computing, which aims to prevent the impact of
computing node (process) crashes on running applications, processes, or connections
(Egwutuoha et al., 2012; Ji et al., 2015). One of the very well-known proactive fault-
tolerant mechanisms is to preemptively migrate application from nodes that are about
to fail to another one (Chakravorty et al., 2006). The combination of migration with
checkpointing or logging mechanisms, for storing the state of alive connections, can
ensure a full migration of an application with all its interactions (Ivaki et al., 2014).

32

State of the Art on Reliable Distributed Communication

2.2 Solutions for Reliable Communication

In this section, we overview several existing solutions for building reliable distributed
applications. We divide these solutions depending on their reliability targets (i.e.,
stream, message, object, or conversation) and describe them according to the other
reliability features, such as reliability mechanisms and reliability semantics.

2.2.1 Stream-Based Solutions

We initiate the discussion with the stream-oriented solutions for reliable communica-
tion. The list of the solutions covered, along with their particular features, is presented
in Table 2.1. In this table, the “Reliability Mechanism” column refers to the mecha-
nisms we presented in Section 2.1.5. The following column, “Fault tolerance”, refers to
the kind of failures that might be tolerated by each solution (refer to Section 2.1.2).
Since, all the solutions we review in this table only address omission failures in presence
of crashes in some component along a distributed communication, we try to be more
specific regarding the causes for the omission failures and separate connection crashes
from server crashes. In the last column, we present the reliability semantics, presented
in Section 2.1.3, offered by the solutions.

We do not refer to the interaction patterns of Section 2.1.1 in the table, because, for
instance, TCP is usually the base for many different communication protocols and
stacks, thus supporting nearly any interaction pattern needed by the application layer
(one-way, request-response, synchronous, asynchronous, etc.). The same might be said,
in principle, regarding the other solutions in this category. However, none of these
solutions is so deeply understood, used or carefully implemented as TCP. Hence, in
practice, some of the other solutions might not support all interaction patterns. For
example, RSocket trying to extend the TCP Socket’s functionalities, does not provide
non-blocking sockets, thus making asynchronous interactions slightly more complex to
implement.

33

Chapter 2

Table 2.1: Stream-based reliable solutions and their characteristics
Communication	Model	is	quite	flexible.	TCP	supports	all	variants,	the	others	are	similar,	althoguh	some	like	Rsocket	might	not	suport	asynchronicity.

Solutions Reliability	Mechanisms Fault	Tolerance Reliability	Semantics

TCP Buffering,	Acknowledgemnt	and	Retransmission,	
None	(regarding	connection	or	endpoint	crashes)

None		(regarding	crashes) Best-effort	(regarding		crashes)

RTP None	(regarding	connection	or	endpoint	crashes) None		(regarding	crashes) Best-effort	(regarding		crashes)
RSocket Buffering	and	Explicit	Acknowledgment Connection	Crashes At-most-once
FT-TCP Logging Server	Crashes At-most-once

Rocks	&	Racks Buffering	and	Implicit	Acknowledgment,	
Checkpointing,	and	Migration

Connection	Crashes	and	
supports	for	server	crashes

At-most-once

SCTP,	cmpSCTP,	MPTCP Multiple	connections Connection	Crashes At-most-once
ST-TCP,	HotSway,	
HydraNet-FT Active	Replication Server	Crashes At-most-once

ER-TCP Active	Replication	and	Logging Server	Crashes At-most-once

TCP

The Transmission Control Protocol (Postel, 1981) provides reliable bi-directional byte
stream communication between two processes running over a network. TCP is per-
haps the most well-known protocol providing some form of reliable communication.
It is connection-oriented (i.e., a logical connection is established between two peers
before transferring data) and uses acknowledgments combined with buffering and re-
transmission of data segments. When an application writes some data to the socket,
the operating system stores the data into the socket’s send buffer, before transmission.
Once an acknowledgment is received, the data might be deleted. On the receiver side,
when the data is received by the operating system, it is kept in the socket’s receive
buffer and an acknowledgment is sent back. The data remains in the receive buffer
until it is read by the application. To prevent data losses, applications must wait for
the send buffer to have space available, before sending new data. This mechanism,
known as the “sliding window mechanism”, limits the maximum amount of in-transit
data.

Most reliable applications resort to TCP in one way or another, to transport their
data. Web browsing, emailing, video streaming (often in a browser), file transfers, and
remote shell interactions with the Secure Shell Protocol (SSH) are but a few examples.
Despite being very common, TCP cannot handle data losses that occur when there is a
connection crash. Technically a TCP connection fails when the operating system aborts
a connection, for one of the following reasons: 1) when data in the send buffer is not
acknowledged after a given number of retransmissions; 2) when the application waits
for reading from the receive buffer for a period of time that exceeds the timeout defined
for read; 3) when an underlying network failure is reported by the network layer; 4)

34

State of the Art on Reliable Distributed Communication

and when the IP address changes (Zandy and Miller, 2002). When a TCP connection
fails, resuming communication between peers is quite challenging, even when both
endpoints are still running. In fact, the application might have no means (provided by
the transport layer) to determine which data did or did not reach the other endpoint,
thus making recovery or roll-back to a coherent state very difficult. Therefore, TCP can
only offer best-effort delivery to applications, under connection and endpoint crashes.

RTP

The Real-time Transport Protocol (RTP) (Schulzrinne et al., 2003) is designed for
real-time transfer of audio and video over the Internet. For this sort of task, packet
losses might be much less important than user-perceived delays. RTP offers timeliness
guarantees to media streaming applications, usually over UDP instead of TCP, because
TCP favors reliable delivery over timeliness. RTP uses timestamps for synchronization
purposes and sequence numbers to ensure ordered delivery.

RSocket

Robust Socket (Ekwall et al., 2002) is a session layer solution to overcome the limitations
of TCP. It uses an extra level of buffering and acknowledgments to ensure delivery of the
bytes stream. The RSocket acknowledgment is done using an additional UDP control
channel. When a TCP connection fails, the client sets up a new connection, to resume
data exchange. Although RSocket takes care of connection crashes, by transparently
reconnecting and resending lost data, endpoint crashes are not handled. Thus, the
reliability semantics that can be guaranteed in presence of endpoint crashes is at-most-
once delivery of data. The interaction patterns offered by RSocket are similar to the
plain TCP protocol, with this difference that the RSocket implementation does not
support non-blocking operations (e.g., non-blocking read operation).

FT-TCP

Fault-Tolerant TCP (Alvisi et al., 2001) is based on the concept of wrapping, in which a
layer of software surrounds the transport layer and intercepts all connections. Data can
come from two points, either the IP layer or from the application layer. A logger is used

35

Chapter 2

at these points as well, to maintain the current state of the TCP connections. Thus,
when the server crashes, logs are used after restarting the server or moving the server
to another host for recovery of TCP connections. This solution can not recover TCP
connections in the case of client and network failures, thus it only can offer at-most-once
delivery of data.

Rocks and Racks

Reliable Sockets and Reliable Packets (Zandy and Miller, 2002) are solutions that al-
low recovery from connection crashes, thus providing transparent network connectivity
to applications. They automatically detect connection crashes, including those caused
by link failures, extended periods of disconnection, change of IP address, and pro-
cess migration. They use a control socket to exchange control messages, mainly for
detecting the data connection crashes. These systems automatically recover broken
connections without loss of in-transit data, by buffering sent data. Rocks is a library
that transparently changes the behavior of the application by replacing the default TCP
sockets, whereas Racks filters application packets to avoid intercepting the application
libraries. These solutions also use process checkpointing in order to support server mi-
gration. Justification about reliability semantics offered by this solutions is the same
as the previous ones, because exactly-once can not be ensured when all crashes are not
properly handled (e.g., endpoint crashes).

SCTP

Stream Control Transmission Protocol (Stewart and Metz, 2001), like TCP, offers a
bi-directional, connection-oriented, and reliable transport service to applications. It
inherits many of the TCP features, as any application running over TCP can be ported
to run over SCTP without loss of function. The main differences revolve around SCTP’s
support for multi-homing and partial ordering. Multi-homing enables an SCTP host
to establish a session with another SCTP host over multiple interfaces identified by
different IP addresses. With partial ordering, SCTP maintains ordering only within
some sub-flows of the related data streams. Thus, SCTP can benefit applications that
require reliable and fast delivery and processing of multiple, unrelated data streams.
Regarding the reliability, SCTP is more reliable than TCP, due to its special support
for connection replication, and can guarantee at-most-once semantics.

36

State of the Art on Reliable Distributed Communication

cmpSCTP

Concurrent multi-path Stream Control Transmission Protocol (Liao et al., 2008) modi-
fies SCTP to exploit its multi-homing capability by choosing best paths among several
available network interfaces in order to improve data transmission rate. The cmpSCTP
tries to reduce latency by selecting the best paths based on updated information about
the paths, thus is more suitable than SCTP for real-time applications. However SCTP
and its extensions like cmpSCTP, are still not widely used first because the applications
must be modified in order to use them, and second because SCTP packets can not pass
through various NATs or firewalls.

MPTCP

Multipath TCP (Scharf and Ford, 2013) is an ongoing project of IETF, which has
the same objective as cmpSCTP, but tries to address its aforementioned drawbacks.
It allows to efficiently exploit several connections between two communicating peers,
while presenting a single connection to the application. This is enabled by extending
the TCP protocol and choosing several efficient paths between the peers.

ST-TCP

Server fault-Tolerant TCP (Marwah et al., 2005) tolerates TCP server crashes using
replication. It uses an active backup that keeps track of the TCP connection state,
to take over whenever the primary fails. The migration of the TCP connection to the
backup server is transparent to the client. ST-TCP assumes that the backup server
is not slower than the primary server, which is an unrealistic assumption. Using this
solution, connection crashes caused by network outage or client crashes are not handled.

HotSwap

HotSwap provides fault-tolerance at the TCP level, by modifying the system call library
of Linux. It creates two identical instances of the same set of programs on two machines,
a master and a backup. The master and backup systems must start at the same
time with identical file systems, to ensure they receive the same input from local files.

37

Chapter 2

HotSwap ensures that both copies are synchronized. When a TCP related system call
(e.g., creating a TCP socket) is made by an application, another replica socket is created
at the other host, to tolerate possible crashes of the former one (Burton-Krahn, 2002).

HydraNet-FT

HydraNet-FT provides an infrastructure to dynamically replicate services across an
internetwork and have the replicas provide a single fault-tolerant service to clients
(Shenoy et al., 2000). HYDRANET-FT uses TCP with a few modifications on the
server side to allow: a) one-to-many message delivery from a client to service replicas;
and b) many-to-one message delivery from the replicas to the client. A communication
channel between the replicas provides atomicity and message ordering. HydraNet-
FT, same as the other later solutions that use active replication, only handles server
crashes and does not provide any support for network and client crashes. Thus it only
can ensure exactly-once data delivery in presence of these crashes.

ER-TCP

ER-TCP tolerates crashes occurring on the server-side TCP connections, by replicat-
ing them among multiple nodes in a cluster. ER-TCP employs a logging mechanism
with active replication, to avoid the inconsistency problem that may occur when the
replicas do not have the same processing speed as the primary server (Shao et al.,
2008). ER-TCP’s reliability mechanism is similar to ST-TCP, with this difference that
its unrealistic assumption (i.e., backup server is not slower than the primary server) is
removed from this solution.

2.2.2 Message-Based Solutions

In this section, we analyze the message-oriented solutions, which are summarized in
Table 2.2. The table now includes the interaction patterns described in Section 2.1.1,
as the solutions show different communication characteristics.

38

State of the Art on Reliable Distributed Communication

Table 2.2: Message-based reliable solutions and their characteristics

Solutions Interaction	Patterns Reliability	Mechanisms Fault	Tolerance Reliability	Semantics

HTTP Request-Response,	Synchronous,	
Transient

None		(regarding	crashes) None		(regarding	crashes) None		(regarding	crashes)

XMPP One-way,	Request-Response,	
Synchronous,	Transient

None		(regarding	crashes) None		(regarding	crashes) None		(regarding	crashes)

HTTPR Request-Response,	Synchronous,	
Transient

Buffering,	Logging	&	
retransmission

Connection	and	endpoint	
crashes

Exactly-once	delivery	and		
at-most-once	processing

CoRAL Request-Response,	Synchronous,	
Transient

Active	replication	and	logging Server	crashes At-most-once	delivery

WS-Reliability,	WS-
ReliableMessaging

Request-Response,	Synchronous,	
Asynchronous,	Transient

Buffering	and	retransmission Connection	crashes
At-most-once	delivery	and	

processing

ZeroMQ
One-way,	Request-Response,	

Synchronous,	Asynchronous,	Transient	,	
Persistent

- None At-most-once	delivery

JMS,	AMQP,	MSMQ,	
WebSphere	MQ,	Oracle	AQ One-Way,	Asynchronous,	Persistent	

Broker,	acknowledgment,	and	
support	for	transactions

Connection	crashes	and	
endpoint	crashes

At-most-once	delivery

HTTP

HTTP (Fielding et al., 2009) is a request-response protocol. It is the cornerstone of the
world wide web, and is thus serving as the application communication protocol in many
distributed applications, including business and safety-critical services at a world-wide
scale. HTTP offers a request-response interaction pattern on top of TCP, thus being
a first step towards reliability. Developers can explore the explicit responses of HTTP
as a basis (i.e., because they can be considered as acknowledgment for the requests) to
implement proper reliability mechanisms for their own applications (e.g., by means of
logging and retransmission).

XMPP

Extensible Messaging and Presence Protocol (XMPP) (Saint-Andre, 2011) is a message-
oriented protocol, providing a synchronous messaging service based on Extensible
Markup Language (XML). It enables the real-time exchange of structured data be-
tween any two or more peers. The original transport protocol for XMPP is TCP, but
the XMPP community has also developed an HTTP transport for web clients (Pater-
son et al., 2010). XMPP uses polling method with HTTP to regularly fetch messages
stored on a server-side database by an XMPP client using HTTP GET and POST
requests. XMPP also uses WebSocket(Fette and Melnikov, 2011) to provide a more
efficient transport for real-time messaging (Stout et al., 2014).

39

Chapter 2

HTTPR

HTTPR, as HTTP, is a request-response protocol, which is built on top of HTTP and
provides reliable transport of messages between application peers, even in the presence
of network or endpoint crashes. It uses logging and retransmission to ensure that each
message is delivered to the application exactly-once, but there is no guarantee that the
message will be processed exactly-once too (Banks et al., 2002). This is because the
server does not accept the requests that are previously delivered to the server, even if
the requests are not successfully processed due to the server crashes.

CoRAL

CoRAL (Aghdaie and Tamir, 2009) is a solution for handling the server crashes in web-
based services. This solution is built based on connection replication and application-
level logging mechanisms. In CoRAL, the state of the TCP connection is preserved
using active replication. The TCP stacks of the primary and backup servers process
incoming packets simultaneously. Message logging at the application layer is used to
log HTTP requests and replies into the backup for replaying purposes, if necessary.

WS-Reliability

WS-Reliability (Evans et al., 2003) is a SOAP-based specification designed to sup-
port the exchange of SOAP messages with guaranteed delivery, message ordering, and
no duplicates. This specification considers a set of abstract operations (e.g., submit,
deliver, response, and notify), to model reliability contracts between the messaging
middleware and its users. The specification defines the following reliability semantics:
Guaranteed message delivery (At-Least-Once delivery), Guaranteed message duplicate
elimination (At-Most-Once Delivery), Guaranteed message delivery and duplicate elim-
ination (Exactly-Once Delivery), and Guaranteed message ordering (ordered delivery).
Note that WS-Reliability only protects against network crashes, not against endpoint
crashes. Thus, considering this fact, it can only guarantee at-most-once delivery of
messages.

40

State of the Art on Reliable Distributed Communication

WS-ReliableMessaging

WS-ReliableMessaging (Bilorusets et al., 2005) is a web services specification for reli-
able delivery of SOAP messages. It allows the same set of delivery assurances as WS-
Reliability, supported by a modular way of guaranteeing reliable message delivery, and
defines a messaging protocol to identify, track, and manage the reliable delivery of mes-
sages between two parties. Despite the similarities shared by WS-Reliability (WS-R)
and WS-ReliableMessaging (WS-RM), there are significant differences between them,
namely: 1) In WS-R, acknowledgments are sent only after the messages have been
successfully delivered to the application layer. In contrast, with WS-RM, acknowl-
edgments are sent right after the middleware passes the message to the application,
without waiting for the completion of processing; 2) WS-R offers three message reply
patterns including response, callback and polling (for asynchronous communication),
while WR-RM does not explicitly define message reply patterns (although it also sup-
ports asynchronous communication).

JMS

Java Message Service (Richards et al., 2009) is a messaging standard that provides an
API for Java developers to create, send, receive and consume messages asynchronously.
JMS uses a broker between producers and consumers of messages, to enable loosely-
coupled communication. Thus, producer and consumer do not need to be online at
the same time. JMS provides the following mechanisms, to ensure reliable delivery of
messages: 1) producers and consumers of messages are able to use acknowledgments,
to confirm successful production and consumption of the messages. The broker can
also send an acknowledgment to the message producer, confirming that it received the
message; 2) the broker is also able to store messages in persistent storage, to ensure
that messages are not lost if the broker fails before messages are consumed; 3) to en-
sure exactly-once delivery of messages, producers and consumers can use distributed
transactions in their communication with the broker, to group the production and/or
consumption of one or more messages into an atomic unit. However, with this asyn-
chronous interaction between the producers and consumers, it is very difficult to have
an end-to-end transaction encompassing both the production and consumption of the
same message, thus guaranteeing the exactly-once delivery is almost impossible. This
fact can be applied to any other asynchronous broker-based solution too. Nevertheless,

41

Chapter 2

multiple implementations of JMS, including Apache ActiveMQ, HornetQ, Sonic MQ,
OpenJMS, FioranoMQ, Oracle Message Broker, SAP PI, TIBCO Enterprise Message
Service, and JORAM, prove the applicability of this type of solutions.

AMQP

Advanced Message Queueing Protocol (Vinoski, 2006) is also designed to support
loosely-coupled and asynchronous communication patterns. It provides flow control,
message-delivery and security guarantees. While JMS provides a standard API for the
Java platform, AMQP provides a standard messaging protocol across all platforms.
This protocol assumes an underlying reliable transport layer protocol (e.g., TCP).
AMQP, in a similar manner to JMS, uses acknowledgments to ensure reliable delivery
of messages both from the producer to the broker and from the broker to the consumer.
AMQP can be found in several popular implementations, including RabbitMQ, WSO2,
and OpenAMQ.

ZeroMQ

ZeroMQ (Hintjens, 2013) is a high-performance messaging library aimed for scalable
distributed applications. It provides a message queue, but unlike message-oriented mid-
dleware, a ZeroMQ system can run without a standalone message broker. The library is
designed to have a familiar socket-style API. It supports several messaging patterns in-
cluding: 1) request-response (similar to remote procedure calls); 2) publish-subscribe,
which is one-to-many loosely-coupled asynchronous queue-based communication; 3)
push-pull, which is similar to publish-subscribe with the difference that the sender
sends the messages using several sockets arranged in a pipeline; and 4) pair, which
provides a communication similar to what normal sockets do, with the difference that
the messages are received completely at once.

MSMQ

Microsoft MSMQ (Horrell, 1999) is another message queuing protocol for the Windows
operating systems. MSMQ enables applications running at different times to com-
municate across heterogeneous networks and using systems that may be temporarily

42

State of the Art on Reliable Distributed Communication

off-line. Message Queuing provides guaranteed message delivery, efficient routing, se-
curity, and priority-based messaging. It can be used to implement solutions for both
asynchronous and synchronous scenarios. MSMQ ensures reliable delivery, by placing
messages that fail to reach their intended destination in a queue and then resending
such messages once the destination becomes reachable. Similarly to JMS, MSMQ also
supports transactions that can encompass multiple operations over multiple queues.

WebSphere MQ

IBM WebSphere MQ (Hart, 2003) is also a queue-based message oriented middleware
that simplifies the integration of applications across multiple platforms. WebSphere MQ
provides one-time delivery of messages across several operating systems. The vendor
emphasizes reliability and robustness of message traffic, and ensures that a message
should never be lost if MQ is appropriately configured. Messages can be sent from one
application to another, regardless of whether the applications are running at the same
time (a queue manager will hold the message until a receiver requests it). Ordering of all
messages is preserved (FIFO by default, but priority ordering also exists). WebSphere
MQ enables reliable messaging, by using acknowledgments, negative acknowledgments,
and sequence numbers.

Oracle AQ

Oracle Advanced Queuing (Gawlick, 1998) is developed by the Oracle Corporation
and integrated into its Oracle database as a repository to provide message queuing
for asynchronous communications. Since Oracle Advanced Queuing is developed in
database objects, all operational benefits of high availability, scalability, and reliability
are also applicable to queue data. Typical database features such as recovery, restart,
and security are also supported by Oracle AQ. Although all the above broker-based (or
queue-based) solutions prevent duplicate delivery of messages but there is no guarantee
that the messages will be delivered exactly-once.

43

Chapter 2

2.2.3 Object-Based Solutions

In this section, we review the object-oriented solutions summarized in Table 2.3. We
do not include the interaction pattern, as this is Request-Response, Synchronous, and
Transient for all solutions.

Table 2.3: Object-based reliable solutions and their characteristics

Solutions Reliability	Mechanisms Fault	Tolerance Reliability	Semantics
RPC - none At-most-once	

RMI,	CORBA,	DCOM Retransmission	&	Filtering Connection	crashes At-most-once	
	.Net	Remoting - none At-most-once	
FT-CORBA,	FTRMI Active	replication Server	crashes At-most-once	

RPC

Remote Procedure Calls (RPC) (Birrell and Nelson, 1984) is a well-known concept
designed by Sun Microsystems for distributed communication. Instead of accessing
remote services by sending and receiving messages, a client invokes services by mak-
ing a procedure call that looks similar to a local invocation, thus hiding the details of
network communication. Performing a remote procedure call works as follows: 1) the
server process registers the service and waits for a call; 2) the client process sends an
RPC message including procedure parameters to the server process. The client then
usually blocks while waiting for a response; 3) the server process checks authentication,
runs the procedure, and returns results to the client. RPC can be used in a synchronous
or asynchronous manner, blocking or non-blocking. The reliability mechanisms of com-
peting RPC solutions vary from the at-least-once of the original RPC implementation,
to the at-most-once semantics capable of filtering duplicate requests occurring after
timeouts. This latter semantics should not be confused with the best-effort semantics
(also known as “maybe”), where requests are not re-invoked.

RMI

Java RMI (Remote Method Invocation) (Downing, 1998) is the name of the Java SE
RPC implementation. The expression “Remote Method Invocation” is also used for
RPC implementations in object-oriented languages. Regarding reliability, Java RMI
provides at-most-once semantics: if a method returns normally, the client can be sure

44

State of the Art on Reliable Distributed Communication

that it was executed exactly once, otherwise when some network exception occurs, the
caller cannot determine whether the remote method executed, therefore can not risk
second invocation of the same request.

CORBA

CORBA (Vaysburd and Yajnik, 1999) follows the same paradigm as Remote Procedure
Calls (RPC). As in Java RMI, CORBA also provides the at-most-once semantics. How-
ever, unlike Java RMI, CORBA also provides the maybe option for one-way interaction,
with evident performance gains.

DCOM

DCOM (Distributed Component Object Model) (Brown and Kindel, 1998) is the dis-
tributed extension of COM (Component Object Model, a component based develop-
ment model for Windows) that builds an object remote procedure call (ORPC) layer
on top of DCE RPC to support remote objects. Reliability semantics are similar to
RMI and CORBA.

.NET Remoting

.NET Remoting (McLean et al., 2002) is a technology to create distributed objects
in Microsoft .NET. It provides a flexible and customizable architecture as it allows,
for example, to replace one communication protocol with another, or one serialization
format with another without recompiling the client or the server. .NET Remoting
architecture seems to be much easier to use and extend than DCOM, but its reliability
related features are weaker.

FT-CORBA

Fault-Tolerant CORBA uses transparent entity redundancy to provide a higher level
of reliability than CORBA. This is achieved via replication of CORBA objects, where
each replicated object is implemented by a set of distinct CORBA objects called an
object group. The members of an object group are referenced using an Interoperable

45

Chapter 2

Object Group Reference (Natarajan et al., 2000). Although FT-CORBA decreases
the likelihood of failure, the best reliability semantics it can offer is at-most-once (as
CORBA).

FTRMI

Fault-tolerant Transparent Remote Method Invocation (Reis and Miranda, 2012) is a
middleware that enhances the Java implementation of the Remote Method Invocation
(JRMI) with strong replica consistency to increase reliability. FTRMI extends JRMI
with an additional communication layer that multicasts every request to all server’s
replicas, simplifying the development of fault-tolerant services. As in the previous
cases, the reliability semantics provided by FTRMI is at-most-once.

2.2.4 Conversation-Based Solutions

In this section, we review solutions that provide reliability guarantees for distributed
interactions that go beyond a simple request and response. Table 2.4 summarizes the
features of the conversation-oriented solutions.

Table 2.4: Conversation-based reliable solutions and their characteristics

Solutions Reliability	Mechanisms Fault	Tolerance Reliability	Semantics
EOS2 Logging Endpoint	crashes Exactly-once	

Phoenix Logging	and	checkpointing Endpoint	crashes Exactly-once	
iSAGA Logging Client	crashes At-least-once	

EOS2

Exactly-Once e-Service middleware (Shegalov and Weikum, 2006) uses a logging mecha-
nism on both client and server sides (for web-based applications), to ensure exactly-once
execution of requests, even in the presence of crashes. EOS2 masks transient crashes,
such as OS crashes, component crashes, and message losses. It is not clear how this
solution deals with connection crashes. It may deadlock when both parties are alive,
but the TCP connection has crashed (Shegalov and Weikum, 2006).

46

State of the Art on Reliable Distributed Communication

Phoenix

Phoenix deals with system crashes, by logging component interactions and checkpoint-
ing the state. The argument is that Phoenix assumes a window of opportunity for the
client failure. Exactly-once delivery is achieved only if the client does not fail during
this small window. Phoenix does not deal with connection crashes due to network
crashes (Barga et al., 2003).

iSAGA

iSAGA saves actions, carried out by users in web sites, in stable storage to be able
to recover its state after crashes. When the client recovers from crashes, there are no
guarantees regarding execution semantics on the server side, since the recovered state
might, or might not, be the latest state presented to the user (Dutta et al., 2001).

2.2.5 Design Solutions

The idea of using design patterns for software development started more than two
decades ago. As said: “Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the solution to that problem,
in such a way that you can use this solution a million times over, without ever doing
it the same way twice” (Alexander et al., 1977). Although this phrase is talking about
the patterns in buildings, it is totally valid in the context of software engineering and
object-oriented programming.

In general, a pattern includes four essential elements (Gamma et al., 1994): 1) A name,
which describes a design problem and its solution in a word or two; 2) A problem, which
describes when to apply the pattern; 3) A Solution, which describes the elements that
make up the design, their relationships, responsibilities, and collaborations; and 4)
Consequences, which describe the results and trade-offs of applying the pattern.

Among a huge number of design patterns that we can find in the literature, the ones
that address reliability issues in distributed communication are missing. In fact, in
the last decade the researchers have assisted to organize distributed interactions into a
set of design patterns, first for Enterprise Application Integration (Hohpe and Woolf,

47

Chapter 2

2003), and more recently towards SOAP/WSDL and RESTful web services (Daigneau,
2011). This latter book collects multiple known types of high-level interaction between
client and server, e.g., request-acknowledge-polling or request-acknowledge-callback,
respectively for client polling or server callbacks.

There are several works in the literature addressing some aspects of dependability
such as safety (Gawand et al., 2011), security (Laverdiere et al., 2006; Schumacher
et al., 2013; Yoshioka et al., 2008), and fault-tolerance (Hanmer, 2013). There are also
several works related to scheduling algorithms in real-time systems (Douglass, 2003).
However, none of these design patterns addresses the reliability issue in a distributed
communication. In this section, we list and explain several design patterns that can
be used in design and development of distributed applications, although reliability is
not their main concern. We will use some of these design patterns in building and
presenting our own solutions for reliability.

Reactor Design Pattern

Reactor Design Pattern (Schmidt, 1995) is used for handling concurrent events that
may arrive on several inputs. This design pattern, as shown in Figure 2.1, includes two
components: Reactor and Event Handler. The Event Handler implements actions to
process and handle an incoming event. It provides an interface to be used as callback
method (handle_event()) for delivery of events. The Reactor defines an interface for
registration, and deregistration of the Event Handlers. The Reactor continuously
checks the arrival of new events and deliver them to an appropriate Event Handler.

+ handle_event(Object event)
Event Handler

+ register_handler(EventHandler h)
+ deregister_handler(EventHandler h)
+ diapatch()

+ handlers : collection
Reactor

public dispatch() {
 while (handlers is not empty){
 for h in handlers

 if (there is event e for h)
 h.handle_event(e)

 }
}

Concrete
Event Handler A

Concrete
Event Handler B

1 *<<demuxes>>

Figure 2.1: Reactor design pattern

48

State of the Art on Reliable Distributed Communication

Regarding distributed communication, Reactor design pattern can be used to imple-
ment concurrent connections on both client and server side, using a dispatcher that
delivers incoming data to appropriate service handlers.

Observer Design Pattern

Observer Design Pattern (Hohpe and Woolf, 2004) allows an object, named Subject,
to maintain a list of its dependents, named Observers, to notify them of any state
changes, by calling their method notify(). Figure 2.2 presents this design pattern. The
main difference between the Reactor and Observer design patterns is that the Reactor
uses a dispatcher to demultiplex events to a correct event handler, while in the Observer
design pattern, notifications are pushed to all registered observers when an event occurs.

+ notify()
Observer

+ register_observer(Observer o)
+ deregister_observer(Observer o)
+ notify_observers()

- observers : collection
Subject

public notify_observers() {
 for observer in observers

observer.notify()
}

Concrete Observer A Concrete Observer B

1* <<notifies>>

Figure 2.2: Observer design pattern

Acceptor-Connector Design Pattern

Acceptor-Connector Design Pattern (Schmidt, 1996) tries to simplify the design and im-
plementation of connection-based applications, by decoupling event dispatching process
from connection setup and service handling. It is worth mentioning that the Reactor
design pattern is used to implement the event dispatching process.

This design pattern (refer to Figure 2.3) includes an Acceptor, a Connector,
a Transport Handle, a Passive Transport Handle, a Service Handler, and a
Dispatcher (i.e., these two later components belong to the Reactor design pattern). In
the Acceptor-Connector Design Pattern, the client asks the Connector to send a con-
nection request to the server by initialization of a Transport handle. In contrast, the
server uses a Passive Transport Handle to receive the connection requests. When

49

Chapter 2

a connection request is accepted by the server, a new Transport Handle (or a new
connection) is created in both client and server. In the server, the new connection is
given to the Acceptor to be handled properly. Both Connector and Acceptor initialize
Service Handlers by passing the transport handle created previously, which in turn
register the handle and their references into the Dispatcher.

The actual operations of reading and writing data are in charge of the Transport

Handle, as the actual operation of receiving the connection requests is in charge of
the Passive Transport Handler. But, since reading from the Transport Handle and
receiving connection request by the Passive Transport Handle might block the ap-
plication process, the Dispatcher takes the responsibility of receiving new events (ei-
ther application data or connection request) and multiplexes them to the appropriate
handles (Service Handler, Acceptor, and Connector). In fact, it provides a single
blocking point for the client or server application.

+ connect()
- complete()
+ handle_event()

Connector

+ handle_event()
Acceptor

Service Handler A Service Handler B

<<notifies>>

<<notifies>>
<<notifies>>

<<activates>> <<activates>>

<<creates>>

<<uses>>

*
*

*

*

*

1 1

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport Handle

+ activate(TransportHandle h)
+ handle_event()

Service Handler

1

*

1

1

1

<<uses>>

1

*

*

1

*

1

1

1
Application Layer

Transport Layer

+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

1

<<owns>>
<<owns>>

<<owns>>

<<uses>>

*

1+ register_handler(EventHandler h)
+ deregister_handler(EventHandler h)
+ diapatch()

+ handlers : collection
Handler Set

Figure 2.3: Acceptor-Connector design pattern

Despite being extremely common, this design pattern has a number of drawbacks from
the scalability points of view. However, many applications nowadays are not low-
scale, and need to handle a large number of concurrent connections. For example,
in a multi-tier system, the front-end communication servers receive requests (maybe
arriving simultaneously from hundreds or thousands of remote clients) and forward
them for processing to back-end application servers. These, in turn, may forward some

50

State of the Art on Reliable Distributed Communication

requests to the back-end database (or file) servers. To take advantage of this decoupled
multi-tier design, receiving requests could be done simultaneously while processing
other requests. Moreover, the requests received from different connections could also
be handled concurrently.

Leader-Followers Design Pattern

A common strategy to support concurrency is to use multiple threads, assigning one
thread to each incoming connection. The shortcoming of this option emerges when the
number of connections is very high, thus requiring a large number of threads and a
considerable consumption of resources. To limit the number of threads, one may use
a thread set. The idea is to assign threads from the limited set to new connections.
When the connection is closed, the thread returns to the set and waits for another con-
nection assignment. The association between threads and connections in this solution
is bounded. With this form of association, new connections may have to stay on hold
until older connections finish, because there is no free thread in the set to be assigned.
Furthermore, some of the threads that are already dedicated, may not have events to
process for some periods of time, thus contributing to degrade the performance of the
server.

<<demuxes>>

<<uses>>
Handle

+ handle_event()
Event Handler

*

1

1

+ join()
+ promote_new_leader()

- size
Thread Set

<<uses>>

1*
1

1

1

+ register_handler(EventHandler h)
+ deregister_handler(EventHandler h)
+ diapatch()

+ handlers : collection
Handler Set

Figure 2.4: Leader-Followers design pattern

The Leader-Followers Design Pattern (Schmidt et al., 2000) does not present these
disadvantages. It is used to support high concurrency in handling independent events.
Refer to Figure 2.4. In this pattern, the threads of the Thread Set are assigned to

51

Chapter 2

the Event handlers only when an event occurs on their Handle. When the event is
processed, the thread rejoins the set.

2.3 Applications and Reliability Requirements

The number and diversity of distributed applications requiring reliable communication
is quite large. In this section, we present a set of nine well-known groups of applications
with distinctive communication features. We organize applications according to the
following features (please refer to Table 2.5): objectives (a), criticality (b), timeliness
requirements (c), interaction patterns (d), reliability target (e), reliability requirements
(f), and solutions (g). We selected criteria (a), (b), and (c) because they are related
to the reliability requirements of the applications used in criterion (f), whereas criteria
(d), (e), and (f) were selected due to their outstanding importance for selecting the
right protocol or middleware solution for the applications. Finally, (g) was selected to
show, under the light of the previous criteria, real protocols or middleware supporting
the reliable communication needs of these applications. In the next paragraphs, we go
through these criteria and present them in detail.

Table 2.5: Applications and their objectives, characteristics and reliability require-
ments

(a)																												
Objectives

(b)																	
Criticality

(c)	
Timeliness

1 Media	streaming	(e.g.,	Youtube,	Netflix,	
Amazon	Instant	Video)

Resource-Centric Non-critical Soft One-way Stream
Best-effort	(ordered	and	

correct	delivery	in	real	implem-
entations),	on-time	delivery

HTTP	over	TCP,	UDP,	
or	RTP	

2
Online	multi-player	games,	Online	shared	
documents	(e.g.,	Google	Documents),	Chat	

(e.g.,	Gtalk,	WhatsApp)
User-Centric Non-critical Soft One-way Message

Ordered,	correct,	and	on-time	
delivery

HTTP	over	TCP

3 File	Sharing	(e.g.,	Dropbox,	Google	Drive) User-Centric Non-critical None One-way Stream Ordered	and	correct	delivery
HTTP,	FTP,	NFS	over	

TCP

4 Email	(e.g.,	Yahoo	Mail,	Gmail),	Usenet	
Newsgroups

User-Centric Non-critical None One-way Message
Ordered,	correct	and	exactly-

once	delivery

HTTP,	SMTP,	IMAP,	
POP3	over	TCP,	
NNTP	over	TCP

5

Self-Adaptive	Systems	(e.g.,	rainbow),	System	
of	Systems	(e.g.,		space	exploration	SOS),	Air	

traffic	control	system,	Aircraft	control	
systems,	Industrial	control	systems	(e.g.,	DCSs)

System-Centric
	Business-

Critical,	Safety-
Critical

Hard One-way Message
Ordered,	correct,	on-time	
delivery,	exactly-once	

execution	(or	at-least-once)
TCP

6 Publish/Subscribe	systems	(e.g.,	News	feeds) Resource-Centric
Business-
critical

None	or	
Soft

One-way
Message	or	
Object

Ordered,	correct,	on-time,	and	
at-least-once	delivery

JMS,	AMQP,	MSMQ,	
WebSphere	MQ,	

Oracle	AQ	over	TCP

7

Static	information	systems	(e.g.,	dictionary,	
encyclopedia)	Dynamic	information	systems	
(e.g.,	stock	market	website),	File	Server,	
Remote	services	(e.g.,	Google,	Wolfram	

search),	News	Server

Resource-Centric Non-critical None Request-Response Message Ordered	and	corret	delivery HTTP,	NFS,	FTP

8 Transactional	services	(e.g.,	online	banking,	
online	shopping,	online	auctions)	

Service-Centric
Business-
critical

None Request-Response Conversation
Ordered	and	correct	delivery,	
exactly-once	or	at-most-once	

execution
HTTP	over	TCP

9 Peer-to-peer	systems		(e.g.,	bittorrent,	 Resource-Centric Non-critical None Request-Response Stream Ordered	and	correct	delivery TCP

(g)
Protocols	&	
Middleware

ID
Description (d)

Interaction	
Patterns

(e)
Reliability	
Targets

(f)
Reliability	RequirementsApplications	

52

State of the Art on Reliable Distributed Communication

(a) Objectives: This criterion distinguishes the applications according to their main
goals. Inspired by the classification in (Tanenbaum and Steen, 2006), we characterize
distributed applications as user-centric; resource-centric; system-centric; and service-
centric:

• User-centric: The application’s goals are set on the user. In general, this type of
application serves the purpose of connecting users by allowing them to collaborate
and exchange different types of information (e.g., text, audio, or video). Examples
include social networks and messaging applications (e.g., Facebook and Skype),
and on-line multilayer games. Applications of groups 2, 3, and 4 belong to this
category.

• Resource-centric: In this case, the main goal of the application is set on resources
(Tanenbaum and Steen, 2006). Resources can be tangible, such as printers, pro-
cessors, storage facilities, or intangible, such as data, news, musics, movies, and
pictures. Applications used for media streaming, such as Youtube and publish/-
subscribe applications, e.g., in the form of news feeds are resource-centric exam-
ples. In Table 2.5, applications in groups 1,6,7, and 9 belong to this category.

• System-centric: Refers to distributed applications whose focus is set on one or
more systems. Group 5 belongs to this category and examples include software to
control air flight navigation and distributed control systems (Galdun et al., 2008;
Tindell and Burns, 1994); self-adaptive systems, which self-manage to adapt to
changing runtime conditions (Garlan et al., 2004; Huebscher and McCann, 2008);
systems that use other systems as in systems-of-systems, whose goal is to use the
composition of simpler systems, to create a more complex one that delivers more
functionality (Maier, 1996).

• Service-centric: In this category, we can find applications whose goals are centered
on delivering service. Usually these applications enable companies and organi-
zations to bring their services on-line (Papazoglou, 2003) and allow users to pay
bills, transfer money, and buy or sell all kinds of goods remotely. Although they
might use resources or other systems in the process, they are highly focused on the
service. Thus, typical examples include on-line financial services and e-banking.
Applications in group 8 belong to this category.

53

Chapter 2

We can easily see that some applications can have more than a single goal. Neverthe-
less, it is usually fairly easy to understand which goal better expresses the purpose of
the application. As an example, although Dropbox clearly touches the resource-centric
goal, as it can store files for public access, its main orientation is towards sharing user
files.

(b) Criticality: This criterion essentially describes how important the applications
and their operations are. Some applications are non-critical and a weak reliability
semantics should suffice. On the other hand, business or safety-critical applications
require stronger reliability guarantees (Rushby, 1994):

• Non-critical: Some applications do not require strong reliability semantics as they
do not support critical processes (e.g., a music streaming service). Thus, complex
reliability mechanisms are not required, as the reliability guarantees are minimal
or none.

• Business-critical: These applications support enterprises and their failure could
result in loss of revenue and reputation. In these applications, message delivery
and processing must be guaranteed (Abie et al., 2009; Jones et al., 2000). Groups
5, 6 and 8 refer to business-critical applications.

• Safety-critical: In this type of application, a failure could result in loss of lives, sig-
nificant property damage, or damage to the environment (Knight, 2002). Group
5 refers to safety-critical applications.

(c) Timeliness: This criterion focuses on the non-functional attribute of timeliness. In
the context of our thesis, it indicates how important time is in a distributed application.
In an application with timeliness requirements, the correctness of the service depends
not only on the correct computation results (e.g., the correct content of a response),
but also on the time at which the results are delivered (Lann, 1997; Stankovic and
Ramamritham, 1989). Regarding this objective, we can find the following three cases
of timeliness requirements:

• None: Applications with no timeliness requirements essentially refer to the case
where messages can arrive at any time. This does not influence the correctness

54

State of the Art on Reliable Distributed Communication

of the service being delivered (Ferrari, 1990). Mail delivery in group 4 imposes
no time bounds, or at best, very relaxed time bounds.

• Soft: This reflects the case where a message must arrive before a given time
limit. In this case, this time limit might be violated up to a given maximum
extent, without impacting the correctness of the service being delivered. Thus,
in a soft real-time system, a failure does not necessarily occur if the system is
unable to meet the given time limit (provided that the message arrives within
some additional time constraint, often bounded by then needs of human interac-
tion). Multimedia streaming and some on-line interactions between users (groups
1 and 2) have these “soft” timeliness requirements. Group 6 of publish/subscribe
systems may also expect messages to arrive within some time frame (e.g., to feed
sports results) (Carvalho et al., 2005).

• Hard: In this case, messages must arrive within a time limit that is strict and
cannot be violated in any way. The violation of this time limit impacts the
correctness of the service being delivered. In hard real-time applications, when
a message does not arrive in time, the interaction fails (or the component or
even the whole system) (Northcutt and Kuerner, 1992). Group 5 is the only one
requiring hard timeliness constraints (Kopetz et al., 1989).

(d) Interaction Patterns: This criterion corresponds to the messaging pattern
described in Section 2.1.1 (i.e., one-way or request-response). The purpose of this
criterion is to capture the kind of interaction perceived by the user, regardless
of the concrete technology that supports the interaction and the fact that such
technology will most certainly use some form of request-response. As shown in the
table, groups 1 to 6 (e.g., multimedia streaming, multi-player games) inherently
require a one-way messaging paradigm to achieve their objectives, despite of their use
of request-response protocols, such as HTTP. The remaining applications (groups 7

to 9) necessarily require the request-response messaging pattern (e.g., online shopping).

(e) Reliability Targets: As previously discussed in Section 2.1.4, the reliability
target of applications can be stream, message, object, or conversation. Applications of
groups 1, 3, and 9, which usually deal with multimedia data, target streams of bytes
for reliability. Group 8, which deals with online transactions and business operations,

55

Chapter 2

targets whole conversations for reliability. The remaining applications are message-
oriented, thus targeting messages for reliability. We may also find some applications
that use object-based communication, e.g., in publish/subscribe systems (Pietzuch
and Bacon, 2002), but as explained in Section 2.1, from a reliable communication
perspective, they can usually be considered as a specific type of message-based or
conversation-based applications.

(f) Reliability Requirements: This criterion refers to the requirements of the ap-
plications in what concerns data delivery and execution (please refer to Section 2.1.3
for details). The best-effort requirement, which means that it is acceptable for data
to be lost, delayed, or delivered out of order, fits the needs of applications in group 1.
Although these applications can be implemented with an unreliable lightweight proto-
col as UDP, in practice they tend to use HTTP and TCP, thus ensuring ordered and
correct delivery.

Ordered and correct delivery, which respectively refer to the delivery of data in the same
order and with the same content as it was sent, are a need of the reliable applications
presented in Table 2.5. TCP sockets could ensure these properties very easily, but
once we consider connection and endpoint crashes, implementations that deliver these
semantics become much more involved. On-time delivery of data is required for the
applications that have timeliness constraints (either soft or hard), which is the case of
groups 1, 2, 5, and 6.

Finally, some applications and services require stronger guarantees. We can find
essentially two distinct cases. The first case includes applications belonging to groups
5, 6, and 8, which simply need to ensure the execution of invocations. The second case
includes applications in groups 5 and 8 involving non-idempotent operations, which
need to ensure that invocations are not duplicated and that every peer knows the
outcome (e.g., the success or failure of some transaction). The former case requires
exactly-once or at-least-once semantics and the later case requires exactly-once or
at-most-once semantics.

(g) Protocols and Middleware: This identifies which protocols or middleware are
being used, or at least are typically used, by the applications identified. The media

56

State of the Art on Reliable Distributed Communication

streaming applications (group 1) usually resort to HTTP as the application layer pro-
tocol and use TCP, RTP, or UDP underneath that respectively offer guaranteed and
ordered delivery; not guaranteed but ordered and having timing information delivery;
and best-effort delivery. The applications that belong to group 2 (e.g., multi-players
games) typically use HTTP over TCP, although their timeliness requirement cannot be
met using these protocols.

Applications of group 3 (e.g., file sharing), in addition to HTTP, use File Transfer
Protocol (FTP) (Postel and Reynolds, 1985) or Network File System (NFS) (Nowicki,
1989) in the application layer. FTP was widely popular in a recent past and is still
used today for file transfer over Internet. It uses TCP underneath, to guarantee reliable
delivery of messages and data through its message-based control channel and stream-
based data channel. Indeed, there is no provision in FTP for detecting lost data (it
relies on TCP for this purpose), but a restart procedure is provided, to help develop-
ers handling network and endpoint crashes. To use the restart procedure, it requires
the data sender to insert a special marker in the data stream with some information
(e.g., bit-count, or a record-count). The receiver of data then marks the corresponding
position of this marker, and returns this information back to the sender. Should a
failure occur, the sender can restart the data transfer by identifying the marker point
(Postel and Reynolds, 1985). NFS is another file transfer protocol that provides trans-
parent remote access to shared files. Regarding reliability, the initial versions of NFS
used stateless servers, thus having a very clear advantage when recovering from server
crashes. It also tried to make operations idempotent (in the current version of the
protocol, some operations are not idempotent). Thus when a client did not receive a
response, it could safely resend its request until it got a server response. The client
does not even needed to know whether the server had crashed, or the network went
down (Nowicki, 1989).

Applications that belong to group 4 (e.g., email) use the Simple Mail Transfer Protocol
(SMTP) (Postel, 1982), Internet Message Access Protocol (IMAP) (Crispin, 2003),
Post Office Protocol version 3 (POP3) (Myers and Rose, 1996), and Network News
Transfer Protocol (NNTP) (Feather, 2006), in addition to HTTP. These protocols assign
identifiers to each message, thus enabling message confirmation and retransmission.
NNTP, which is mainly used in the usenet newsgroups, is an application layer protocol
that serves to exchange news articles between news servers and for users to read and
post news articles. NNTP does not guarantee any reliability semantics by itself, but

57

Chapter 2

provides facilities to implement some reliability mechanisms above it (e.g., assigning
unique message-id to each article). NNTP goes into details on how to implement servers
that ensure exactly-once delivery, in the presence of endpoint and network crashes.

Applications of group 5 normally use TCP for reliable communication, often implement-
ing custom solutions on top of it, according to their requirements. Publish-subscribe
applications (group 6) usually take advantage of several popular solutions, such as JMS
and MSMQ, to implement the interaction pattern they need. Applications in group
7, typically use HTTP, FTP and NFS, all running over TCP. Applications of group 8

(e.g., online banking) use HTTP over TCP, despite being very different in specifica-
tions and requirements. Finally, peer-to-peer applications (group 9) use TCP for data
transmission.

From the analysis of the last column of Table 2.5, it is evident that most of the solutions
used, on their own, do not match the reliability requirements of the previous column, a
fact that we regard as remarkable. A clear example are the typical implementations of
on-line banking and shopping, which use HTTP over TCP, thus being far from offering
the required semantics. By opting for these solutions developers must add custom-made
mechanisms, to deliver the proper reliability semantics.

The generalized preference of developers for mature and popular technologies, rather
than middleware that was designed to offer superior reliability guarantees, is quite clear.
TCP and HTTP are almost ubiquitous, but offer little guarantees. On the other hand,
other protocols, such as FTP, NNTP, and SMTP offer additional levels of reliability
but are not generic and address communication issues for very specific applications
(respectively for file servers, news servers, and email servers).

2.4 Discussion

We initiated the chapter by presenting the main concepts involved in distributed com-
munication in Section 2.1, where we synthesized and discussed key aspects of reliable
distributed communication, such as the main type of interactions, semantics, types
of failures, reliability targets, and mechanisms. We then identified existing solutions
for reliable communication and mapped them into the concepts previously discussed.
Finally, we applied this knowledge to categorize real cases of applications that need

58

State of the Art on Reliable Distributed Communication

reliable communication, in which we observed a large diversity of scenarios and a gen-
eralized mismatch between application requirements and what current reliable commu-
nication solutions can offer.

In this section, we highlight and discuss the main findings that resulted from this sur-
vey work. We also identify, based on the analysis and discussion, what we believe is
currently the main open research line for us to pursue in the field of reliable distributed
communication. Regarding the reliable communication solutions analyzed in the chap-
ter (please refer to Tables 2.1, 2.2, 2.3, and 2.4), we identified the following relevant
aspects:

• There is currently a large variety of options to achieve reliable communication,
which target different reliability cases, but there is an even greater number of real
solutions, in many cases with overlapping goals. The differences in such cases are,
in practice, reduced to different designs or implementations.

• Selecting the right reliable communication solution is not an easy task, not only
considering the variety of existent solutions, but also considering the different
requirements, which are not always trivial to identify.

• Regarding the acceptance of solutions, we observed that only a very small number
did actually succeed to gain wide acceptance among developers. Furthermore,
some of the protocols were tailor made for specific applications (SMTP or NNTP)
and cannot be easily adopted elsewhere.

• Considering stream-oriented solutions, TCP is the only widely used solution.
This is quite curious as, in fact, it is the simplest and the least reliable of all
solutions discussed in this chapter. TCP has implementations for a huge number
of platforms, its API is very simple and well known, and it is quite mature. This
probably makes its disadvantages relatively less important.

• TCP has significant limitations when the goal is to provide reliable communi-
cation (e.g., TCP does not possess mechanisms to handle connection crashes).
Developers many times assume that the simple use of TCP brings in fully reliable
communication, which is not the case (Ekwall et al., 2002).

• Among message-oriented solutions, only JMS and MSMQ became quite popular.
These solutions are not only popular, but also quite rich in terms of reliability

59

Chapter 2

features. However, they are only suitable to be used in asynchronous communica-
tion. The remaining solutions in this category, which can be suitable to be used
in synchronous communication, did not gain any special acceptance until now.

• RPC and RMI are quite well-known solutions, but have poor reliability mecha-
nisms. Their invocation model (i.e., blocking and non-pipelined invocations of
remote objects) does not fit the requirements of many real applications.

• None of the solutions listed in Table 2.4 gained acceptance among developers for
implementing conversation-based applications, despite being quite powerful from
a reliability point of view.

Taking as a reference the diversity of scenarios, where reliable communication is re-
quired, even within a single application group (please refer to Table 2.5 in Section 2.3),
it is easy to observe that most of the solutions available do not fit the applications’ re-
quirements very easily. With some exceptions, such as publish/subscribe applications,
which have excellent supporting middleware, most of the cases are quite complex to
implement. We identified the following relevant aspects during this analysis:

• There is a large variety of applications that require reliable communication, but
at the same time have quite distinct objectives and require different interaction
patterns and reliability features.

• Many distributed applications require one-way messaging, but due to the lack of
solutions that support reliable one-way messaging, in many cases, applications
use request-response protocols (e.g., HTTP) to achieve their goals.

• Many of the applications analyzed require reliable message transmission. Among
the rest, it is easier to find applications that require reliable stream-based commu-
nication than reliable conversation-based communication. The strongest reliabil-
ity semantics (i.e., exactly-once) is required for only a few groups of applications
that are either business-critical or safety-critical, and are typically associated with
reliable message or conversation.

• Despite being very different in specifications and requirements, most of the ap-
plications analyzed resort to the HTTP and TCP protocols for reliable commu-
nication. Although HTTP and TCP do not provide many reliability guarantees,

60

State of the Art on Reliable Distributed Communication

frequently they are selected and used in conjunction with custom mechanisms to
meet the applications’ requirements. This shows the importance of maturity and
popularity in the process of selecting a solution for achieving reliable communi-
cation.

• Due to the lack of matching reliability solutions for specific types of applications,
it is usually up to developers to come up with their own solutions. This is ob-
viously an error-prone process, which can actually impair reliability, particularly
for business and safety critical applications that require very strong reliability
semantics (i.e., exactly-once).

The above analysis exposes a clear mismatch between the features offered by communi-
cation solutions and the features needed by applications, thus declaring that standards
and implementations are lagging behind real application requirements. This strongly
suggests that there is open space for further research in the field of reliable distributed
communication.

Most of the solutions in the long list discussed in Section 2.2 did not gain enough accep-
tance among developers to be used in real applications, mainly due to their complexity
(e.g., HotSwap, HTTPR, and EOS2) or to the fact that they are too specific (e.g.,
CoRAL, .NET Remoting, and Phoenix). We argue that a different approach to address
reliability issues in distributed systems is needed, rather than developing new libraries.
Research in design-based solutions (Gamma et al., 1994) can definitely help to
reduce the growing number of custom solutions that try to deliver reliable communica-
tion by directing developers to design patterns. The need for reliable communication
is shared among many distributed applications, independently of the platform or the
programming language. Using design patterns to guide such implementations is an
excellent solution to handle common cases, such as connection crashes (Hanmer, 2013;
Hohpe and Woolf, 2003).

2.5 Conclusion

Achieving reliable distributed communication can be a difficult task. This is especially
true if we consider the variety of requirements needed by applications and the lack of
proper solutions that match those requirements. The applications needs greatly vary in

61

Chapter 2

many dimensions, such as the semantics needed (e.g., at-most-once, ordered delivery),
the types of failures to handle, or what is the target of the reliable communication
(e.g., a byte stream, or an entire message). The available reliability mechanisms (e.g.,
retransmission, filtering) are also diverse and many times their selection is not trivial
(i.e., the applications requirements can be complex and difficult to map into specific
mechanisms).

Research and development efforts have produced a great number of solutions for reliable
communication. Unfortunately, the number of solutions does not considerably simplify
the task for developers, which understandably, prefer well-known, mature, although
less reliable solutions. In fact, only a very small number of the solutions for reliable
distributed communication did actually succeed and became popular. This was the
case of JMS, MSMQ and just a few more. These solutions are both popular and rich
in reliability features.

We analyzed a wide variety of applications requiring a large number of different com-
munication and reliability features. The use of less reliable (but mature) solutions is
evident and widespread. This exposes a mismatch between the features offered by com-
munication frameworks and the features needed, thus suggesting that standards and
implementations are lagging behind real applications.

The evidence that solutions do not match the needs of applications suggests that further
research efforts are required. We believe, based on the state of the art, that such
efforts should occur at a different scale (e.g., design). The complex scenarios involving
reliable communication also suggest that developers need better tools and techniques
for understanding applications needs in terms of reliability. Only with such knowledge,
it is possible to make informed decisions, when the goal is to select a proper solution
for an application. Stemming from the mismatch between the applications needs and
the reliability solutions currently being used in real scenarios, we believe that there is
also a strong need, not only for techniques that allow developers to assess and compare
different solutions, but also for better understanding applications requirements in terms
of reliable communication.

Despite the large knowledge and technical base in reliable distributed communication,
there is a huge open space for research in this area. The research line identified,

62

State of the Art on Reliable Distributed Communication

regarding design-based solutions, involve significant challenges and open research op-
portunities. Based on the issues discussed in this chapter, we expect to see significant
efforts in this area in the near future.

63

Chapter 3

A Reliable Stream-Based Solution

for Distributed Interactions

The Transmission Control Protocol (TCP) plays a major role in building reliable com-
munication in distributed applications. Despite offering reliability against dropped and
reordered packets, the widely adopted TCP provides no recovery options for connection
crashes that may occur due to, for example, long-term network outages.

Technically, a TCP connection fails when the operating system aborts a connection,
for one of the following reasons: 1) when data in the send buffer is not acknowledged
after a given number of retransmissions; 2) when the application waits for reading from
the receive buffer for a period of time that exceeds the timeout defined for the read
operations; 3) when an underlying network failure is reported by the network layer; 4)
when the IP address changes; and 5) when the application layer requests to abort the
connection implicitly (Zandy and Miller, 2002).

When a TCP connection fails, resuming communication between peers is quite chal-
lenging, even when both endpoints are still running, because the application has no
means to determine which data did or did not reach the other endpoint, thus making
recovery impossible if no additional mechanism is used. When the connection fails, de-
velopers must rollback the application to some coherent state on their own, many times
using custom error-prone solutions. Overcoming this limitation of TCP is, therefore, a
challenging and deeply investigated problem. However, none of the existing solutions
has succeeded to gain wide acceptance, because, in general, most of them impact TCP’s

65

Chapter 3

simplicity, performance or ubiquity (Bicakci and Kunz, 2012; Burton-Krahn, 2002; Jin
et al., 2003; Marwah et al., 2003; Shenoy et al., 2000; Zandy and Miller, 2002). The
rest of the solutions are often not mature or require specific computational platforms
(Ekwall et al., 2002; Liao et al., 2008).

In this chapter, we propose a solution, named Connection Handler Design Pattern,
to overcome TCP’s shortcoming in handling connection crashes. This design pattern
allows developers to implement distributed applications that are able to tolerate con-
nection crashes without loosing any data, independently of their platform and program-
ming language, alleviating developers from creating custom error-prone solutions for a
recurring problem. Then, based on the Connection Handler Design Pattern, we present
a design solution to stream-based applications (e.g., video streaming), requiring reli-
able communication for transmission of byte streams. Finally, we improve our design
by adding a combination of the Acceptor-Connector and Leader-Followers patterns, in
order to build highly scalable reliable applications.

The remainder of this chapter is organized as follows. Section 3.1 presents the general
design of a connection-based application. Section 3.2 presents the proposed solution
for recovery from connection crashes. Section 3.3 presents our reliable solution to the
stream-based connection-oriented applications. Section 3.4 presents a highly concur-
rent design solution to the reliable connection-based applications. Finally, Section 3.5
concludes this chapter.

3.1 Basic Design for Connection-Based Applications

In a connection-based communication, two peers establish a connection or a session
before starting to exchange any data. This connection is created using a transport
handle like a TCP Socket. One peer initiates the connection by sending a connection
request to the other peer. The initializer of a connection is called “client”, and the peer
that accepts the connection request is called “server”. Figure 3.1 presents the design of a
connection-based application. The remainder of this section describes the components
of this design and collaboration between them in detail.

66

A Reliable Stream-Based Solution for Distributed Interactions

Service Handler
A

Service Handler
B

Application Layer

+ activate(TransportHandle h)
Service Handler

+ read(Object data)
+ write(Object data)
+ close()

Transport Handle
Transport Layer

(or Session Layer)

<<owns>> 1 <<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

*

<<activates>>

1

*

<<creates>>
1*

+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

public static void main(String[] args){
 PassiveTransportHandle p_h = new
 PassiveTransportHandle(local_address)
 while (p_h is not closed)
 TransportHandle h = p_h.accpet()
 ServiceHandlerB sh = new ServiceHandlerB()
 sh.activate(h)
 (new Thread(sh)).start()
 }
}

+ main(String[] args) : void
Client

<<creates>> *

1

<<activates>>

1

*

public static void main(String[] args){
 TransportHandle h = new
 TransportHandle(remote_address)
 ServiceHandlerA sh = new ServiceHandlerA()
 sh.activate(h)
}

Figure 3.1: Basic design of a connection-based application

3.1.1 Components

As shown in Figure 3.1, each distributed connection-based application includes the
following components:

• Transport Handle provides an interface to the applications to establish a con-
nection (or session), write data, read data, and close the connection. This com-
ponent belongs to the transport or session layer. A very well known example of
a transport handle is a TCP Socket.

• Passive Transport Handle is a passive-mode Transport Handle that is bound
to a network address (i.e., an IP address and a port number) below the application
layer. It is used by a server to receive and accept connection requests from clients.

• Service Handler implements application services and business logic, typically
playing two different roles as sender versus receiver (or as client versus server). For
this reason we have two different components which extend the Service Handler,
namely Service Handler A and Service Handler B. However, we may have

67

Chapter 3

applications whose peers play both roles (e.g., sender and receiver) in differ-
ent circumstances during a session. In addition, each Service Handler owns a
Transport Handle, such as a socket, to exchange data with its connected peer.

• Client implements the actions to start establishing a connection to the Server,
and then to initialize and activate a Service Handler.

• Server keeps checking the arrival of new connection requests and may own one
or more Passive Transport Handles. Upon arrival of a new connection request,
a new Transport Handle is created. The Server then initializes and activates
the Service Handler by passing the new transport handle.

3.1.2 Collaboration Between the Components

Transport
Handle

h=TransportHandle(remote_address)

ServiceHandler
A

h1 = accept()

Client ServiceHandler
B

write(data1)

Passive
Transport Handle

read(data1)

Server

activate(h)
sh1 = ServiceHandlerB()

activate(h1)

read(data2) write(data2)

close()

PassiveTransportHandle(local_address)

ServiceHandlerA()

(new Thread(sh1)).start()

h2 = accept()

// server continues
accepting new
connections

Figure 3.2: Collaboration between the components of the connection-based appli-
cation

As shown in Figure 3.2, the Client starts establishing a connection to the server
by creating a Transport Handle (h) and passing the server’s network address (re-
mote_address). On the other side, the Server, which already initialized a Passive

Transport Handle, waits in a loop, for a connection request, by calling the method
accept() of the passive handle. Upon reception and acceptance of the connection re-
quest on the server side, a Transport Handle is created (h1). Afterwards, the Service
Handler is initialized and activated, in both client and server (respectively sh and
sh1), by passing the transport handle (respectively h and h1) through the method acti-
vate(). Then, after the successful connection establishment phase, they both can start

68

A Reliable Stream-Based Solution for Distributed Interactions

to exchange data (data1 and data2). Pseudocode presented in Figure 3.1, is a sim-
plified description and implementation of the process explained above for connection
establishment and service initialization.

3.2 Connection Handler Design Pattern

In a connection-based application, whose design was presented in Figure 3.1, the service
handlers may suffer from connection crashes, when their transport handle is aborted
by the operating system, due to the reasons previously mentioned in the beginning
of this chapter. This is a quite challenging issue, first because the transport handle
does not tackle connection crashes, and second because the transport handle does not
provide any means for the application to access information regarding the data sent
and received.

In this section, a solution, named Connection Handler design pattern, is proposed for re-
covery from connection crashes, which can be used by any component using a transport
handle like TCP Socket. According to the basic design presented in the previous section,
this component is a service handler that owns a transport handle to communicate with a
remote peer. Figure 3.31 presents our solution, which is presented independently of the
application’s logic, programming language (or object-oriented programming languages)
and the platform on which the application is running. The Connection Handler design
pattern, its components, and the collaboration between its components are described
in this section.

3.2.1 Reliable Endpoint

Reliable Endpoint is one of the components of the Connection Handler design pattern,
which owns a transport handle (handle) to communicate and exchange data with its
remote peer. According to the design of the connection-based application (Figure 3.1),
the Reliable Endpoint can be a Service Handler, or even a middleware (i.e., might

1In all figures presented in this thesis, regarding design patterns, we use blue color for the compo-
nents that are part of our solutions (usually in the session layer) and gray color to show the existing
components (usually in the application and transport layers). We also use a light blue, to distinguish
the components that have already been explained from the components that are being explained in
that section.

69

Chapter 3

11
<<owns>>

<<uses>>1

Concrete Buffer

*

- handle : TransportHandle
- data_written: int
- data_read: int

Reliable Endpoint

+ put(Object obj)
+ get(int n): Object
+ remove(int n)
+ clear()

<<interface>>
Buffer

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler

+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

- handle : TransportHandle
- data_read : int

Event
<<uses>>

<<uses>>

Figure 3.3: Connection Handler design pattern

be used for different reasons) underneath the Service Handler. This component stores
the sent data into a buffer, to enable retransmission should a connection crash occur.

The Reliable Endpoint also keeps the track of the data sent and received (i.e., in
data_written and data_read respectively). Depending on the type of data exchanged
between the application’s peers, the value of these attributes may represent different
meanings; for example, it may represent the number of bytes sent or received when the
data type is an array of bytes, or the identifier of the last message sent and received,
when the data type is a message.

To reestablish a failed connection and retransmit the data that has been lost due to
connection crashes, the Reliable Endpoint needs to implement some extra actions
that are defined and encapsulated in a new component, named Connection Handler.

3.2.2 Buffer

Each Reliable Endpoint owns a Concrete Buffer, to keep the data sent, because
all data in transit (e.g., data in the sender’s send buffer and receiver’s receive buffer)
may be lost due to a connection crash. The Concrete Buffer implements the inter-
face of Buffer, which allows saving, retrieving, and removing the acknowledged data,
respectively through the methods put(), get() and remove(). The method clear() is
used to remove all data from the buffer when it is not needed anymore (e.g., when the
connection is closed by the application). The Concrete Buffer must be implemented

70

A Reliable Stream-Based Solution for Distributed Interactions

properly depending on the type of data (e.g., bytes or message) that the peers use for
communication. For this reason, the term “Object” is used, in the design pattern, as
the type of the data, stored in the Buffer, to generalize the design for all kinds of
applications including stream-based, message-based, or object-based.

3.2.3 Connection Handler

The Connection Handler provides properties and functionalities, to implement all ac-
tions required to establish a connection and reestablish a failed one. Each instantiated
Connection Handler has a unique identifier that is generated by the server, to dis-
tinguish a brand new connection from a connection that was established for recovery
purposes. The unique identifier is exchanged between peers by means of a handshake
process, implemented in the method handshake(), once a connection is successfully
created.

The handshake process used to exchange the identifier works as follows. Upon estab-
lishment of a new connection, the client sends 0 as its identifier, which allows the server
to identify that the connection is new. Then, the connection type is set to NEW and a
unique identifier is generated and sent back to the client. When the client establishes a
connection for recovery purposes, this identifier (handlerId) is sent to the server, so that
the server can identify that the connection is created to replace a failed one. In this case,
the connection type is set to RECOV ERY . The actions to reconnect and resend the
lost data must be implemented in the method reconnect(). Moreover, the Connection

Handler allows the application to define the maximum time (MAX_RECONN_TIME)
permitted for recovery process through the method set_max_reconn_time().

3.2.4 Handlers Synchronizer

The most challenging part of the recovery process on the server side is to replace a failed
connection with a new one. To do so, the server keeps the list of all open connection
handlers with their identifier (i.e., in handlers), to enable the delivery of an event
(new connection), from a new connection handler to an appropriate connection handler
waiting for a new connection. The synchronization between the connection handler
waiting for a connection and the connection handler created for recovery purposes is

71

Chapter 3

* <<uses>> 1

+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

public static Event get_event (int handlerId, int timeout)
{
 if (events.contains(handlerId))
 return events.remove(handlerId)
 Event event = null
 synchronized (events){
 t_start = System.currentTime()

while (event == null & timeout > 0){
 events.wait(timeout)
 event = events.remove(handler_id)
 timeout = timeout - (System.currentTime() - t_start)

 }
 }
 return event
}

public static void put_event (int handlerId,
Event event) {
 synchronised (events) {
 if (handlers.contains(handlerId)){

 events.put(handlerId,event)
 events.notifyAll()

 }
 }
}

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler

Figure 3.4: Connection handlers synchronizer

done through a central component, called Handlers Synchronizer. Figure 3.4 presents
this component and its partial implementation details as pseudocode.

The Handlers Synchronizer provides an interface, allowing the connection handlers
to: 1) register and deregister themselves into/from the list of the handlers; 2) put an
event for another handler (i.e., used by the connection handler, created for recovery);
and 3) wait for an event coming from a new connection handler (used by the connection
handler with a failed connection). When a connection handler is being registered,
the Handlers Synchronizer generates a unique identifier and returns it back to the
connection handler.

The registered handlers can wait for an event by calling the method get_event() and
passing their identifier and a timeout, which represents the maximum time permitted
to wait for a new event. The connection handlers can also leave events for other
registered handlers by calling the method put_event() and by passing the event and
the identifier of the destination handler. These two operations are synchronized over
a collection that includes the events and their destination handler (events). Once the
method get_event() is invoked, the calling handler blocks until a new event (i.e., a new
connection) is inserted into the collection events for it, or the timer goes off. Once
an event is inserted by the new connection handler, created for recovery, the blocked
handler is notified to get the event from the events. The Handlers Synchronizer only

72

A Reliable Stream-Based Solution for Distributed Interactions

keeps the last event for each handler, which means that if a client’s connection handle
attempts several reconnections, only the last one will succeed.

According to the above explanation, the main objective of the Handlers Synchronizer

in Connection Handler design pattern is to synchronize connection handlers upon con-
nection crashes and reconnection process.

3.2.5 Event

The events that are exchanged between the Connection Handlers through the
Handlers Synchronizer in the server, are of the type Event. The Event contains
a transport handle and information about the data read in the remote peer.

When a connection is established for recovery purposes, a new transport handle is
generated and a new connection handler is initialized. Upon initialization of the con-
nection handler, a handshake request, including the identifier of the connection and
the information about the data read, is received. At this point, the connection handler
builds an Event, out of the new transport handle and the information about the data
read, and asks the Handlers Synchronizer to give this event to the right connection
handler by providing its identifier. The handshake will be completed (i.e., a handshake
response is sent back) by the old connection handler (whose connection failed) after
receiving the event and replacing the failed connection.

3.3 Connection Handler In Stream-Based Applications

In this section, we use the Connection Handler design pattern to tackle connection
crashes for stream-based applications, which use stream of bytes as data to be ex-
changed between the application’s peers (e.g., video streaming). To do so, the Buffer

and Reliable Endpoint must be implemented.

3.3.1 Stream buffer

When a TCP socket fails, the connection state, including the sequence number and
the number of bytes sent or received, is lost, because operating systems usually lack

73

Chapter 3

standard means to provide the contents or the number of bytes available in internal
TCP buffers. Therefore, to obtain this information, we need to implement our own
layer of buffering over TCP. To avoid explicit acknowledgments, we resort to a circular
buffer, which is based on an idea of Zandy and Miller (Zandy and Miller, 2002). We
name this buffer as Stream Buffer.

To explain how this works, we depict three buffers in Figure 3.5: a sender application’s
buffer, a sender’s TCP send buffer and a receiver’s TCP receive buffer. As shown in
Figure 3.5, we assume that the receiver got m bytes so far, whereas the sender has a
total of n bytes in the buffer, and the connection fails right at this point. Since the
contents of both TCP buffers disappear due to crashes, the receiver needs to send the
value m (the green part in the figure) to the sender after reconnection, in order to let it
know the number of bytes that are successfully received. Then the sender must resend
the last n�m bytes (the blue and red parts in the figure) it has in the buffer.

m

TCP
Send Buffer

...

Application
#bytes received

Application
Buffer

Receiver

no
t

rec
eiv

ed

rec
eiv

ed

TCP
Receive Buffer

m

Sender

rsn

Figure 3.5: Sender and receiver buffers

The size of the application buffer can be limited if the application knew the number
of bytes read by the receiver, which allows it to delete them from the buffer. Assume
that the size of the underlying TCP send buffer is s bytes, whereas the TCP receive
buffer of the receiver has r bytes. Let b = s + r. If the sender writes w > b bytes to
the TCP socket, we know that the receiver got at least w � b bytes, which means that
the sender only needs to keep the last b = s + r sent bytes in a circular buffer, and
may overwrite its data older than b bytes. Using this mechanism we can simply avoid
explicit acknowledgments to the received bytes 2.

2Interestingly, we can avoid any modulus operation, by using two’s complement arithmetic over
standard 32 or 64-bit counters that keep the sent and received bytes on each side, for buffer sizes
strictly smaller than 232 and 264 respectively. Note that apart from these limits, the buffers can have
arbitrary sizes, according to the sender plus receiver TCP buffer sizes.

74

A Reliable Stream-Based Solution for Distributed Interactions

To implement this idea in practice, peers have to exchange the size of their receive
buffer, through a handshake procedure, right after establishing the connection and be-
fore exchanging any data. Despite being simple and efficient, this buffering scheme has
a shortcoming in the Web environment. In fact, this buffering mechanism cannot with-
stand proxies, which are a frequent element in the Internet. In fact, these intermediate
nodes can keep an arbitrary amount of data outside their own buffers, causing the data
in transit to exceed the b = s+ r bytes available on the Stream Buffer.

Figure 3.6 shows a simple sender-receiver scenario, which involves a proxy, and depicts
the internal data buffers involved. As we can see, there is extra buffering of data at the
proxy. While our main idea stands on having a Stream Buffer as large as the TCP
send and receive buffers combined, now we have a total of five points in the traffic that
can serve as buffers: the sender TCP send buffer, the proxy TCP receive buffer, the
proxy internal state, the proxy TCP send buffer, and the receiver TCP receive buffer.
The size of the buffers is now b1 + b2 + b3 + b4 + b5, much more than the b1 + b5 that
the Stream Buffer was prepared to take. The problem becomes quite serious as we
cannot know the sizes of most of these buffers and thus do not know how much data
should be kept to be re-sent in case of crashes.

TCP
Receive Buffer

Proxy

TCP
Send Buffer

b4b2

TCP
Send Buffer

Sender

b1

Receiver

TCP
Receive Buffer

b5

b3

Figure 3.6: Buffers in a sender-receiver communication model with proxies

To solve the extra-buffering problem, we use a combination of explicit and implicit
acknowledgment. When no proxy exists, client and server can rely on the implicit
acknowledgment as explained. In contrast, when a proxy exists, the buffering and
acknowledgment scheme must become explicit, because the sender must never allow
the amount of data in transit to exceed the size of its Stream Buffer. In order to
exchange acknowledgment messages when there is a proxy, a control channel is created
and used by connection handlers.

75

Chapter 3

To enable explicit acknowledgment, we need to mark the beginning and end of the
Stream Buffer, to identify whether the buffer is full or if it has enough space for
new data to be sent. By having these markers, the Stream Buffer of a given peer is
considered to be empty when the pointer to the end of the buffer points to one place
before the beginning of the buffer; and it is considered to be full when the pointers to
the beginning and end of the buffer, both, point to the same place. The pointers to the
beginning and end of the buffer are respectively updated when a data is stored in the
buffer and when acknowledged data is deleted from the buffer.

In the scenarios with proxy, whenever a Stream Buffer is becoming full, the peer
should acknowledge reception of data, to allow the sender to release some space in its
buffer to be able to send the next data without interruption. For example, consider
that a server is sending a large file, with a size greater than the buffer size, to the
client. If the server does not receive an early acknowledgment from the client, its buffer
will become full and it needs to wait for an acknowledgment to release some space
and send the rest of the file. To enable early acknowledgments, once a peer receives a
number of bytes equal or greater than half the size of the peer’s Stream Buffer, an
acknowledgment should be sent. This allows the peer to clean its buffer, thus allowing
it to proceed. Implementation of this idea is possible, because the peers can exchange
the size of their send buffer as well as their receive buffer, allowing each other to simply
calculate the size of the remote Stream Buffer.

Figure 3.7 presents more details of the Stream Buffer from the implementation per-
spective. Each Stream Buffer owns an array of bytes (buffer), pointers to start and
end of the buffer, and a boolean attribute, named write_constraints, which indicates
if the buffer needs to keep the pointer to the end of the buffer (i.e., used in the commu-
nication scenarios with proxy). Methods put() and get() are respectively used to save
data (i.e., array of bytes) in the buffer and return data that is lately sent. Methods
has_space() and release_space() are used in the scenarios with proxy, to check whether
the buffer has enough space to write over old data (i.e., acknowledged data).

3.3.2 Reliable Transporter

By considering the aforementioned challenge, regarding the proxies and the given so-
lution, the Reliable Endpoint must be extended and implemented to support the

76

A Reliable Stream-Based Solution for Distributed Interactions

+ put(Object obj)
+ get(int n): Object
+ has_space(int n) : boolean
+ remove(int n)
+ clear()

- buffer : byte[]
- start, end : int
- write_constraints : boolean

Stream Buffer
11

<<owns>>

public void put (byte[] data) {
 for (d in data)
 buffer [start] = b
 start = (start +1) % buffer.length
}

public byte[] get (int n) {
 int index = start - n
 if (start < n)
 index = buffer.length + start - n
 byte[] data = new byte[n]
 for (int i = 0 i < n i++){
 int k = (index + i) % buffer.length
 data[i] = buffer[k]
 }
 return data
}

public StreamBuffer(int size, boolean c){
 start = 0
 buffer = new byte[size]
 end = size -1
 write_constraints = c
}public boolean has_space (int n) {

 if (end >= start)
 if (end - start > = n)
 return true
 else
 return false
 else
 if (end + buffer.length - start >= n)
 return true
 else
 return false
}

public void remove (int n) {
 end = (end + n) % buffer.length
}

public void clear () {
 start = 0
 end = buffer.length -1
 buffer = new buffer [buffer.length]
}

- handle : TransportHandle
- data_written: int
- data_read: int

Reliable Endpoint

Figure 3.7: Stream Buffer and its implementation details

implementation of the explicit acknowledgment through a control connection. This ex-
tended version of the reliable endpoint for stream-based applications is called Reliable

Transporter.

Each Reliable Transporter owns one Stream Buffer and extends the functionalities
of the Connection Handler to enable recovery from connection crashes. It implements
the actions necessary to establish a connection for the first time and also after a crash,
including the handshake, reconnection and retransmission of the lost bytes. The con-
nection establishment process is different on the client and server sides. Even when a
connection crashes, the initiative to reconnect always belongs to the client’s Reliable
Transporter, due to NAT schemes or firewalls. Thus, the actions of the Reliable

Transporter in the methods handshake() and reconnect() need to be done differently
for the client and server.

Moreover, each Reliable Transporter owns one Control Connection when the com-
munication involves proxies. Each Control Connection is shared between all con-
nections created from the same client. In the scenarios with proxies, the Reliable

77

Chapter 3

Transporter also needs to keep the size of the remote Stream Buffer (remoteBuffer-
Size) and the number of bytes read so far after the last acknowledgment (numOfBytes-
ReadAfterLastAck). Figure 3.8 presents the Reliable Transporter, its attributes and
connected components.

11

<<owns>>

<<owns>>

*

+ put(Object obj)
+ get(int n): Object
+ has_space(int n) : boolean
+ remove(int n)
+ clear()

- buffer : byte[]
- start, end : int
- write_constraints : boolean

Stream Buffer

+ read(byte[] data)
+ write(byte[] data)
+ notify_ack(int read_bytes)
+ isReliable(): boolean

- handle : TransportHandle
- data_written : int
- data_read : int
- remoteBufferSize : int
- numOfBytesReadAfterLastAck: int
- isControlConnection : boolean

Reliable Transporter

0..1

+ get_control_connection(String id)
+ has_control_connection(String id)
+ send_ack(int handlerId, int read_bytes)

- ctrlConnections: <String id,
ControlConnection ctrl> collection
- handle : TransportHandle
- ctrlConnectionId : String

Control Connection

<<uses>>1

*

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler

+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

- handle : TransportHandle
- data_read : int

Event
<<uses>>

<<uses>>

<<uses>>

Figure 3.8: Reliable Transporter and connected components

To accomplish the recovery process transparently from the application layer, we need
to insert the Reliable Transporter, between the transport layer (Transport Handle)
and the application layer (Service Handler). Thus, this component besides owning a
Transport Handle to exchange application data, provides write() and read() operations
to the application to do the following actions underneath the application: 1) store the
data sent by the application into the stream buffer; 2) count the number of bytes
written and read; 3) intercept the read and write operations for detecting a connection
crash; and finally 4) reconnect and retransmit the lost data when a connection crash
is detected. In addition to these actions, the handshake process is also performed
transparently from the application layer, once a Reliable Transporter is initialized.

The handshake is necessary to exchange the identifier of the connection and the size of
the TCP receive buffer, which is necessary for calculating the size of the local Stream
Buffer. Moreover, to support the scenarios including proxies, the handshake is used
to carry the information needed to detect the existence of proxy and the size of the
TCP send buffer, which is required to calculate the size of the remote Stream Buffer.
Furthermore, the handshake process should also address the following two important
issues. First, we must not expect endpoints to adhere to a specific reliable commu-
nication mechanism, which means that a solution for reliable communication should

78

A Reliable Stream-Based Solution for Distributed Interactions

ensure that inter-operation with legacy software is possible. Thus, our solution for
reliable communication should also consider the presence of legacy endpoints. This is
especially important in the Web environment, which comprises a very large base of
legacy software that must not be prevented from communicating with reliable peers.
Second, considering the case where the proxy performs a security function, in particular
content-based filtering, as for example in HTTP-based applications; it will very likely
filter out non-HTTP messages. This means that the critical handshake step may fail in
the presence of content-based filtering proxies, if they do not follow the format of the
application layer protocol being used(e.g., HTTP request and responses).

Given the above explanation, a handshake process, which is performed right after es-
tablishing a connection and before starting the exchange of application data, aims to
identify: 1) if the peer is legacy software that does not support our reliability mecha-
nism; 2) if the connection is brand new, or created for recovery purposes; 3) if there is
any proxy in the middle of the connection between the endpoints; 4) the size of the local
stream buffer, when both peers implement the reliability solution and the connection
is new; and 5) the size of the remote stream buffer, when there is a proxy.

The handshake messages follow a predefined configurable format, which is shown in
Figure 3.9. It includes a header line that can be configured differently on the client and
server sides, depending on the application layer protocol. Then we can have several
lines that carry the necessary information for the handshake. Each line is separated
from the other lines using a separator (e.g., \r\n).

 Client Handshake Header
 FT Identifier: 0 End of Line
 FT Connection: /192.168.0.1,49553,/192.168.0.2,80 End of Line
 FT Buffers: 408300,146988 End of Line
 End of Message

 Server Handshake Header
 FT Identifier: 1 End of Line
 FT Proxy: true End of Line
 FT Buffers: 408300, 408300 End of Line
 End of Message

Client Server

Figure 3.9: Handshake message format in Connection Handler

Considering the client handshake message, the FT Identifier header carries the identifier
of the connection, which is used on the server side to identify whether the connection
is new or created for recovery. For setting up a new connection, the client sets the

79

Chapter 3

identifier to 0, and the server generates a new immutable identifier for the connection
in the response. Once a reconnection occurs, the client sends this identifier and the
number of bytes it received up to the connection crash. The server replies with a similar
message. Finally, the client and server send the buffered data that the other peer did
not receive due to the connection crashes. The FT Connection header carries the
network address of the client and server, which are used on the server side to identify
if there is any proxy. The FT Buffers carries the size of the TCP send buffer, and the
size of the TCP receive buffer, which are used in the server to calculate the size of its
Stream Buffer and, if necessary, the size of client’s Stream Buffer.

Regarding the server’s handshake message, the corresponding headers are present, in-
cluding the identifier of the connection, which, in this case, is 1. The FT Proxy informs
the client whether a proxy was detected by the server or not. The server detects the
presence of a proxy if the address sent in the FT Connection header is different from
the address of the TCP connection it owns. If the existence of a proxy is identified, the
client creates a new Control Connection to the server, for exchanging the acknowledg-
ment messages. Each client uses just one control connection for all connections it may
have to the same server, thus a control connection is identified by the server’s address
in the client and by the client’s address in the server (CtrlConnectionId). A handshake
message, including FT Control header, is sent by the client, which allows the server
to distinguish a data connection from a control connection (isControlConnection is set
when a connection is created as a control connection).

During the communication, the Control Connection is used (only if there is a proxy)
by the Reliable Transporter, to send acknowledgment messages. The Control

Connection keeps the references to the existing control connections (in ctrlConnec-
tions) and provides an interface to the Reliable Transporter to check the existence
of a control connection to a specific peer (has_control_connection()) and access it
(get_control_connection). It also provides an interface for sending acknowledgment
messages (send_ack()). A Control Connection, which might be shared among sev-
eral handlers, checks for the arrival of acknowledgment messages and delivers them
to the appropriate handler (i.e., the Control Connection gets its reference from the
Handlers Synchronizer) through the method notify_ack(), provided by the Reliable
Transporter.

The acknowledgment messages have the same format as the handshake messages, but
including an FT ACK header, carrying the number of bytes read so far. The Reliable

80

A Reliable Stream-Based Solution for Distributed Interactions

Transporters need to count the number of the bytes read after the last acknowledg-
ment message sent (numOfBytesReadAfterLastAck) and compare it with the size of the
remote buffer (remoteBufferSize), to send early acknowledgment messages before the
remote buffer becomes full.

Furthermore, it is worth noting that, the above handshaking mechanism, in addition
to its main objectives, resolves two other aforementioned issues, regarding the inter-
operation of non-reliable and reliable peers and content-based proxies. First, both
non-reliable and reliable clients and servers are able to inter-operate. Using the above
handshaking scheme, a legacy client will simply not receive any handshake message from
the server because in the reliable server the Reliable Transporter simply detects that
the client is legacy, so it turns to behave like a simple transport handle and avoid sending
any handshake message. In contrast a legacy server after receiving a handshake message
from a reliable client, either ignores it or replies, which the client can use to detect that
the server is legacy. Hence, all the combinations of legacy/reliable client and server
work. The application layer can always check whether the communication is reliable
or not by calling the method isReliable(). Second, the configurable format we defined
in our design for handshake messages allows the developers to adjust it according to
their application layer protocol. As an example, Figure 3.10 shows handshake messages
configured for the HTTP protocol.

 GET http://localhost/handshake HTTP/1.1 CRLF
 FT Identifier: 0 CRLF
 FT Connection: /192.168.0.1,49553,/192.168.0.2,80 CRLF
 FT Buffers: 408300,146988 CRLF
 CRLF

 HTTP/1.1 200 OK CRLF
 FT Identifier: 1 CRLF
 FT Proxy: true CRLF
 FT Buffers: 408300, 408300 CRLF
 CRLF

HTTPClient HTTPServer

Figure 3.10: Handshake message configured for HTTP protocol

3.3.3 Reliable Stream-Based Application

Given the basic model of a connection-based application, presented in Figure 3.1, the
design of a reliable stream-based application using the Connection Handler design pat-
tern looks like Figure 3.11. As shown in this design, all the actions required to be taken

81

Chapter 3

to tolerate connection crashes, in the presence or absence of proxies, are done in the
session layer transparently from the service handler.

1

11

<<owns>>

<<owns>>

Session Layer <<owns>>

<<owns>>

*

11

<<uses>>

1

+ accept() : ReliableTransporter
+ close()

Passive Reliable Transporter
<<owns>>*

1

+ put(Object obj)
+ get(int n): Object
+ has_space(int n) : boolean
+ remove(int n)
+ clear()

- buffer : byte[]
- start, end : int
- write_constraints : boolean

Stream Buffer

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport Handle
<<creates>> 1*

Service Handler A Service Handler B

Application Layer

+ activate(ReliableTransporter rt)
Service Handler

1

+ main(String[] args) : void
Server

1

<<activates>>

1

*

+ main(String[] args) : void
Client

1

<<activates>>

1

*

+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

*

<<creates>>

Transport Layer
<<owns>> 1

1<<creates>>

+ read(byte[] data)
+ write(byte[] data)
+ notify_ack(int read_bytes)
+ isReliable(): boolean

- data_written : int
- data_read : int
- remoteBufferSize : int
- numOfBytesReadAfterLastAck: int
- isControlConnection : boolean

Reliable Transporter

+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler

1

0..1

1 <<owns>> <<owns>> 1

+ get_control_connection(String id)
+ has_control_connection(String id)
+ send_ack(int handlerId, int read_bytes)

- ctrlConnections: <String id,
ControlConnection ctrl> collection
- ctrlConnectionId : String

Control Connection Handler

- handle : TransportHandle
- data_read : int

Event

1

*

<<uses>>

Figure 3.11: Reliable Transporter design pattern

The application layer includes a Service Handler and interacts with its connected peer
through the session layer, which includes the Reliable Transporter implementing
Connection Handler. The most common applications run directly over the transport
layer, by means of a Transport Handle (e.g., TCP socket). In our case, the interaction
between the Service Handler and the Transport Handle is accomplished through a
session layer offering transparent recovery of byte streams from connection crashes.
Here we explain the collaboration between the components of the above design in a
failure free scenario, that is presented in Figure 3.12.

To initialize connections, the server creates one (or more, depending on the number of
ports defined and assigned to the application server) Passive Reliable Transporter

and binds it to the local network address (IP address and port number). Then the server

82

A Reliable Stream-Based Solution for Distributed Interactions

waits for a new connection, by invoking the method accept() of this passive handle. On
the other side of the communication, the client initializes a Reliable Transporter by
giving the network address of the server in order to establish a new connection. This
will internally create a Transport Handle.

Upon reception and acceptance of a connection request in the server, a Reliable

Transporter is generated. Right at this point, a handshake procedure is taken place
to complete the initialization of the Connection Handler. The client’s Reliable

Transporter sends a handshake request including the identifier of the connection (zero
in this scenario), the local and remote address of the connection, and the size of its
TCP’s send and receive buffers.

The server’s Reliable Transporter, identifies that the connection is new (because
the identifier is zero), and registers itself into the Handlers Synchronizer through the
method register_handler(), which returns a unique identifier. It can also identify the
existence of a proxy using the given information about the local and remote addresses
and comparing them with its own information about the connection. A handshake reply
is sent back to the client, which includes the unique identifier of the handler, the size of
the buffers on the server side, and information about the existence of a proxy. At this
point, both, client and server, can initialize their Stream Buffer with the appropriate
configuration, depending on the information exchanged between them.

When no proxy exists, the peers initialize and activate service handlers, by passing the
previously created Reliable Transporter (rt in the client and rt1 in the server). This
means that the client and server’s Service Handler can start writing and reading
data. After a successful write operation, the Reliable Transporters put the data
into the Stream Buffer and update the value of written_data. After a successful read
operation they update the value of data_read (refer to part (a) of Figure 3.12).

In contrast, when there is some proxy, the Reliable Transporters require a control
connection to exchange acknowledgment messages in both sides (Refer to part (b)
of Figure 3.12.). Since the control connection is shared between several connections
created by the same client, client and server check the Control Connection for an
existing connection, by specifying an identifier that is equal to their peer’s address. If a
connection already exists, they simply get it from the list and use it, otherwise the client
must create a new one. When a control connection is successfully created, the client
sends a handshake request including the FT Control header with the local address of

83

Chapter 3

Client ServerService
Handler B

Service
Handler A

sh1=ServiceHandlerB()

activate(rt1)activate(rt)

accept()

ServiceHandlerA()

read(data1)

write(data2)

Reliable
Transporter

Reliable
Transporter

Stream
Buffer

Handlers
Synchronizer

rt = ReliableTransporter(remote_address)

read(data2)

put(data1)

put(data2)

write (handshake request ¹)

StreamBuffer(size, False)

 register_handler(this)

Passive Reliable
Transporter

PassiveReliableTransporter(local_address)

rt1 = ReliableTransporter(h)

read (handshake request)

write (handshake response¹)read (handshake response)

generate_identifier()

Control
Connection

(b) Creation of Control Connection after the above handshake in the Scenario With Proxy

StreamBuffer(size, False)

 get_control_connection(server_address)

// if there is a control connection for this client

accept()

ControlConnection()
write (handshake message ²)

Handshake Message ¹

 Client Handshake Header
 FT Identifier: 0 End of Line
 FT Connection: /127.0.0.1,49553,/127.0.0.1,80 End of Line
 FT Buffers: 408300,146988 End of Line
 End of Message

 Server Handshake Header
 FT Identifier: 1 End of Line
 FT Proxy: false End of Line
 FT Buffers: 408300, 408300 End of Line
 End of Message

Handshake Message ²

 Client Handshake Header
 FT Control: client_address End of Line
 End of Message

 Server Handshake Header
 FT Control: server_address End of Line
 End of Message

Client Server

Client Server

(c) Exchange of Data and Acknowledgment Messages in the Scenario with Proxy

has_space(data1.size)
read(data1) // checks if

numOfBytesReadAfterLastA
ck >= remoteBufferSize/2.
Let's assume it is Falsewrite(data2)

put(data2)

has_space(data2.size)

write(data1)

read(data2)

put(data1)

// checks if
numOfBytesReadAfterLast
Ack >= remoteBufferSize/2
Let's assume it is True write(ack message ³)

read(ack message)

ACK Message ³

 Client Handshake Header
 FT ACK: 1, readBytes End of Line
 End of Message

notify_ack(readBytes)

release_space(size - (data_written-readBytes))

(new Thread(sh1)).start()

 handler_id

 rt1

(a) Service Processing and Data Exchange in the Scenario Without Proxy

data_written +=
data1.length

data_read +=
data2.length data_written +=

data2.length

data_read +=
data1.length

 get_control_connection(client_address)

// otherwise

ControlConnection(remote_address)

ctrlConnections.put(ctrlConnectionId,this)

write(data1)

data_written +=
data2.length

data_read +=
data1.lengthdata_written +=

data1.length

data_read +=
data1.length

get_handler(handler_id)

write (handshake message ²)
 get_control_connection(client_address)

Figure 3.12: Collaboration between the components of the Reliable Transporter
design pattern

the client, which will be used by the server as the identifier of the control connection.
The server sends a handshake reply back to the client including the FT Control header
with the IP address used by the server, which will be used as the identifier of the control
connection on the client side. Both client and server store the reference of the control
connection in a list (ctrlConnections), to be used with other Reliable Transporters
if necessary.

84

A Reliable Stream-Based Solution for Distributed Interactions

The exchange of data is quite different when there is a proxy. The Reliable

Transporter checks if there is enough space in the Stream Buffer before writing the
data, and checks if the number of bytes read, after the last acknowledgment message,
exceeds the half of the remote buffer. If so, it sends an acknowledgment through the
control connection. Figure 3.12, part (c), shows a scenario where an acknowledgment
is sent from the client. As shown in the figure, this message carries the identifier of
the connection handler and the number of bytes read so far. The Control Connection

delivers the read message to the appropriate Reliable Transporter, which is accessed
by means of the Handlers Synchronizer, through the method notify_ack(). This lets
the Reliable Transporter release some space from the Stream Buffer.

3.4 Concurrent Connection Handling

To improve the design of Reliable Transporter, we now leverage on existing work and de-
sign principles for concurrent connections, to propose a highly scalable Reliable Trans-
porter Design Pattern. We refine the basic model of a connection-based application, by
adding the combination of the Acceptor-Connector and Leader-Followers design pat-
terns explained in the previous chapter (Chapter 2), to enable efficient handling of
a large number of concurrent connections. We call this design as Multi-Threaded
Acceptor-Connector. We then modify the Reliable Transporter Design Pattern, by
adding the Multi-Threaded Acceptor-Connector.

3.4.1 Supporting High Concurrency

It is quite challenging to implement large-scale concurrent applications. Considering
a multi-tier architecture, the applications should allow front-end and back-end servers
to perform their functions in an independent and efficient manner. The Acceptor-
Connector (Schmidt, 1996) design pattern decouples processes and enables the creation
of multiple concurrent connections, by separating event dispatcher from connection
setup and service handling, but it is single-threaded, and is, therefore, unfit for modern
servers. The opposite extreme of creating one thread per connection might also not
be the right choice, whenever the number of connections is high, due to the possibly
overwhelming overhead.

85

Chapter 3

An adequate solution to this problem is proposed in the Leader-Followers design pattern
(Schmidt et al., 2000), which combines the event dispatcher with a set of threads.
Indeed, the combination of the Dispatcher and Thread Set allows applications to
handle a large number of concurrent connections. Thus, we have refined the basic
design of a connection-based communication, by adding the combination of Acceptor-
Connector and Leader-Followers design patterns. The result of this combination is
presented in Figure 3.13. In this design, only one thread from the Thread Set (the
leader), is allowed to wait for an event. Meanwhile, other threads (the followers) can
queue up waiting their turn to become the leader. As soon as the Dispatcher assigns
a leader thread to an event, it promotes a follower thread to become the new leader.
At this point, the former leader and the new leader threads can execute concurrently.

+ select() : Object[]
+ register_handler(Object handle,
EventHandler h)
+ deregister_handler(Object handle)

- handles : <Object handle,
EventHandler h> collection

Dispatcher

+ connect()
- complete()
+ handle_event()

Connector

Service Handler A Service Handler B

<<notifies>>

<<notifies>>
<<notifies>>

<<activates>> <<activates>>

<<creates>>

<<uses>>

*

*
*

*

*

1 1

+ read(byte[] d) : int
+ write(byte[] d)
+ close()

Transport Handle

+ activate(TransportHandle h)
+ handle_event()

Service Handler 1

*

1

1
1

<<uses>>

1

*

1

*

1

1

1

Application Layer

Transport Layer

+ join()
+ promote_new_leader()

- size
Thread Set

1

1

* <<demuxes>>

+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

1

<<uses>>

<<uses>>

1

1

1

*

+ main(String[] args) : void
Server

+ main(String[] args) : void
Client

<<owns>> <<owns>>

<<owns>>

+ handle_event()
Acceptor

+ handle_event()

<<interface>>
Event Handler

Figure 3.13: Multi-Threaded Acceptor-Connector design pattern

In other words, the threads are not permanently assigned to the Service Handlers,
but a thread from the Thread Set is assigned to a Service Handler only when an
event occurs on its Transport Handle, and released when the event is processed. In
fact, the association of threads to services is unbounded, which means that any thread
can process any event that occurs on any Transport Handle. This solves the problem
with the unbounded growth of threads when the number of concurrent connections
increases. The remaining problem is to adjust the size of the Thread Set, depending

86

A Reliable Stream-Based Solution for Distributed Interactions

on the available resources on the host the application is running on. Figure 3.14 shows
the interactions between the components of the Multi-Threaded Acceptor-Connector
design pattern. To simplify the description of this interaction, we divide it into three
phases: connection initialization, service initialization, and service processing.

Client Acceptor ServerService handler
B

Service Handler
A

Acceptor(local_address)

ServiceHandler()

Diapatcher Thread Set

register_handler(h, this)

select()

promote_new_leader()

activate(h)
activate(h)

Transport
Handle

register_handler(p_h, this)

handle_event(h)

write(data1)

read(data1)

handle_event(data1)

join()

read(data2)

Passive
Transport Handle

h = TransportHandle(remote_address)

complete(sh, h)

p_h = PassiveTransportHandle(address)

select()
accept()

 h = TransportHandle()

write(data2)

Connector

sh= ServiceHandler()

connect(sh, remote_address)

Figure 3.14: Collaboration between the components of the Multi-Threaded
Acceptor-Connector design pattern

Phase 1: Initialization of a Connection

The server owns one Dispatcher and one Thread Set. To receive connection requests,
the server can create one (or more) Acceptor(s). When an Acceptor is initialized,
a passive-mode transport handle (Passive Transport Handle) is created and bound
to a network address (p_h). The Acceptor registers this handle with an attachment,
which is a reference to itself, in the Dispatcher using the method register_handler().
Then, the Dispatcher continuously checks for arrivals of new events on the previously
registered passive transport handles, which are selected by calling the method select().
It does a non-blocking invocation of the accept() method on the passive handles (non-
blocking invocations are shown in Figure 3.14, Figure 3.16, and Figure 3.17 by arrows
with white head). Upon arrival of a new connection, the Dispatcher dispatches it to the
appropriate acceptor (attached to the handles), through the method handle_event().

On the other end of communication, a client starts establishing the connection by pass-
ing an instance of Service Handler and a remote address to the Connector through

87

Chapter 3

the method connect(). This method creates a Transport Handle and blocks the thread
of control, until the connection completes synchronously. At this point, a new handle
(identified by h in Figure 3.14) exists on both sides.

Phase 2: Initialization of Service

On the client side, the Connector completes the initialization phase, by calling the
complete() method. This method activates the Service Handler, by passing the
Transport Handle as a parameter of the method activate(). On the server side, after
a connection request is accepted, the Acceptor initializes and activates the Service

Handler in the same way. The Service Handler then registers the given handle and
a reference to itself in the Dispatcher. This allows the Dispatcher to deliver the data
received on the registered handle to the appropriate Service Handler.

Phase 3: Service Processing

Finally, the client and the server start to exchange data. To perform the write()
and read() operations, the client’s Service Handler will typically use the Transport

Handle directly, instead of using the Dispatcher3. On the other hand, the server’s
Service Handler waits for the Dispatcher to call it back for new data. To receive
data, the Dispatcher invokes the read() operation of the selected Transport Handle in
a non-blocking manner. Then, the data is given to the appropriate Service Handler,
and the leader thread is assigned to handle (process) the event (data). A new thread
in the thread set is promoted as the leader, to wait for the next event. The write()
operation is accomplished directly through the Transport Handle.

3.4.2 Scalable Design of Reliable Stream-Based Applications

Here we refine the Reliable Transporter design pattern by adding the Multi-Threaded
Acceptor-Connector design pattern in the application layer. With this refinement, we
aim to achieve a solution that, besides correctly recovering from connection crashes,
has the following features:

3Although it could work as the server, the client may allow itself to block in read() and write()
operations, because it is usually much simpler.

88

A Reliable Stream-Based Solution for Distributed Interactions

• Efficiently handles a large number of connections;

• Decouples the failure handling process from the service handling;

• Decouples the failure handling process of different connections from each other;

• Enables the possibility of adding new types of services, new service implementa-
tions, and new communication protocols, without affecting the existing connec-
tion handling phase.

To achieve these objectives, we resort to the Multi-threaded Acceptor-Connection. The
result is presented in Figure 3.15. In general, each endpoint owns one Dispatcher to
register handles and attach appropriate handlers for call back if necessary. It also owns
one Thread Set to control the number of threads created for handling the connections.
Here we consider that the client does not use these two components and handles the
connection using a single thread. We present the collaboration between the components
of the above design in two scenarios: failure free scenario (Figure 3.16) and with a failure
(Figure 3.17).

To initialize connections, the server can create one or more Acceptors. It needs
one Acceptor per port. When an Acceptor is initialized, a Passive Reliable

Transporter is created and bound to a network address. Then the Acceptor registers
the passive handle and its reference in the Dispatcher.

On the other side of the communication, as shown before, the client uses the Connector
to establish a new connection to the server. Upon reception and acceptance of the
connection request in the server, a Reliable Transporter is created on both server
and client sides (rt in the client and rt1 in the server). A handshake procedure is
followed to complete the connection initialization. At this point, the Dispatcher gives
the Reliable Transporter (rt1) to the Acceptor attached to the passive handle, to
which the connection request arrived.

After the initialization of a Reliable Transporter, the Connector completes the pro-
cess using the method complete(), which activates the Service Handler, by passing
the Reliable Transporter through the method activate(). On the other side, the
Acceptor creates a new instance of a Service Handler (sh1) and activates it. Then,
the Service Handler registers the Reliable Transporter and its reference in the
Dispatcher.

89

Chapter 3

11

<<owns>>

<<owns>>

Session Layer <<owns>>

<<owns>>

*

11

<<uses>>

1

+ accept() : ReliableTransporter
+ close()

Passive Reliable Transporter
<<owns>>

1

+ put(Object obj)
+ get(int n): Object
+ has_space(int n) : boolean
+ remove(int n)
+ clear()

- buffer : byte[]
- start, end : int
- write_constraints : boolean

Stream Buffer

+ read(byte[] d) : int
+ write(byte[] d)
+ close()

Transport Handle
<<creates>> 1*

+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

*

<<creates>>

Transport Layer <<owns>> 1

1

<<creates>>

+ read(byte[] data)
+ write(byte[] data)
+ notify_ack(int read_bytes)
+ isReliable(): boolean

- data_written : int
- data_read : int
- remoteBufferSize : int
- numOfBytesReadAfterLastAck: int
- isControlConnection : boolean

Reliable Transporter

+ register_handler(ConnectionHandler h) : Identifier
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
MAX_RECONN_TIME : int
handlerId : int

Connection Handler

1

0..1

1 <<owns>> <<owns>> 1

+ get_control_connection(String id)
+ has_control_connection(String id)
+ send_ack(int handlerId, int read_bytes)

- ctrlConnections: <String id,
ControlConnection ctrl> collection
- ctrlConnectionId : String

Control Connection Handler

- handle : TransportHandle
- data_read : int

Event

1

*

<<uses>>

+ select() : Object[]
+ register_handler(Object handle,
EventHandler h)
+ deregister_handler(Object handle)

- handles : <Object handle,
EventHandler h> collection

Dispatcher

+ connect()
- complete()
+ handle_event()

Connector

Service Handler A Service Handler B

<<notifies>>
<<notifies>>

<<notifies>>

<<activates>> <<activates>>

<<uses>>

*

*

*

*

1 1

+ activate(TransportHandle h)
+ handle_event()

Service Handler
1

*

1
1

1

*

1

1

1

Application Layer

+ join()
+ promote_new_leader()

- size
Thread Set

1

1

* <<demuxes>>

<<uses>>
<<uses>>

1

1

1

*

+ main(String[] args) : void
Server

+ main(String[] args) : void
Client

+ handle_event()
Acceptor

+ handle_event()

<<interface>>
Event Handler

1

Figure 3.15: Scalable design of a reliable stream-based application

Once the connection is established and the Reliable Transporters and Service

Handlers are initialized successfully, the service-processing phase begins. The Service

Handlers could use the write() and read() methods to send and receive data through
the Reliable Transporter. All the actions related to the saving of data sent in the
Stream Buffer and updating the number of bytes sent and received are transparently
done in the Reliable Transporter. In the case of the server, a read() operation works

90

A Reliable Stream-Based Solution for Distributed Interactions

Client Connector Acceptor ServerService
Handler B

Service
Handler A

Acceptor(local_address)

sh1=ServiceHandlerB()

Thread Set

activate(rt1)
activate(rt)

select()
accept()

Connector()

connect(sh, remote_address)

sh=ServiceHandlerA()

read(data1)

write(data2)
handle_event(data1)

Reliable
Transporter

Reliable
Transporter

Stream
Buffer

Handlers
Synchronizer

rt = ReliableTransporter(remote_address)

put(data2)

write (handshake request)

StreamBuffer(size, False)

register_handler(this)

Dispatcher

promote_new_leader()

register_handler(rt1,this)

select()

Passive Reliable
Transporter

p_h = PassiveReliableTransporter(local_address)

register_handler(p_h, this)

handle_event(rt1)

 rt1 = ReliableTransporter(h)

read (handshake request)

write (handshake response)
read (handshake response)

complete(sh, rt)

join()

StreamBuffer(size, False)

write(data1)

read(data2)

put(data1)

generate_identifier()

 handler_id
 rt1

Figure 3.16: Connection establishment and service initialization with Multi-
Threaded Acceptor-Connector design pattern

differently. The Dispatcher reads data in a non-blocking way (this may involve multi-
ple read attempts, until the entire data is read)4, and delivers it to the attached Service

Handler. When the Dispatcher delivers a data to the Service Handler through the
method handle_event(), the leader thread from the Thread Set is assigned to process
the data, and a new thread is promoted to become the leader.

Figure 3.17 presents failure handling details. Once a Reliable Transporter fails com-
pleting a read or write operation, it transparently tries to reconnect. The reconnection
is accomplished differently in the client and server’s Reliable Transporter. As shown
in the figure, neither the client’s Service Handler, nor the server’s are involved on the
recovery procedure, to ensure the separation between service and failure handling.

When a failure occurs, both sides will eventually start the reconnection phase, by
calling the method reconnect(). Upon invoking this method, the client’s Reliable

Transporter tries to create a new connection to the server during a predefined pe-
riod of time. On the other side, the server’s Reliable Transporter waits for a new
connection, by giving the connection identifier and a waiting time to the Handlers

Synchronizer through the get_event() method.
4One should notice that besides accept(), and read(), the write() operations could also be non-

blocking and controlled by the Dispatcher.

91

Chapter 3

Transport
Handle

accept()

Reliable
Transporter

Reliable
Transporter

Stream
Buffer

Handlers
Synchronizer

reconnect()

h=TranportHandle(remote_address) get_event(handler_id, timeout)

event

data=get(writtenBytes- m)

data=get(writtenBytes- n)

write(data)
write(data)

wait()

Dispatcher

reconnect()

select()

Passive Reliable
Transporter

 rt2 = ReliableTransporter(h)

write (handshake request ¹)
 rt2.read (handshake request) put_event(handler_id, event)

 rt1.write (handshake response)
read (handshake response)

Handshake Message ¹

 Client Handshake Header
 FT Recovery: 1, readBytes End of Line
 End of Message

 Server Handshake Header
 FT Recovery: 1, readBytes End of Line
 End of Message

Client Server

// event is returned to the reliable
transporter with the failed
connection as a result of
get_event()

// this is done by the new reliable
transporter created for recovery
purposes

// rt1 does
reconnect

Figure 3.17: Collaboration between the components in the presence of connection
crashes

After acceptance of a connection request and creation of a new handler, the client’s
Reliable Transporter starts the handshake protocol. It uses a predefined message
format with an FT Recovery header, consisting of the identifier of the failed connection,
and the number of bytes received on the client side. This lets the server distinguish a
fresh connection from reconnection. The server side accepts the new connection and ini-
tializes a new Reliable Transporter. This component is then responsible for notify-
ing the failed handler through the method put_event() of the Handlers Synchronizer.
Then, the server’s Reliable Transporter completes the handshake procedure by send-
ing a message back to the client. Then, both sides start retransmission of data lost due
to connection crashes.

3.5 Conclusion

In this chapter, we addressed one important limitation of TCP in building reliable
communication. Despite being very popular, TCP does not handle connection crashes
and does not provide any information regarding such connections, to help applications
in the recovery process. In this chapter, we proposed a solution based on buffering and
reconnection mechanisms. We built the Connection Handler design pattern allowing
the developers to easily implement this solution using any programming language in
any platform. Then, based on the Connection Handler design pattern, we built the
Reliable Transporter design pattern for stream-based applications, requiring reliable

92

A Reliable Stream-Based Solution for Distributed Interactions

communication for transmission of byte streams. At the heart of the Reliable Trans-
porter design pattern, there is a circular buffer that eliminates the need for explicit
acknowledgments. We also addressed several challenges regarding legacy software and
proxies in the Reliable Transporter.

Finally, we resorted to the Acceptor-Connector and Leader-Followers design patterns,
to build a highly scalable design to the applications. We believe that the multi-threaded
design proposed in this chapter provides the following benefits to the applications and
developers: 1) allowing the developers to correctly handle connection crashes with-
out losing any data; 2) decoupling the connection handling from service handling; 3)
decoupling the failure-related processing from the connection and service processing;
4) efficiently recovering the state of a failed connection by applying a circular buffer
and sharing the control connection between several data connections; 5) allowing inter-
operation between reliable and legacy peers; 6) efficiently supporting multi-threading,
by applying the Leader-Follower design pattern; 7) providing flexible behavior by allow-
ing developers to configure the reconnection procedure (maximum time for reconnec-
tion is configurable); 8) finally, allowing to configure the format of control messages (e.g
handshake and acknowledgment messages) according to the application layer protocol
to remove the effect of content-based filtering.

93

Chapter 4

Reliable Message-Based Solutions

for One-way Interactions

Reliable messaging lies at the heart of many distributed systems, and is often found
in two basic forms: one-way and request-response. One-way messaging, which is the
simplest form of communication, is extremely useful in event-based systems, where the
information flows in one single direction and does not require any response. Email and
chat applications (Herring et al., 2013), multi-player games (Veljkovic et al., 2013), so-
cial networks (Canning, 2012), group communication systems (Birman, 2012; Chockler
et al., 2001), and complex event processing systems (Buchmann and Koldehofe, 2009;
Gharbi et al., 2013) are some of the examples that conceptually use this messaging
paradigm.

Over the last few decades, the stream-based Transmission Control Protocol (TCP) (Pos-
tel, 1981) has been the most common option for providing reliable communication over
the Internet, even for message-based applications. TCP provides a full-duplex com-
munication channel, well suited for many applications, but not all communication pat-
terns fit into this spectrum. Despite being very popular, TCP has several limitations
for reliable message-based communication, especially for those that require a one-way
interaction pattern.

TCP is a stream-based protocol, which means that it has no means to place appli-
cation layer data into an envelope, in order to be sent and received as a “Message”.
Also, TCP’s reliability guarantees are unfit for one-way messaging because they do not

95

Chapter 4

provide any means for applications to know if application-layer messages are received
or correctly processed. Thus, many applications (e.g., online multi-player games) use
request-response protocols, despite being inherently one-way, to ensure that their mes-
sages reach the destination. For instance, in many web-based applications, the web
client does not need a reply (although it expects the server to process the request), but
still communicates using a request-response protocol, such as he HyperText Transfer
Protocol (HTTP) (Fielding et al., 2009). Using a request-response paradigm in one-way
applications, to implement confirmations over TCP, besides changing the interaction
pattern from one-way to request-response, undoubtedly slows down performance, due
to the waiting time needed for each response. Finally, as explained in Chapter 3, TCP
does not provide any means for recovering from connection crashes and peers can-
not determine which messages did or did not reach the destination, should the TCP
connection fail.

In this chapter, we contribute to overcome these limitations by proposing three design
solutions, namely Messenger, Trackable Messenger and Reliable Messenger design pat-
terns, facilitating the implementation of reliable message-based communication for de-
velopers. The Messenger design pattern represents a general design of a message-based
application, in which the distributed peers use enveloped messages for communication
in a TCP-like full-duplex communication. This design includes a session-based com-
ponent that implements the actions required to build (when being sent) and rebuild
(when being received) a message, transparently and independently of the application
layer protocol being used.

The Trackable Messenger design pattern adds feedback information of messages to the
Messenger. This is enabled by a multi-level acknowledgment scheme, which informs the
sender on the precise status of each message: i) if it left the sender Messenger already,
ii) if it reached the peer Messenger, iii) or if it was already processed by the peer
application. Finally, the Reliable Messenger extends the Trackable Messenger’s func-
tionalities, by applying the Connection Handler design pattern, presented in Chapter
3, to provide the ability for recovering from connection crashes. Thus, besides pro-
viding a full-duplex message-oriented communication (implemented in the Messenger),
and enabling message tracking along messages’ life cycle (implemented in the Track-
able Messenger), the Reliable Messenger tolerates connection crashes, thus enabling
reliable communication over the faulty Internet (offered by the Connection Handler
design pattern).

96

Reliable Message-Based Solutions for One-way Interactions

Our patterns are not tied to any specific operating system or programming language.
They present different solutions with increasing levels of functionality (and complexity),
to problems that emerge frequently in distributed systems. We believe that using
one of these design patterns is a light-weight middle ground between custom-made
solutions and more complex middleware such as Java Message Service implementations
or Microsoft’s Message Queueing (Horrell, 1999; Richards et al., 2009), which typically
use a persistent broker between the peers.

The remainder of this chapter is organized as follows. Section 4.1 presents an overall
overview of the design process. Section 4.2 presents the Messenger design pattern,
demonstrating a general session-based design for a message-based application. Section
4.3 presents the design of a trackable messaging service, named Trackable Messenger,
which allows the senders to know about the status of their messages. Then, Section
4.4 presents the Reliable Messenger, which, besides the functionalities of the Trackable
Messenger, is able to transparently recover from connection crashes. Finally, Section
4.5 concludes this chapter.

4.1 Overview of the Design Solutions

In this section, we present an external overall view our design solutions. We assume
the existence of a service handler, running in the application layer, that implements
the business logic of the application. We also assume the existence a transport handle,
implemented in the transport layer, used by the service handler to exchange messages
with its peer. We then gradually overcome the limitations or gaps found in the im-
plementation of reliable one-way interactions, discussed in the previous section, and
propose three session-based solutions. These solutions are design patterns named Mes-
senger, Trackable Messenger, and Reliable Messenger, which are placed between the
application and transport layers.

Figure 4.1 shows the organization of the three solutions proposed, and also represents
the overall design process, which was carried out in an incremental manner (from the
Messenger to the Reliable Messenger). The Messenger, presented in Figure 4.1 (a),
aims to build a message-based session layer on top of stream-based transport layer and
provide a simple interface to the applications enabling them to easily and indepen-
dently of application layer protocol build, send and receive messages. The Trackable

97

Chapter 4

Service Handler

Trackable Messenger

Messenger

Transport Handle

Message

Bytes

Service Handler

Messenger

Transport Handle

Message

Bytes

Service Handler

Reliable Messenger

Trackable Messenger

Messenger

Transport Handle

Message

Bytes

Application
Layer

Session
Layer

Transport
Layer

(a) (b) (c)

Figure 4.1: External view of the design process of the solution

Messenger, also depicted in Figure 4.1 (b), uses the functionalities of the Messenger
for sending and receiving messages and aims to provide reliability support to applica-
tions using the one-way messaging pattern. It allows a sender to track its messages
by exchanging multi-level acknowledgments at the send, receive, and processing points.
Finally, the Reliable Messenger (Figure 4.1 (c)) builds on the functionality provided
by the Trackable Messenger to enable recovery from connection crashes. The Figure
emphasizes the decoupling of the patterns, to the point of allowing these three config-
urations to be used separately in real applications. Such configuration can better fit
different requirements. The next sections present and discuss each of these designs in
detail.

4.2 Messenger Design Pattern

In message-based communication, the data exchanged between the application peers
is a discrete message that can be sent in several chunks. A message, which usually
includes a header and a body, is placed into an envelope in a predefined format when
sent, and it should be exactly the same when it is read (Hohpe and Woolf, 2003).

Since the most popular transport protocols are stream-based (e.g., TCP), it is up to
the application layer to determine whether a message has been completely received or

98

Reliable Message-Based Solutions for One-way Interactions

not. There are various message-based protocols (e.g., HTTP, SMTP) that define their
own messaging format, which besides achieving the functional goal of the protocol,
restricts applications to build messages that respect the determined format. This format
agreement allows the peers to rebuild the messages, after being received, from the
stream of bytes.

In this section, we present a design solution, named Messenger design pattern, for
synchronous message-based applications that is independently of the application layer
protocol, programming language (as with design patterns in general, it targets object-
oriented programming languages), and underlying platform (e.g., operating system).
This solution helps simplifying the development process of applications with message-
based interactions.

4.2.1 Components of the Messenger Design Pattern

Figure 4.2 presents the Messenger design pattern and its partial implementation details
as pseudocode. This design is intended to be used by any synchronous message-based
application and includes three layers: application, session and transport. The appli-
cation layer includes Service Handlers to implement the business logic of the appli-
cation; and Client and Server to initialize and activate the application peers. The
transport layer includes a Transport Handle for transmitting byte streams over the
network and a Passive Transport Handle for receiving connections on the server.

The session layer includes the following components. A Message is simply a serializable
data structure that encapsulates application layer data and any associated meta-data.
A message can be interpreted as data, as the description of a command to be invoked, or
as the description of an event that occurred (e.g., a mouse click). The Message actually
includes two parts, a header to carry meta-data and a body to carry data. The header
of a message contains meta-data about the message (e.g., identifier, size) and any in-
formation required for communication, many times depending on the communication
protocol used between the peers (in the application or session layer). This information
is stored into a structure comprised of various fields (or attributes) and their corre-
sponding values. While the header can be used by the application and session layer,
the body contains the application’s data and is ignored by the session layer.

99

Chapter 4

+ send(Message message)
+ receive() : Message
- serialize(Message message) : byte[]
- deserialize(byte[] data) : Message
- writeSize(int size)
- readSize() : int
+ set_message_listener (MessageListener ml)
+ close()

- message_listener : MessageListener
Messenger

Service Handler A Service Handler B

+ activate(Messenger m)
Service Handler

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport Handle

Transport Layer

<<owns>> 1 <<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

1

<<activates>>

1

*

<<creates>>

1* + accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

+ main(String[] args) : void
Client

<<creates>>

*

1
<<activates>>

1

*

+ accept() : Messenger
+ close()

Passive Messenger
<<owns>>*<<creates>>

1*

<<owns>>

Session Layer

<<uses>> *

<<uses>>

Application Layer

+ set_body(Object body)
+ get_body() : Object
+ add_header(String attribute, Object value)
+ get_header(String attribute): Object
+ remove_header(String attribute) : Object
+ set_header(HashMap <String,Object> h)
+ get_headers() : HashMap <String,Object>

- header : HashMap <String,Object>
- body : Object

<<Serializable>>
Message

1

public void send(Message message){
 byte[] data = serialize(message)
 writeSize(data.length)
 handle.write(data)
}

public Message receive(){
 int off = 0, size = readSize()
 byte[] data = new byte[size]
 while(not closed){
 int read = handle.read(data,off,size-off)
 if (read == size-off)

break
 off = read
 }
 return deselialize(data)
}

private void writeSize(int size){
 handle.write((s >>> 24) & 0xFF)
 handle.write((s >>> 16) & 0xFF)
 handle.write((s >>> 8) & 0xFF)
 handle.write((s >>> 0) & 0xFF)
}

private int readSize(){
 int ch1 = handle.read()
 int ch2 = handle.read()
 int ch3 = handle.read()
 int ch4 = handle.read()
 if ((ch1 | ch2 | ch3 | ch4) >= 0)
 return ((ch1 << 24) + (ch2 << 16) +
 (ch3 << 8) + (ch4 << 0)
}

1

1

+ on_message(Message message)

<<interface>>
Message Listener

<<uses>>

1

1

public void set_message_listener (MessageListener ml){
 message_listener = ml
 (new Thread(new Runnable() {
 public void run() {

 while(!closed){
 Message msg = receive()
 message_listener.onMessage(msg)
 }

 })).start()
}

Figure 4.2: Messenger design pattern for synchronous message-based applications

The Messenger component is dedicated to take the necessary actions for sending
and receiving the application’s messages through the Transport Handle. Indeed, the
Messenger is responsible for sending a Message as an array of bytes through the stream-
based Transport Handle, and also for delivering an array of bytes, read from the
Transport Handle, to the Service Handlers as a Message.

When a Message is given to the Messenger through the method send(), the messenger

100

Reliable Message-Based Solutions for One-way Interactions

converts (or serializes) the message to an array of bytes, writes the size of the message, 1

and then sends the serialized message. On the receiver side, when the method receive()
is invoked by the application, the receiver reads the size of the incoming message,
receives the message completely, deserializes it from an array of bytes to the Message,
and delivers it to the Service Handler.

Messages can also be delivered to the application using a callback method defined in
Message Listener. To enable the automatic delivery of messages, rather than having
explicit requests for read (through the method receive()), the Service Handlers must
implement the method on_message() of the Message Listener and pass the reference
of this method to the Messenger through the method set_message_listener(). When
this happens, the Messenger internally dedicates a new thread for reading the messages
and delivering them to the service handler through the method on_message().

4.2.2 Message Flow Diagram

Figure 4.3 presents the life cycle of a message in a one-way interaction pattern, consid-
ering a communication stack that includes the Messenger. In this context, message life
cycle refers to the sequence of steps taken since a message is sent by the sender until it
is processed by the receiver.

As shown in the figure, in the very first step, the sender generates a message (m at t0),
then it sends the message (m) to the receiver through its messenger (t1). The sender’s
messenger serializes the message to a stream of bytes (m -> m0), writes its size (t2),
and finally sends it to the receiver (t3). After reading the size of the message (at t30),
the receiver’s messenger reads the message (m0) completely (at t4), deserializes it (m0

-> m), and delivers it to the receiver (t5). Finally, the receiver processes the message
(t6).

4.3 Trackable Messenger Design Pattern

In this section, we advance the design presented in the previous section to build a
one-way messaging service that enables tracking of messages along their life cycle. In

1Although there are several mechanisms to determine the end of each message (e.g., defining a
unique marker in the beginning or end of each message), here we use the size of message for the sake
of simplicity.

101

Chapter 4

Sender's
Messenger

Receiver's
Messenger

Sender

Receiver

write(m')

send(m)

read(m')

receive(m)*

t

t

t

t

t3

t3' t4

process(m)

t6

write(m' .size)

t2

read(m' .size)

*mutually exclusive alternatives: callback
message delivery or explicit receive request

generate(m)

t1

t0

serialize(m) -> m'

t5
deserialize(m') -> m

Figure 4.3: Message flow diagram in a one-way communication using the Messenger

a trackable one-way communication, the sender can always confirm the reception and
successful processing of its messages at the intended destination. This idea of message
tracking is also supported in several existing message-based middleware, such as JMS
implementations and MSMQ.

We argue that the right solution for achieving this trackable messaging service is in-
between the extremes of having no-feedback (i.e., never sending any feedback from
the receiver to the sender for any messages), to having a request-response messaging
paradigm (i.e., sending feedback for each message). On one hand, closing the loop and
letting the sender know the result of its invocations enables the creation of more reliable
applications. On the other hand, we must not do it on a synchronous single-message
basis (i.e., one response for each request), because this is too costly. The approach we
propose offers end-to-end reliability to one-way operations, by using an asynchronous
acknowledgment mechanism. This decouples the sender from the receiver and lets them
progress independently.

Having an additional receiver confirmation is a price worth paying. At first sight we
are simply turning a one-way interaction into a request-response one, but this change
is nearly transparent to the application (i.e., the acknowledgments are used below the
application layer). Moreover, the receiver can send periodical collective acknowledg-
ments (i.e., one acknowledgment for several messages) and the sender may receive
asynchronous feedback, as it certainly does not want to wait for each single reply.

102

Reliable Message-Based Solutions for One-way Interactions

Our design solution, which is called Trackable Messenger design pattern, allows the
sender to simply check the status of its messages at any time after the message is
sent. Considering the message flow diagram presented in Figure 4.3, the status of a
message is SENT when the message is written to the channel by the sender’s messenger
(t2); RECEIVED when the message is read by the receiver’s messenger (t5); PROCESSED,
when the message is successfully processed by the receiver (t6); and ERROR when the
message could not be successfully processed (t6). The rest of this section explains the
Trackable Messenger design pattern, presented in Figure 4.4, in detail. We first describe
the components and their relations and then explain the collaboration between those
components.

4.3.1 Components of the Trackable Messenger Design Pattern

In the core of the Trackable Messenger design pattern, presented in Figure 4.4, there is
a component, named Trackable Messenger, which extends the functionalities of the
Messenger to provide a trackable messaging service for message-based applications.
The Figure 4.4 also presents a partial implementation detail of this design pattern.

This component, besides providing an interface that allows the applications to send and
receive messages, assigns a unique identifier to each serializable Message, sent by the
application layer, in order to keep track of them during their life cycle. The Trackable

Messenger always keeps the identifier of the last message sent (for generating the
next identifier and also for local session layer acknowledgment) and the identifier of
the last message received (for remote session layer acknowledgment). The Trackable

Messenger also allows the sender’s Service Handler to request its peer (receiver’s
Service Handler) for a confirmation of processing of a particular message. In this case,
the Messenger needs to keep the identifier of the last message processed or any error
messages resulted from an unsuccessful processing of the messages. This information is
exchanged between the peers either by being piggybacked into the application messages
or by periodical acknowledgment messages generated by the Trackable Messengers.

The Trackable Messenger uses a central timer, named Acknowledgment Timer, to ef-
ficiently perform periodical asynchronous acknowledgment. The acknowledgment inter-
vals can be defined by the application, possibly depending on its messaging rate (i.e., the
number of messages exchanged per unit of time). The Acknowledgment Timer, which

103

Chapter 4

Service Handler A Service Handler B

Application Layer

+ activate(TrackableMessenger m)
Service Handler

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport Handle
Transport Layer

<<owns>> 1 <<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

1

<<activates>>

1

*

<<creates>>

1*
+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

+ main(String[] args) : void
Client

<<creates>> *

1

<<activates>>

1

*

+ accept() : TrackableMessenger
+ close()

Passive Trackable Messenger

<<owns>>*

<<creates>> 1*

<<owns>>

1

Session Layer

+ send(Message message)
+ receive() : Message
+ confirm(int mid, Status s, String error)
+ get_status(int mid) : Status
+ get_error(int mid) : String
+ set_error_listener(ErrorListener el)
+ acknowledge()
process_headers(Message message) : Message
+ close()

+ enum Status {SENT, RECEIVED, PROCESSED, ERROR}
- message_id: int
- received_id : int
- processed_id : int
- acknowledged_id : int
- errors: collection<int mid, String error>
- last_received_id: int
- last_processed_id : int
- last_errors: collection<int mid, String error>
- error_listener : ErrorListener

Trackable Messenger

+ register_messenger(TrackableMessenger m)
+ deregister_messenger(TrackableMessenger m)
+ notify_messengers()

- MAX_ACK_INTERVAL : int
- timer: Timer
- messengers <TrackableMessenger>:collection

Acknowledgment Timer

<<notifies>>

*

1

+ set_body(Object body)
+ get_body() : Object
+ add_header(String attribute, Object value)
+ get_header(String attribute): Object
+ remove_header(String attribute) : Object
+ set_header(HashMap <String,Object> h)
+ get_headers() : HashMap <String,Object>

- header : HashMap <String,Object>
- body : Object

<<Serializable>>
Message

<<uses>>

+ on_error(int mid, String error)

<<interface>>
Error Listener

<<uses>>
1
1

1

1

public void notify_messengers(){
 for(m : messengers)
 m.acknowledge()
}

public void send(Message message){
 message.add_header("MessageID" , ++message_id)
 message = add_acknowledgment(message)
 super.send(message)
}

public Message receive(){
 while(not closed){
 Messsage message = super.receive()
 message = process_headers(message)
 if (message.get_body() != null)

 return message
 }
}

+ on_message(Message message)

<<interface>>
Message Listener

<<uses>>

1

1

+ send(Message message)
+ receive() : Message
- serialize(Message message) : byte[]
- deserialize(byte[] data) : Message
- writeSize(int size)
- readSize() : int
+ set_message_listener(MessageListener ml)
+ close()

- message_listener : MessageListener
Messenger

public void acknowledge(){
 Message message = new Message()
 message = add_acknowledgment(message)
 super.send(message)
}

1

Figure 4.4: Trackable Messenger design pattern

implements the Observer design pattern (Hohpe and Woolf, 2003), is used to periodi-
cally trigger all Trackable Messengers (belonging to different concurrent connections
that may exist, especially on the server side) for sending an acknowledgment if there are
any unacknowledged messages. We dedicated just one central timer for all messengers
to reduce the memory utilization especially in the server. We must emphasize that the
acknowledgments can also be piggybacked in the header of the application’s messages
to reduce overhead on the network caused by extra messages.

Error Listener is another component of this design pattern, which, similarly to the

104

Reliable Message-Based Solutions for One-way Interactions

Message Listener, provides an interface that must be implemented by the Service

Handler, if it wants the Trackable Messenger to notify any error messages resulted
from the processing of messages at its peer. In other words, the Error Listener

enables the service handlers to give the reference of their callback method (on_error())
to the messenger to be used, if necessary, for notifying the errors.

4.3.2 Collaboration between the Components

Upon creation of a connection and after initialization of both client and server, the
service handlers start exchanging messages. They send their messages by invoking the
method send() of the Trackable Messenger, which in turn assigns a unique identifier
to each message. The message identifiers are sequential integers starting from 1 (the
value of the last identifier is kept in message_id).

The Trackable Messenger, in addition to the unique identifier, inserts some other in-
formation into the header of the message sent to piggyback the confirmation of the
unacknowledged messages. These headers include the identifier of the last message re-
ceived (received_id) for session-layer acknowledgment; the identifier of the last message
successfully processed (processed_id); and the error messages (errors) for application-
layer acknowledgment. Once the headers are inserted, the message is serialized, the size
of the message is written, and finally the serialized message is sent.

The sender’s service handler will later know what happened to its message, depend-
ing on the option it selected for that specific message at sending time. The Service

handler can receive a session-layer acknowledgment, or an application-layer acknowl-
edgment. In the former case, the sender’s messenger acknowledges whether the message
is sent, and the receiver’s messenger acknowledges if the message is received. In the lat-
ter case, the receiver application (receiver’s Service Handler) explicitly acknowledges
using the method confirm() after the message is processed. To receive an application
layer acknowledgment, the sender application asks its peer to confirm the successful
processing of a specific message, by adding the attribute Confirmation into the header
and setting it as true. For example, for a given message m, the application does
m.add_header(“Confirmation”, true) to ask for the peer application-layer acknowledg-
ment.

105

Chapter 4

To receive messages, the method receive() of the Trackable Messenger is invoked,
which, in turn, reads the size of the message, reads the message, deserializes the mes-
sage, updates the identifier of the last message received (received_id), updates the
information of the acknowledged messages (if any information is piggybacked) and de-
livers the message to the service handler. After processing the message, the service
handler must check if a given message requires confirmation (by checking the value
of the attribute Confirmation). If so, it must confirm its successful or unsuccessful
processing (i.e., by identifying the message’s status and sending an error message if
the status is ERROR), through the method confirm(). Otherwise, when the attribute
Confirmation is not set for a message, no action should be taken for application-layer
acknowledgment.

The Trackable Messenger also sends acknowledgments periodically if some messages
remain unacknowledged. The Acknowledgment Timer periodically triggers the mes-
sengers, by calling the method acknowledge(), to see if there are any unacknowledged
messages left. To enable this, the messengers must register in the Acknowledgment

Timer upon initialization of connection and deregister upon closure of the connection,
respectively using the method register_messenger() and deregister_messenger().

The information extracted from the acknowledgment messages is stored in the at-
tributes last_received_id, last_processed_id, and last_errors. This information
can be asked by the application through the method get_status() or get_error(). As
explained before, the service handler can get the errors in two different ways. It either
passes the reference of its callback method on_error() to the messenger through the
set_error_listener() for automatic delivery, or directly invokes the method get_error()
of the messenger.

4.4 Reliable Messenger Design Pattern

In this section, we further advance the Trackable Messenger design pattern to be able to
tolerate connection crashes. To achieve this objective, we use the Connection Handler
design pattern presented in Chapter 3, and the resulting solution is named Reliable
Messenger design pattern. Figure 4.5 presents the complete design of a reliable message-
based application, which extends the functionalities of the Trackable Messenger design
pattern and the Connection Handler design pattern. In this section, we explain how the

106

Reliable Message-Based Solutions for One-way Interactions

Service Handler A Service Handler B

Application Layer

+ activate(ReliableMessenger m)
Service Handler

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport HandleTransport Layer

<<owns>> 1 <<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

1

<<activates>>

1

*

<<creates>> 1*
+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

+ main(String[] args) : void
Client

<<creates>>

*

1 <<activates>>

1

*

+ accept() : Reliable Messenger
+ close()

Passive Reliable Messenger
<<owns>>*

<<creates>> 1*

<<owns>>

Session Layer

+ send(Message message)
+ receive() : Message
+ confirm(int mid, Status s, String error)
+ get_status(int mid) : Status
+ get_error(int mid) : String
+ set_error_listener(ErrorListener el)
+ acknowledge()
process_headers(Message m) : Message
+ close()

+ enum Status {SENT, RECEIVED, PROCESSED, ERROR}
- message_id: int
- received_id : int
- processed_id : int
- acknowledged_id : int
- errors: collection<int mid, String error>
- last_received_id: int
- last_processed_id : int
- last_errors: collection<int mid, String error>
- error_listener : ErrorListener

Trackable Messenger

+ register_messenger(TrackableMessenger m)
+ deregister_messenger(TrackableMessenger m)
+ notify_messengers()

- MAX_ACK_INTERVAL : int
- timer: Timer
- messengers <TrackableMessenger>:collection

Acknowledgment Timer

<<notifies>>

*

1
+ set_body(Object body)
+ get_body() : Object
+ add_header(String attribute, Object value)
+ get_header(String attribute): Object
+ remove_header(String attribute) : Object
+ set_header(HashMap <String,Object> h)
+ get_headers() : HashMap <String,Object>

- header : HashMap <String,Object>
- body : Object

<<Serializable>>
Message

<<uses>>

+ on_error(int mid, String error)

<<interface>>
Error Listener

<<uses>>

1

1

1

1

+ on_message(Message message)

<<interface>>
Message Listener

<<uses>>

1

1

+ send(Message message)
+ receive() : Message
- serialize(Message message) : byte[]
- deserialize(byte[] data) : Message
- writeSize(int size)
- readSize() : int
+ set_message_listener(MessageListener ml)
+ close()

- message_listener : MessageListener
Messenger

1

<<uses>> 1*

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler

+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

+ put(Message m)
+ get(int n): Message
+ remove(int n)
+ clear()

- buffer: list<int mid, Message m>
Message Buffer

<<owns>> 1

1
<<uses>>

handshake()
reconnect()
+ send(Message message)
+ receive() : Message

Reliable Messenger

- handle : TransportHandle
- data_read : int

Event

public Message receive(){
 while(not closed)

 try{
 Messsage message = super.receive()
 message = process_headers(message)
 messageBuffer.remove(last_received_id)
 if (message.get_body() != null)

 return message
 }catch (IOException e) {

 reconnect()
 }
}

public void send(Message message){
 message.add_header("MessageID" , ++message_id)
 messageBuffer.put(message)
 message = add_acknowledgment(message)
 try{

 super.send(message)
 }catch (IOException e){
 reconnect()
 }
}

Figure 4.5: Reliable Messenger design pattern

Connection Handler design pattern is incorporated and integrated with the Trackable
Messenger to ensure recovery from connection crashes.

107

Chapter 4

4.4.1 Components of the Reliable Messenger Design Pattern

To be able to recover from connection crashes by using the Connection Handler design
pattern, we need a reliable endpoint that inherits the properties of the Connection

Handler and implements its handshake and reconnection processes. This reliable end-
point, which is called Reliable Messenger, also extends the functionalities of the
Trackable Messenger to enable message tracking 2.

We also need a simple mechanism of buffering and retransmission of messages, so
that we are able to keep both peers in a consistent state after recovery. Thus,
each Reliable Messenger owns one Message Buffer that implements the interface
of the Buffer component of the Connection Handler design pattern. Furthermore, the
Reliable Messenger must modify the send() and receive() operations of the Trackable
Messenger, to implement the actions that are necessary for buffering the messages (be-
fore sending them), removing the acknowledged messages from the buffer (after receiv-
ing an acknowledgment), and intercepting a connection crash (while writing or reading
into/from the channel). To implement the actions that are necessary for reconnection
after crashes, and retransmission of lost messages, two abstract methods handshake()
and reconnect() of the Connection Handler must be also implemented.

4.4.2 Message Flow Diagram

Figure 4.6 presents the message flow diagram, for both data messages (application-layer
messages) and control messages (acknowledgments), in a one-way messaging pattern
with the Reliable Messenger. The sender starts by generating a message (m at t0),
then it sends a message (t0). The sender’s reliable messenger assigns an identifier to
the message (mid), stores it in the Message Buffer, serializes it (m -> m0), writes its
size (t2), and then writes the serialized message into the channel (t3). At this point,
if the application asks for the message status, the messenger returns “SENT” to the
application (at t40).

2Since multiple inheritance is not supported in several languages (e.g., Java) and, therefore, the
Reliable Messenger cannot directly extend both Trackable Messenger and Connection Handler,
when implementing the pattern in such languages, we need to extend the Connection Handler in the
Messenger, to pass its properties and functionalities to the Reliable Messenger through an indirect
inheritance.

108

Reliable Message-Based Solutions for One-way Interactions

Sender

Receiver

assign mid,
save(m)

serialize(m) -> m'

send(m)

read(m')

confirm(mid, satus, error)receive(m)

delete(m)

t

t

t

t

ap
plic

ati
on

-la
ye

r

ac
kn

ow
led

gm
en

t

 explicit request for
status of m -> SENT

mutually exclusive
alternatives: callback or

explicit request for status of m
-> PROCESSED or ERROR

 explicit request for
status of m -> RECEIVED

process(m)

Sender's
Reliable

Messenger

Receiver's
Reliable

Messenger

se
ssi

on
-la

ye
r

ac
kn

ow
led

gm
en

t

write(m')

read(m'.size)

t3'

t3

t2t1

t4

t6

t7

t5' t8

generate(m)

t0 t4' t6' t9

t5

write(m' .size)

deserialize(m') -> m

se
ssi

on
-la

ye
r

ac
kn

ow
led

gm
en

t

Figure 4.6: Message flow diagram in a one-way communication using the Reliable
Messenger

On the receiver side, when the method receive() is invoked (either directly by the
service handler or by an internal thread, which is created by the messenger when a
message listener is set), the messenger first checks the channel to read the size of the
incoming message (t30) and then to read the entire message (t4). Upon receiving the
message (m0), the messenger executes the following operations in order: 1) deserializes
the message (m0 -> m); 2) updates the value of the received_id; 3) extracts the
acknowledgments from the message and updates the value of the last_received_id,
last_processed_id, and last_errors; 4) removes the acknowledged messages from the
buffer; and 5) delivers the message to the application layer (t5). At this point, if an
acknowledgment is sent to the sender, the status of the message will be changed to
“RECEIVED” (t60).

The receiver’s application processes the message (t6), and if the message needs confirma-
tion (requested by the sender of the message), it confirms the successful or unsuccessful
processing of the message (t7). If the message is processed successfully, the application
passes the identifier of the message through the method confirm() and sets its status to
“PROCESSED”, otherwise the status should be set to “ERROR” and an error message
is also passed to the messenger.

When the sender’s reliable messenger receives the application-layer acknowledgment
(t8), including an error message, either it notifies the application by using the callback
method on_error(), or delivers the error message when the status of the message is

109

Chapter 4

explicitly asked by the sender’s application (t9). Although the sender application may
discard any error notifications, we believe that having the option of receiving error
notifications is an advantage.

4.4.3 Handling Connection Crashes

Transport
Handle

h=accept()

Reliable
Messenger

Reliable
Messenger

Message
Buffer

Handlers
Synchronizer

reconnect()

h=TranportHandle(remote_address) get_event(handler_id, timeout)

event

messages=get(send_id- received_id)

messages=get(send_id- received_id)

write(messages[0]) write(messages[0])

wait()

Server

reconnect()

Passive Reliable
Messenger

 rm2 = ReliableMessenger(h)

write (handshake request)
 rm2.read (handshake request) put_event(handler_id, event)

 rm1.write (handshake response)
read (handshake response) // event is returned to the reliable

messenger with the failed
connection as a result of
get_event()

// this is done by the new reliable
messenger created for recovery
purposes

// rm1 does
reconnect

// write all messages one by one

Figure 4.7: Recovery from connection crashes with the Reliable Messenger

When a connection fails, both client and server Reliable Messengers try to recon-
nect by invoking the reconnect() method of the Connection Handler class. Figure 4.7
presents the recovery process in detail.

The initiative to reestablish a connection always belongs to the client’s messenger (due
to the possible presence of NAT schemes or firewalls), while the server’s messenger
(rm1) waits for a recovery connection to arrive. In order to distinguish new connections
from the recovery connections (created for recovery purposes), each connection requires
a unique identifier (handler_id), which is defined in the Connection Handler. To
generate this identifier, the Reliable Messengers need to perform a handshake before
starting the exchange of data messages, when the connection is created for the very
first time. When a crash occurs, and after a successful reconnection, the client sends
a handshake request, including this identifier, to the server to let the server know
that the connection is created for recovery purposes. In addition to the connection’s
identifier (handler_id), the identifier of the last message received (received_id) is
also exchanged between the peers through the handshake procedure. This allows the

110

Reliable Message-Based Solutions for One-way Interactions

Reliable Messengers to re-transmit the messages that were lost in transit due to the
connection crash.

The replacement of the failed connection with the new one occurs using the Handlers

Synchronizer. The Connection Handler, created for recovery purposes (rm2), asks
the Handlers Synchronizer to deliver an Event, which includes the new transport
handle and the identifier of the last message received, to the appropriate Connection

Handler (rm1). Once the failed handle is replaced with the new one, a handshake
response is sent back to the client. At this point, both Reliable Messengers can get
the lost messages from the Message Buffer and retransmit them.

4.5 Conclusion

This chapter presented three design solutions for message-based communication: Mes-
senger, Trackable Messenger, and Reliable Messenger. We progressively tackle several
limitations of TCP for reliable message-based distributed applications, in which the
one-way interaction pattern is used for communication.

We first built a message-based session layer on top of TCP with the goal of providing
facilities for applications to easily send and receive enveloped messages, without being
involved in the process of building the message envelope and extracting a message from
an envelope. This is transparently done in the Messenger design pattern, which can
be used in any message-based application with one-way or request-response interaction
and independently of the application layer protocol. Then, we addressed TCP’s limi-
tation regarding the one-way interaction pattern, in the Trackable Messenger, to allow
a sender to simply track its messages by exchanging multi-level acknowledgments at
the send, receive, and processing points. We further advanced our solution to address
TCP’s limitations regarding connection crashes in message-based applications using
the Connection Handler design pattern. We integrated the Connection Handler design
pattern with the Trackable Messenger, and built the Reliable Messenger design pattern.
With Reliable Messenger, message-based one-way applications can track the status of
the messages sent, and transparently recover from connection crashes.

By being reliable and by providing synchronous one-way trackable communication, we
believe that the Reliable Messenger design pattern closes the gap that exists between

111

Chapter 4

the existing message-oriented solutions, that mostly support loosely-coupled commu-
nication, and many one-way applications that require reliable tightly-coupled commu-
nication (e.g., multi-player games, chat, stock market, social networks). Moreover, to
cover a wide range of application and systems, our solution is presented as a design pat-
tern, thus helping developers to implement more reliable message-based applications,
independently of the programming language and platform.

112

Chapter 5

A Reliable Conversation-Based

Solution for Request-Response

Interactions

The request-response messaging paradigm is perhaps the most popular form of inter-
action in conversation-based distributed applications, where the accomplishment of an
interaction depends on the exchange of several messages. We can find plenty of ex-
amples, where people interact with web sites to purchase some good, transfer money,
pay bills, or perform diverse business activities. These applications consist of a request-
response interaction pattern, where the server performs an action on behalf of the client
and sends the result back.

Reliable conversation-based applications may require different reliability guarantees
depending on the type of their operations. At-most-once, at-least-once, or exactly-
once delivery and execution of messages are the main reliability semantics that can be
required by the applications whose reliability target is a “conversation”. A conversation,
as explained in Chapter 2, refers to a sequence of messages that must be exchanged
between two peers to complete an interaction. The reliability target in such applications
is usually to ensure the delivery and execution of all of the messages involved in an
interaction, which means that the conversation (or interaction) should be repeated from
the beginning, if one of the messages is lost or corrupted (i.e., perhaps due to connection
or endpoint crashes). For example, online banking transactions, such as money transfer,

113

Chapter 5

usually involve exchanging several messages (operation details, confirmation, and, at
the end, a security code), the loss of which causes the failure of the transaction, leading
the user to repeat the transaction from the beginning.

With at-most-once semantics, the operations are not allowed to be processed more than
once but may or may not be executed. To achieve this guarantee, in its simplest form,
the client sends a request and its response may or may not arrive. In a more reliable
form, the client may re-invoke the request, but the server has to filter duplicate requests
to avoid processing the same request more than once. The at-least-once semantics is on
the other end of the spectrum, in which a request must be executed and it is admissible
to be processed more than once. To achieve this guarantee, the client must re-send the
same request until it receives a response, even in the presence of crashes.

Neither the at-most-once, nor the at-least-once semantics can be used in business or
safety-critical applications, such as online banking, airline reservation, and air traffic
control systems. First, their operations are non-idempotent and should not be executed
more than once. Furthermore, a lack of response is also not acceptable, because clients
need to know whether the operation succeeded or not. Thus, only the exactly-once
semantics, which is somehow the combination of both at-least-once (i.e., at-least-once
delivery of messages) and at-most-once (i.e., at-most-once execution of messages) se-
mantics, is entirely appropriate for such applications.

Exactly-once semantics is very hard to achieve, because any component may crash in
the middle of an interaction and having the same knowledge of the interaction in all
components is very difficult (Halpern, 1987). Also, many times, it is difficult or impossi-
ble to distinguish a crash from slow transmission or slow processing of messages (Fischer
et al., 1985).

In this chapter, we aim to propose an exactly-once request-response protocol and a
design solution facilitating the implementation of the protocol. To do so, we first ex-
plain the at-least-once and the at-most-once protocols and then accordingly propose a
protocol for achieving the exactly-once guarantee in the request-response interactions.
Our exactly-once protocol unambiguously defines the boundaries where the client may
resend the request, upon recovering from a crash, without taking any chances of re-
peating the operation. Next, we adapt the protocol for the applications that may need
middleware to implement the exactly-once request-response interaction and propose a
session-based exactly-once protocol and design solution.

114

A Reliable Conversation-Based Solution for Request-Response Interactions

The remainder of this chapter is organized as follows. Section 5.1 explains how the at-
least-once guarantee can be achieved. Section 5.2 describes the at-most-once request-
response protocol and explains how a reliable request-response interaction with at-most-
once semantics should be implemented. Section 5.3 proposes a protocol to achieve
exactly-once semantics, using the protocols presented for at-most-once and at-least-
once. Section 5.4 adapts the protocol proposed as a session-based protocol and proposes
a design solution for implementing an exactly-once middleware. Finally Section 5.5
concludes this chapter.

5.1 At-Least-Once Request-Response Interaction

Before going to the details of the protocol we need to clarify some assumptions. Here
we assume that any component involved in the interaction, including client, server and
channel, may crash, but they eventually work in a fault-free period for a sufficiently
long time to complete the at-least-once interaction (i.e., their crash mode is crash-
recovery). Channels are assumed to be unreliable, but fair, which means that they may
lose messages, but will deliver a message that is sent a sufficient number of times. They
neither reorder the messages nor change their content. We also assume the existence
of stable storage on the client, to save the state of the interaction in case of crashes.

To ensure the at-least-once semantics, the clients must re-invoke unreplied requests. It
must repeat this action after a predefined period of time, until receiving the response.
This implies that the client needs to keep the request and its timestamp into a buffer
and set a timer for retransmission.

Figure 5.1 presents a reliable request-response protocol for achieving at-least-once se-
mantics. The protocol starts with the client generating a request (req1), assigning it
a unique identifier, assigning it a timestamp, which indicates when the request is sent,
and saving the request into both volatile (memory) and stable storage (t0). Then it
sends the request (t1) to the server. The server receives the request (t2); processes it,
generates a reply (rep1) for the request, and assigns it the same identifier of the request
(t3). Then it sends the reply to the client (t4). The client, after receiving the reply
(t5), can delete the request from both memory and stable storage (t6). In the case no
response is received for the request, after the time limit, the protocol restarts from t1,
by updating the request’s timestamp and retransmitting it.

115

Chapter 5

t

create req1 , set identifier
id1 and timestamp ts1 &

save req1 into volatile and
stable storage

send
req1

process req1,
generate rep1

and set
identifier id1

send rep1

receive
rep1

t0

t4t3

t5t1

receive
req1

t2

t

delete
req1

Client

Server

t6

Figure 5.1: At-least-once request-response protocol

In this protocol, the requests and their responses must be uniquely identified, to allow
the client to filter duplicate responses, which can be caused due to slow transmission
or slow processing of the requests, and therefore, may cause failure at achieving at-
least-once guarantee. Consider the following scenario using the above protocol without
uniquely identifying the requests and responses. The client sends req1 to the server.
Then, since no response is obtained after the time limit, the client retransmits the same
request. It then receives rep1, which belongs to the first request, but arrived too late
(after the time limit). In this case, the client is not able to identify that this is a delayed
response, so it deletes req1 and sends the next request (req2). After sending req2, it
receives rep1, which belongs to the second attempt of the req1, but the client is not
able to identify it, so it is considered as a reply of req2, which lets the client to delete
this request from the storage. At this point, the at-least-once semantics can be violated
if req2 has never been processed at the server, because the client will never re-transmit
it.

Given the fact that several responses may arrive for the same request, the client needs to
match each response with the corresponding request, to identify exactly which requests
must be reinvoked (when its response is missing). As shown in the protocol, the client
must set a unique identifier for each request and the server must use the same identifier
of the request in its response, enabling the client to easily distinguish different responses
from each other and then match them with the requests.

It is worth mentioning that there is another solution to address the above challenge
regarding delayed duplicate responses and violation of at-least-once semantics. The
client can send the request with a timestamp to the server. The server has to send back
the reply with the same timestamp to the client. This allows the client to detect and

116

A Reliable Conversation-Based Solution for Request-Response Interactions

filter delayed responses by checking the difference between the timestamp and current
time. Although this solution solves the above problem in an easier manner (since it does
not need to generate unique identifier), it is not as effective as the previous solution
that uses identifiers. This is due to the fact that the client may enter the loop of
retransmission for a given request, not because its response did not arrive, but only
because of the slow transmission and processing of the request. To avoid this situation,
the time limit for retransmission has to be defined properly (i.e., it should be large
enough to avoid retransmission of the requests whose responses are delayed). This is
not a practical solution, because on one hand, it is difficult to define a small time limit
that always works, and on the other hand a large time limit can negatively affect the
performance.

5.2 At-Most-Once Request-Response Interaction

Comparing to at-least-once semantics, the assumptions and protocol to achieve at-most-
once guarantee have three main differences: 1) the at-most-once client may or may not
re-invoke a request, while an at-least-once client must re-invoke requests, for which it
obtained no response; 2) the at-most-once server must prevent duplicate execution of
the same request (in the case it is re-invoked), while an at-least-once server does not
need to prevent duplicate execution of the same request; and 3) for achieving at-most-
once, in contrast to at-least-once, the crash-mode at the client and communicating
network does not need to be crash-recovery, which means that the client does not need
any stable storage to store the state.

There are two strategies for achieving at-most-once guarantee. To ensure that each
(non-idempotent) operation is not executed more than once, either the client must
never repeat the same request (even when the first request is lost and never processed
by the server), or the client re-invokes the requests, but the server must use a filtering
mechanism to prevent duplicate execution of the repeated requests. The former strategy
is not considered to be a reliable solution, because a lack of response that might be
caused by several reasons including request loss, unsuccessful processing, or response
loss, ends an interaction forever in the client. This occurs because all the aforementioned
reasons for lacking a response are the same for the client (i.e., there is no mean in the
client to differentiate them from each other), so it cannot risk duplicate execution of the
request by re-invoking it. For this reason, we chose the second strategy for achieving

117

Chapter 5

at-most-once guarantee, in which the client can re-invoke the requests, but the server
must avoid re-execution of the same requests.

To implement the second strategy, the client must keep a request and its timestamp (i.e.,
it holds the time in which the request is sent) into a buffer until its reply is received.
Since we are not assuming a crash-recovery client, a volatile memory is enough for
buffering the requests. To enable the retransmission of the requests (if necessary),
the client needs a timer. The server must distinguish the requests from each other
(e.g., using a unique identifier assigned to each request) and filter duplicate requests,
to ensure that each request is processed only once.

Using identifier is necessary to filter duplicate requests, but it is not enough for ensuring
at-most-once. There are still two challenges left that need to be addressed properly.
First, since the server filters the requests that have been already processed, the client
may enter the loop of resending a request that is processed at the server but its reply is
lost. To avoid this situation, the server needs to keep the responses in a buffer until it is
certain that the client received the reply. This allows the server to resend the responses
of the repeated requests without processing them again. The client can remove the
requests from its buffer whenever it receives their response, but in order to allow the
server to safely remove the responses, the client must send an acknowledgment to the
server.

The second challenge is raised by crashes on the server side, that may cause re-execution
of the same request, due to loosing the information stored in volatile storage about the
request processed and its response. Thus to solve this problem, the server needs to save
the state of the interaction into a stable storage, in order to recover it after crashes.
The processing of the request, that may cause some changes in the state of the system,
and storing the state of the request, including its identifier and response, must happen
atomically. Otherwise, since the server may crash after processing the request and
before saving the response, a repeated request that has been already processed and
therefore made some changes in the general state of the system, might be processed
again because the server has no information stored allowing to filter it.

Figure 5.2 presents the protocol of a reliable at-most-once request-response interaction.
As shown in the figure, the client generates a request (req1), assigns it a unique identifier
(id1), and sets a timestamp (ts1), indicating when the request is sent, and keeps the
request and its information (t0). Then, it sends the request (t1) to the server. The

118

A Reliable Conversation-Based Solution for Request-Response Interactions

t

create req1, set identifier
id1 and timestamp ts1

& save req1 into volatile
storage send req1

process req1,
generate rep1, set
id1 & save rep1
into volatile and
stable storage

(atomically)

send rep1

receive rep1

t0

t4t3

t5t1

receive
req1

t2

acknowledge id1

t6

delete rep1
t

t7

delete req1

Client

Server

t7'

Figure 5.2: At-most-once request-response protocol

server receives (t2) and processes the request, generates an appropriate reply (rep1)
for the request, assigns it the same identifier, and atomically stores the reply into both
volatile and stable storage (t3). The server then sends the reply to the client (t4). After
receiving the reply (t5), the client sends an acknowledgment including the identifier of
the request to the server(t6), which allows it to safely delete the response (t7). At this
point the client can also delete the request (t70).

5.3 Exactly-Once Request-Response Interaction

Despite being ubiquitous, making the request-response messaging pattern work reliably
and guaranteeing exactly-once semantics in the presence of crashes is everything but
simple. From one hand, the client cannot simply invoke the request again, because this
may cause the server to repeat non-idempotent operations, such as making a second
flight reservation for the same person or ordering a given item twice. On the other
hand, there are cases that have even more stringent restrictions that exceed the at-
most-once semantics, as they actually require exactly-once guarantee. As an example,
employers need to make sure that they issue the paychecks once and only once; the
bank must then ensure that it deposits the money once and only once; the same for
the corresponding withdrawal operation.

The exactly-once semantics was first addressed by Spector in (Spector, 1982). Spec-
tor presented request-response-acknowledge (RRA) protocol that enables the server to
release memory, by letting the server know that the client received the response. In

119

Chapter 5

this section, we explore this idea and propose our exactly-once protocol tolerating all
crashes that may occur during a request-response interaction.

Unfortunately, even the most widely used communication technologies cannot easily
tolerate crashes. TCP provides the greatest freedom to the programmer, but the pro-
grammer must bear the costs of recovering from TCP connection crashes. To recover
from endpoint crashes, servers usually use replication, which although increasing the
availability of the server, it cannot guarantee the exactly-once execution of invocations.
Some developers use distributed transactions to handle crashes. With the use of dis-
tributed transactions, they can ensure that either the client and server agree on the
positive outcome of an operation, and then, they commit it; or they both give up.
Unfortunately, this kind of solution has several drawbacks: 1) it is difficult to use, as it
involves a fairly complex configuration and Application Programming Interface (API);
2) it is slow, due to the several steps involved in protocols like the two-phase commit;
3) it is heavy, because it involves a coordinator process; and 4) it is blocking, because
the participants block until a commit or rollback is received, so the transaction never
is resolved when the coordinator fails permanently.

In this section, the at-most-once and at-least-once protocols are combined and refined to
build an exactly-once request-response protocol. We use buffering (i.e., save messages in
memory or volatile storage), logging (i.e., save messages and interaction’s state in stable
storage), and retransmission mechanisms to ensure that each messages is delivered at-
least-once and we add a filtering mechanism, to ensure that each message is processed
at-most-once. Saving the state of an interaction into stable storage allows the client and
server to return back to the last coherent state, after recovery from endpoint crashes.

5.3.1 Exactly-Once Protocol

To ensure that each request is executed once and only once: 1) the client must re-
invoke un-replied requests; 2) the server must prevent duplicate execution of the same
request; 3) the server must resend the response of a repeated request to the client;
and 4) all of these must happen even in the presence of crashes (e.g., endpoint and
connection). Thus, to guarantee exactly-once, we first need to assume that the crash
mode of any components involved in a request-response interaction must be crash-
recovery. We further need to assume the existence of stable storage on both client
and server sides, to keep interaction state to be used in the case of crashes. Here by

120

A Reliable Conversation-Based Solution for Request-Response Interactions

considering these assumptions we describe our protocol, presented in Figure 5.3. Note
that despite being important for the practical implementation, the presence or absence
of a previous handshake to setup a session, like a TCP connection, is irrelevant for our
discussion at this point.

t

process req1, generate
rep1, and set id1, save
rep1 into volatile and

stable storage
(atomically)

t0

t4t3

t5t1

t2

acknowledge id1

t6 t7

t

save rep1
in stable
storage

t8

t8'
Client

Server

create req1, set
identifier id1 and

timestamp (ts1) & save
req1 into volatile and

stable storage send req1

receive req1 send rep1

receive rep1

delete rep1

delete
req1 and rep1

Figure 5.3: Exactly-Once request-response protocol

The client starts by creating a request message (req1), assigning it a unique identifier
(id1) and storing it with its identifier and timestamp into memory and stable storage
(t0). The timestamp enables the client to resend the request if it does not receive
a reply within some time limit. Next, it sends the request to the server (t1), which
receives it at time t2.

Since the semantics is exactly-once, we assume that the server cannot generate the
same reply again without changing its internal state, therefore, the server processes
the request, generates the response (rep1), assigns it the same identifier, and saves it
into its stable storage atomically (t3). This is often simple to do, if the server has
some operations that use a database, for instance. The application must keep the same
identifier to avoid repeating the same operation for a repeated request. Then the server
replies (t4).

The client receives the response (t5), saves it into stable storage (t6) and sends acknowl-
edgment to the server (t7), allowing it to delete the response (t8). Finally, the client
can delete the request and the response (t80). The client can use the response between
t6 and t80 .

With this sequence we can ensure the exactly-once semantics, even if the client or the
server crash and later recover. Let us examine the client actions. The client creates
and stores the request into stable storage, sends it, receives the reply, acknowledges

121

Chapter 5

the server and deletes the request from stable storage. We do not care for crashes for
time t < t0 because the request has not been generated yet. For t > t80 the request no
longer exists, so we also do not care for it. The client can safely discard any response
arriving after that point in time. We, thus, focus on the client actions, after recovery
from crashes, for time t0 < t < t80 .

For time t0 < t < t6, upon recovery, the client cannot determine exactly at which
state it crashed, so it resends the request. If the crash occurs at t0 < t < t1, the
client never actually sent the request, so it can just send it for the first time when it
recovers. For time t1 < t < t3, the client will resend the request, but the server can
detect the duplicate identifier and avoid re-executing the request. If the client crashes
in the interval t3 < t < t6, upon recovery, the client will resend the request as it
does not have the corresponding response in its stable storage. But, since the server
stored the state and response, it can filter duplicate requests and resend the response.
After t > t6, the client has a copy of the response, so it no longer needs to resend
the request. For time t6 < t < t7, the client just picks the response it saved. For
time t7 < t < t80 , the client will resend an acknowledgment, after recovery. The server
could then receive an acknowledgment for a response it no longer has, but it can safely
discard the acknowledgment.

Now, let us do a similar analysis for the server. If the server crashes before t = t3,
upon recovery it can safely process the repeated request (i.e., sent by the client after
a given timeout in this case), because it has no state stored for the request that has
not been processed. For time t3 < t < t4, the client will resend the request since
it has not received the response yet. In this case, the server must retrieve the reply
from storage instead of re-executing the request. For time t4 < t < t8, the server
cannot know whether or not the reply reached the client. It must wait for either the
acknowledgment from the client or for a repetition of the request.

5.3.2 Demonstration of Correctness

In this section, we formally identify the properties of the exactly-once request-response
interaction pattern and demonstrate that they are held by using our protocol. We
assume that the channel does not create, change, or reorder (First In First Out – FIFO)
any messages. We assume that channels, client, and server eventually will be correct
for a sufficiently long time that enables their interaction to finish. Regarding safety

122

A Reliable Conversation-Based Solution for Request-Response Interactions

and liveness, we require the following properties for the exactly-once request-response
pattern:

• Safety 1 At-most-once execution of requests.

• Safety 2 No invention of response.

• Safety 3 No duplication of response.

• Liveness 1 At-least-once reception of response.

Liveness says that all requests eventually have a response. This is the “at-least-once”
part of the interaction. However, beside a live behavior, we must ensure some safety
properties, to prevent double execution of the request (Safety 1) or reception of the
message (Safety 3), and to prevent receiving a response for a request the client never
did (Safety 2). Next, we demonstrate these properties.

Safety 1 (At-most-once execution of a request): At-most-once guarantee can
be violated if the server receives a repeated request after processing it (after t3). Since
each request is univocally identified by a number, if the server checks its stable storage
for this request’s identifier, it may not execute the same request twice between t3 and
t8. Thus we must demonstrate that after t8 (after it deletes the response), the server
may not execute the same request again. Once the client sends the acknowledgment
(t7), it will not send the same request again, because it saved the response in the stable
storage at time t = t6. Since we rely on FIFO channels, the server must not receive
any repetition for the same request after t = t8.

Safety 2 (No invention of response): This property derives from the fact the
channel does not invent any messages (i.e., one of our assumptions).

Safety 3 (No duplication of response): This property depends on the implemen-
tation of the client, which must use the response during the interval t6 < t < t80 and
must atomically delete the response and finish the task it has to do with the response
at time t = t80 . In this case, if the client ever crashes for t < t6, when it restarts it did
not use the response. For time t > t80 , it is no longer waiting for the response, so it

123

Chapter 5

will discard it (it may receive two or more responses in fact). For time t6 < t < t80 , the
effect of the response takes place only once.

Liveness 1 (At-least-once reception of response): First, we assume that the
client periodically resends the request if it does not get any response, e.g., because
the channels keep failing. Assuming these conditions, we need to prove that the client
reaches the point where it saves the response (t6). Since the client keeps resending
the request, and the server always gives a response to this request (either by executing
the action or getting the response from stable storage), the property follows from the
assumption of correctness of the channels, client and server for a sufficiently long time.

5.4 Exactly-Once Request-Response Middleware

Since the implementation of exactly-once interactions, as shown in the previous section,
is not an easy task, it is useful to use a middleware that provides exactly-once services
to the application layer. Due to the details involved in the exactly-once protocol we
first explain how the exactly-once protocol described in the previous section should be
implemented underneath the application (i.e., in the session layer). Then, we describe
a design of an exactly-once middleware implementing this session-based protocol.

5.4.1 Session-Based Exactly-Once Protocol

Apart from generating the request and the response, most actions that clients and
servers perform are repetitive and can be handed over to library functions (middleware).
We separate the endpoint applications in two layers: the application layer takes care
of generating and using the messages, while the session layer (middleware) is partially
responsible for message idempotence and guarantees the delivery of the requests and
responses to the application layer. In Figure 5.4, we show the result of our approach
to factor out some client and server actions from Figure 5.3.

The client starts by creating a request (req1), assigning it a unique identifier, and
saving it into stable storage (t0). The unique identifier can also be generated by the
middleware, but it must guarantee that the same identifier is generated for the same
request, when the client resends a request after recovery. To ensure this, the client

124

A Reliable Conversation-Based Solution for Request-Response Interactions

treceive
req1

t4

 set timestamp
(ts1) & saves req1

into volatile
storage

t2
t7

t

t3

Server
Application

Client
Application

tt0
read
rep1

acknowledge
id1

create req1 , set
identifier id1 &
save req1 into
stable storage

 delete rep1

t10

write rep1

deliver
rep1

t1

t5

t6

receive
rep1

tt8 t9

t10'

t6'

t12

send
req1

write
req1

read req1

process req1,
generate rep1, and
set id1, save it into

stable storage
(atomically)

send
rep1

delete rep1

save rep1 into
volatile and

stable storage

save rep1
into stable

storage

process rep1
& delete req1

t11

delete
rep1

acknowledge
id1

Client
Middleware

Server
Middleware

Figure 5.4: Session-based exactly-once request-response protocol

middleware can use the hash code of the request content as an identifier or even the
request itself could serve as its identifier. In this case, if the client resends the same
request, the middleware can determine if it is still processing that request or if it is new,
and, at the same time, release the application from the burden of managing message
identifiers. A shortcoming of this approach is that the client cannot generate a new
request with the same data before acknowledging the previous one. Nevertheless, this
limitation can be solved by adding some salt to change the request. In our solution,
for the sake of simplicity, we assume that each request is sent with its identifier from
the application layer. This identifier is simply a sequential integer.

After generating the request, the client sends it to the middleware (t1). The client
middleware assigns a timestamp to the request and stores it into the buffer (t1). Next,
it sends the request to the server middleware (t2), which receives and delivers it to
the server application (t3). The server application processes the request, generates its
response (rep1), assigns it the same identifier as the request, and atomically saves it
into the stable storage (t4).

The server middleware must not send a new request for the same identifier, before the
application replies (something that could happen if the client sends the same request
twice or more) because this may cause a second execution of the same request. Up
to t = t5, when the server application sends the reply to the server middleware, this
goes on unchanged. However, to enable the server application layer to delete all data

125

Chapter 5

related to the request (t60), the server middleware must save the response (t5). Then
the server middleware replies to the client middleware (t6), which receives (t7) and
saves the response (t8). At this point an acknowledgment can be sent to the server
middleware (t8). This enables the server middleware to delete the response (t100).
Then the response is delivered to the client application (t10). The client application
after receiving the response, uses it and deletes the request and its state from stable
storage (t11) and, at the end, asks the client middleware to delete the state of the
response from stable storage too (t12).

With middleware, the client application layer no longer resends requests when the
connection or the server crash. Therefore, it does not need to generate timestamps
for the requests. In the interval t1 < t < t8, the client middleware already has the
request, so it can resend the request by itself. Moreover, the client application does
not need to save the response, because this is taken care by its middleware. These
are the most important differences for the client application layer. In case the client
crashes, if it crashes between t0 < t < t11, the client application will resend the request
after resuming. If the crash happens in the interval t8 < t < t11, the client middleware
still has the response and does not need to resend the request to the server, otherwise
(t0 < t < t8) the request will be sent to the server. After t11, the client application no
longer has the request, so it no further interacts with the middleware.

The server side also has the following important simplification: after delivering the
response to the middleware, the application layer may delete the response. This allows
the server application to use a typical API with a single blocking point, to receive re-
quests, discarding the need for a second one to receive the acknowledgments. Moreover
if a repetition of the request arrives during the interval t5 < t < t100 , the middleware
itself will provide the response. Before that point (t4 < t < t5), the server application
layer itself has the response and corresponding identifier and can filter duplicates.

5.4.2 Demonstration of Correctness

Here we demonstrate how the session-based exactly-once protocol ensures the safety
and liveness properties.

126

A Reliable Conversation-Based Solution for Request-Response Interactions

Safety 1 (At-most once execution of a request): In the session-based protocol,
the at-most-once can be violated only after t4. If a repeated requests arrives at t4 < t <

t60 , since the server application has the reply, it will not process it again. If the repeated
request arrives at t60 < t < t100 , then, since the server middleware stores the response
at t = t5 and keeps it until t = t100 , it will not give the repeated request to the server
application. Now, assume that a repeated request arrives after t100 , since the channel
is FIFO, the client middleware must have resent the request after acknowledging it
(t > t9), when the response is deleted from the server middleware, which is impossible.
Since the client middleware saved the response at time t = t8 and deletes it only at
t = t12, the repeated requests originated by the client application layer will be replied
by the client middleware and there is no need to send them to the server. After t = t11

no request will be resent by the client because it has already deleted it from the storage.

Safety 2 & 3 (No invention of response and no duplication of response):
These are very similar to the case of Figure 5.3, which we demonstrated before.

Liveness 1 (At-least-once reception of response): In addition to the fact previ-
ously explained for the Figure 5.3, we used the Spin model checker (Holzmann, 1997,
2004) to formally verify the liveness claims of our approach. Model checking is a method
for verifying whether a specification is fulfilled by a model. A specification is a set of
properties which a system is expected to satisfy, and a model is a formal description of
the system’s behavior, written in a modeling language, intended to preserve as much
detail as necessary for the verification. Model checking tools such as Spin take a model
and its specification as input. Their output is either an indication that the model is
correct, or a case in which the correctness properties fail to hold.

The Spin model checker accepts a formal modeling language called Promela (Iosif,
1998). This language is appropriate to model distributed software systems. Inter-
process communication can be specified using message channels, which can be either
synchronous or asynchronous. We used asynchronous channels to model the communi-
cation between the client middleware and the server middleware. Synchronous channels
were used to model the call-return interactions between the client application and the
client middleware, as well as between the server application and the server middleware.

127

Chapter 5

We modeled a system consisting of four processes, namely the client- and server-side
applications and the corresponding middleware instances. An additional process was
constructed in order to model failures. Two kinds of failure are considered: lost mes-
sages between the two middleware processes, and crashes of either client or server appli-
cations. Lost messages were modeled by snatching messages from the channels between
client and server middleware. Crashes of the client and the server were modeled by re-
setting the client- or the server-side (including the application and the middleware) to
the initial state. Only the content of the stable storage is assumed to be preserved after
a crash.

The interaction among client application, client middleware, server middleware, and
server application was modeled according to the specification of our approach. The
model describes the behavior of the system for a single request. Given that multiple
requests have no influence on one another and that all tiers are able to distinguish
between different requests, this abstraction allows us to reduce the state-space needed
to model the system.

Our analysis using model checking focused on the system’s liveness. Given that the
communication channel between the client and the server is asynchronous and that
any messages may be lost, liveness can only be guaranteed under the assumption that
eventually there is a fault-free period of execution. Moreover, as processes may crash,
one must assume that these will also eventually remain fault-free for some period of
the execution. To model this assumption, we allow the failure-injecting process to
terminate its execution, and specify that a response is eventually received by the client
if there are no more failures. In linear temporal logic (LTL) the specified property is
the following:

⇤(faultfree ! }terminates)

The formula is interpreted as follows. Whenever the system becomes fault-free (i.e.,
the failure injector ends its execution) the client will eventually receive the response
and therefore terminate the execution of a request. The symbol “faultfree” was defined
as the failure injector ending its execution and the symbol “terminates” was defined as
the client application reaching its final statement.

The correctness of the model with respect to the liveness claim was checked using Spin
version 6.1.0. The formula is found to be correct by the verifier in 2 hundredths of a
second, for a system totaling 5.8⇥103 states and 2.2⇥104 transitions (with partial order

128

A Reliable Conversation-Based Solution for Request-Response Interactions

reduction enabled). This increases our confidence in the correctness of our approach
regarding liveness.

5.4.3 Design of an Exactly-once Middleware

+ send(Message message)
+ receive() : Message
- serialize(Message message) : byte[]
- deserialize(byte[] data) : Message
- writeSize(int size)
- readSize() : int
+ set_message_listener (MessageListener ml)
+ close()

- message_listener : MessageListener
Messenger

Service Handler A Service Handler B

+ activate(EOMiddleware m)
Service Handler

+ read(byte[] data)
+ write(byte[] data)
+ close()

Transport Handle

Transport Layer

<<owns>>
<<owns>>1

1 1

+ main(String[] args) : void
Server

<<owns>>

1

1

<<activates>>

1

*

1*
+ accept() : TransportHandle
+ close()

- local_address
Passive Transport Handle

+ main(String[] args) : void
Client

<<creates>>

*

1
<<activates>>

1

*

+ accept(): ServerEoMiddleware
+ close()

Passive EO Middleware
<<owns>>*<<creates>>

1*

<<owns>>

Session Layer

1

Application Layer

+ set_body(Object body)
+ get_body() : Object
+ add_header(String attribute, Object value)
+ get_header(String attribute): Object
+ remove_header(String attribute) : Object
+ set_header(HashMap <String,Object> header)
+ get_headers() : HashMap <String,Object>

- header : HashMap <String,Object>
- body : Object

<<Serializable>>
Message

1

1

1

+ on_message(Message message)

<<interface>>
Message Listener

1

+ send(Message message)
+ receive() : Message

- REQUEST_TIMEOUT
- timer : Timer
- timestamps:<Integer imd,Long t>

Client
EO Middleware

*

<<uses>>

1

+ save(int connId, int msgId, byte[]
message)
+ delete(int connId, int msg_id)
+ clear(int connId)
+ get_state(int connId) : collection<Integer
mid, byte[] message>

Connection Logger

*

+ send(Message message)
+ receive() : Message

Server
EO Middleware

<<uses>>

1 0..1

<<uses>>

1*

+ get_handlerId() : int
+ get_max_reconn_time() : int
+ set_max_reconn_time(int t)
handshake()
reconnect()
+ close()

+ enum ConnectionType {NEW, RECOVERY}
type : ConnectionType
handlerId : int
MAX_RECONN_TIME : int

Connection Handler
+ register_handler(ConnectionHandler h) : int
+ deregister_handler(int handlerid)
+ get_event(int handlerid, int timeout) : Event
+ put_event(int handlerId, Event event)
+ get_handler(int handlerId) : ConnectionHandler
- generate_identifier() : int
+ clear() : void

- handlers: <Integer handlerId, ConnectionHandler h> collection
- events : <Integer handlerId ,Event event> collection

Handlers Synchronizer

+ put(Message m)
+ get(int n): Message
+ remove(int n)
+ clear()

- buffer : list <id,message>
Message Buffer

<<owns>>

1 1

+ recover_state()

- sent_id
- received_id

EO Middleware

- handle : TransportHandle
- data_read : int

Event

Figure 5.5: Design of exactly-once request-response middleware

Figure 5.5 presents the design of an application with an exactly-once request-once
middleware implementing the protocol explained above. As shown, in this design, we

129

Chapter 5

use the Messenger design pattern, presented in Chapter 4, to implement the message-
based send and receive operations; the Connection Handler design pattern presented in
Chapter 3, to handle connection crashes; and some extra components to implement the
actions that must be taken for request retransmission, preventing request re-execution,
and endpoint crashes.

As shown, the central component of the design is the EO Middleware, which extends the
Messenger’s functionalities for exchanging messages and owns one Message Buffer, to
keep the requests and responses until being respectively replied or acknowledged as
explained in the protocol. Since the client and server’s actions are different in the
session-based exactly-once protocol, specially when they send and receive messages,
the EO Middleware is extended by two different components: Client EO Middleware

and Server EO Middleware. Moreover, Each Client EO Middleware owns a timer
and keeps the timestamp of the sent requests in order to enable retransmission of
requests after a predefined timeout (REQUEST_TIMEOUT), while the Server EO

Middleware does not need it.

In order to enable recovery from connection crashes, the EO Middleware extends
the Connection Handler, so that its properties and functionalities are passed to the
exactly-once middleware. EO Middleware keeps the identifier of the last message sent
and the last message received respectively in sent_id and received_id, to support the
recovery process. The abstract methods of handshake() and reconnect must be im-
plemented properly in the Client EO Middleware and Server EO Middleware. Dur-
ing the handshake procedure, a unique identifier is assigned to the connection and is
kept in handlerId, which is an attribute of the Connection Handler. After recovery
from connection crashes the client and server middleware exchange the identifier of
the connection, allowing the server to distinguish the new connection from a recovery
connection, and the identifier of the last message sent and received, allowing the peers
to retransmit the requests and responses that are lost due to crashes.

To enable recovery from endpoint crashes, the EO Middleware requires another compo-
nent, the Connection Logger, to save the requests or responses in stable storage. This
component provides an interface to save messages with their identifier and the identi-
fier of the connection (handlerId), to which the messages belong; delete messages of a
given connection; entirely remove the state of a given connection (for example, when
it is closed); and finally re-build the state of a given connection (list of the messages
that are not replied or acknowledged yet). The Connection Logger is shared between

130

A Reliable Conversation-Based Solution for Request-Response Interactions

several EO Middlewares, so it provides static and thread-safe methods to accomplish
the aforementioned operations.

To recover from endpoint crashes, the EO Middleware provide the method re-
cover_state() to the application layer, which is called to read and rebuild the state
of the connection from the stable storage. Here, we assume that the application layer is
responsible to keep the general state of the Service Handlers, including the connection
identifier and destination address.

5.5 Conclusion

This chapter first focused on the at-least-once and at-most-once protocols for conversa-
tion patterns. Then, it focused on the strongest and most difficult reliability semantics,
exactly-once. We first proposed an application-level protocol guaranteeing exactly-once
semantics, by combining the at-least-once and at-most-once protocols. Then, the proto-
col is refined for a session-based solution, in order to partially eliminate the complexity
from the application layer. The correctness of both exactly-once protocols is formally
proven. Then, a session-based design solution is proposed, facilitating the development
of request-response applications that require this reliability semantics. We believe that
our solution releases developers from most of the complexities, deriving from crashes,
in the development of their critical applications.

131

Chapter 6

Taxonomy of Reliable

Request-Response Protocols

Communication in distributed systems often takes the form of request-response inter-
actions, where a client uses a channel to send a request to a server that, in turn, sends
back a response. Thus, such pattern typically involves three different roles (client,
server, and channel), which must engage in a very rigid manner, to ensure that the
interaction succeeds. However, the notion of success depends on the application, its
business logic and reliability requirements. Some common reliability semantics used
in this interaction pattern are at-least-once, at-most-once, and exactly-once, which re-
spectively refer to the server executing the request once or more than once; once but
not more than once; and once and only once.

Ensuring exactly-once semantics in a request-response interaction pattern is very diffi-
cult, because all the components involved in the interaction must work correctly even
in presence of failures, which is difficult to ensure when there is no global knowledge
that could be used to facilitate recovery. Due to the complexity involved in providing
exactly-once semantics in request-response interactions, the importance of this relia-
bility semantics in many businesses and peoples’ lives, and the absence of appropriate
solutions, we propose a knowledge base regarding the protocols offering strong reliabil-
ity semantics, their characteristics and complexities.

One possible approach to build this kind of knowledge base is to collect information
about existing protocols from real world applications, by analyzing their architecture

133

Chapter 6

and implementation details or by studying their specifications. In general, this is an
exhaustive and impractical task, first because many critical applications do not provide
the necessary details about their systems, and second because we would be left with
no coverage guarantees regarding all possible protocols. For these reasons, we chose
a different approach, which is based on the formal definition of all reliable request-
response protocols. To create the protocols, we define a set of valid actions for client
and server, generate all possible sequences by interleaving the client and server actions,
eliminate sequences that are invalid (from a reliability perspective), and organize the
valid sequences based on their similarity. We then analyze and classify the protocols
according to their reliability semantics, considering all crashes that may occur, and
their memory requirements. Finally, we analyze several implementations of real online
services that match protocols of our taxonomy.

The remainder of this chapter is organized as follows. Section 6.1 presents an overview
of the approach used for generating reliable protocols for exactly-once request-response
interactions and building the taxonomy. Section 6.2 describes the necessary definitions
and assumptions used to generate all possible protocols. Section 6.3 explains how the
protocols are generated, filtered, and organized in a tree and Section 6.4 presents the
analysis and classification of the generated protocols based on two important aspects,
reliability semantics and memory requirements. Section 6.5 presents the applicability
of our taxonomy to real services. Finally, Section 6.6 concludes this chapter.

6.1 Approach Overview

Our approach to generate a comprehensive set of reliable request-response protocols
includes the following key steps, which we overview in the next paragraphs and describe
in detail in the following sections.

1. Stating definitions and assumptions;

2. Generating, filtering, and organizing protocols;

3. Analyzing and classifying protocols.

The first step consists of stating definitions and assumptions, which precisely define the
scope of the work. They will later help setting rules or restrictions for obtaining the

134

Taxonomy of Reliable Request-Response Protocols

final set of valid protocols. The definitions include basic aspects that should be defined
“a priori”, such as, a set of actions for client and server that might take place in an
interaction. For example, in a request-response communication, the client generates a
request, sends the request to the server, the server processes the request, and sends the
result back to the client. The main challenge in this step is to define a minimum but
complete set of all necessary client and server actions.

The assumptions help regulate the overall process of generating protocols, and the main
challenge is that the assumptions and definitions must be made based on real consid-
erations. Otherwise, the generated protocols cannot solve the problems of real world
applications. As an example, we assume that servers eventually recover, but accept
the possibility that clients may not recover (e.g., browsers). With this type of clients
(i.e., crash-stop clients), the guaranteed reliability semantics that can be achieved by a
reliable exactly-once protocol is at-most-once, because there is no way to ensure exactly-
once when a client crashes. Thus, we consider, not only crash-recovery clients, but also
crash-stop clients to generate both exactly-once and at-most-once protocols. This is a
typical case that emulates a real scenario, and illustrates the necessary mapping to real
environments.

In the second step, we generate all possible sequences, by alternating client and server
actions. Here the main issue is that the number of the sequences generated by inter-
leaving the client and server actions will be infinite because the client and server could
keep exchanging messages forever. Hence, the main challenge, in this stage, is to define
some restrictions to safely (i.e., the restrictions must not prevent the creation of reliable
protocols that might exist in real applications) limit the number of the protocols.

We then eliminate all invalid (or unreliable) protocols, by applying some rules, which are
defined by examining all scenarios that may lead to the violation of the desired reliability
semantics. We then organize the remaining protocols, based on the similarities found
in their sequences of actions. Finally, we classify the reliable protocols according to
their reliability semantics (at-most-once vs. exactly-once) and memory requirements
(e.g., bounded vs. unbounded).

135

Chapter 6

6.2 Definitions and Assumptions

We assume the presence of a client, a server and a channel, all of which might be
faulty. Client and server execute actions, such as generating a request or performing
some computation, and each client or server may execute multiple consecutive actions.
The term protocol refers to a sequence of interleaving client and server actions. For
each of the interleaving points in a protocol, a message exchange is needed. We give
the initiative of sending a message to the client and make the server acknowledge.
Hence, the message exchange starts with the client sending a request to the server,
then the server replies with another message. The exchange of messages continues
until the protocol is completed. If the protocol terminates with a client action, no
further message is required. If the protocol terminates with a server action instead,
the server acknowledges to allow the client to remove the state associated with this
interaction (this also lets the client to resend its message (e.g., request) if it misses a
timely acknowledgment (e.g., response)).

We assume the following crash modes. The server must always recover from crashes;
however, the client may or may not recover (i.e., the client may be either crash-recovery
or crash-stop). Thus, we expect that a server that failed is recoverable, even if this
implies manual intervention; but, we also expect that a client may not recover, which is
also a reasonable assumption. For instance, in the case of web browsers, the user may
simply give up on a particular interaction with a server. To be able to recover from
crashes, crash-recovery servers and clients use stable storage to save their actions, so
that the recovery process can resume from the last saved state. In the case of crash-stop
clients, all data can be kept in volatile memory instead of stable storage.

Channels are assumed to be unreliable but fair, which means that they may lose
messages, but will deliver a message that is sent a sufficient number of times. We also
assume that the channel does not change the content of messages.

A subtle problem, that is of utmost importance in the context of this chapter, has
to do with the ordering properties required from the communication channel. Some
well-known protocols, such as the User Datagram Protocol (UDP), are inherently not
FIFO; however, even TCP does not really offer a fully FIFO channel to applications.
Consider the case where a client sends a request and later gets an exception informing
that the TCP connection is no longer working. If the client tries to open a second TCP

136

Taxonomy of Reliable Request-Response Protocols

connection and the server does not close the first connection on time, old messages may
reach the server out of order. Likewise, in HTTP, a client may discard an HTTP ses-
sion, while messages are still in transit. If the client creates a new session (e.g., the user
restarts the browser or logs in again), before the server deletes the old one, the server
may re-execute a request. Although careful implementations can avoid reordering prob-
lems, we believe that it is worthwhile to run exactly-once request-response protocols
that are guaranteed to work over non-FIFO channels as well. Thus, we assume that
the channel may reorder messages (i.e., it is non-FIFO).

Finally, we assume that the channel, the crash-recovery client, and server eventually
work in a fault-free period for a sufficiently long time to complete the interaction. In
fact, without this assumption, achieving exactly-once semantics is impossible (Fekete
et al., 1993; Halpern, 1987).

With the goal of generating reliable protocols, we define a set of possible client and
server actions that will be later aggregated and combined in sequences. Table 6.1
presents the complete set of client and server actions that are relevant for generating the
reliable protocols. Each line of Table 6.1 includes a symbol that represents the action,
the endpoint where that action takes place, and a short description of the meaning of
the action. The client actions include: generating a request that will be later sent to
the server (g); performing computation using volatile or stable storage (c); atomically
saving a response received and any system state changes to stable storage (.); releasing
all state related to a request from memory (r).

The client may need more than one (c) action if it needs to exchange multiple messages
with the server. This action may result in changes to the system state, thus in this case
crash-recovery clients must atomically perform computation and save the changes and
responses in the storage. Note that we do not assume atomic save and send actions,
which can be quite complex to implement. This means that saving to stable storage is
one action and sending a message is a different separate action. The release (r) ends the
request, by releasing any memory references associated with it (e.g., using a free() or
equivalent operation) and also, in crash-recovery clients, by deleting the related state
from storage. After the client atomically saves a response to stable storage (.), when it
crashes and resumes it will not generate (and send) the original request again, since it
already has the corresponding response in stable storage.

137

Chapter 6

As we can see in Table 6.1, the server executes slightly different operations. When
possible, we use capital letters to distinguish the server from the client. The “C” action
refers to perform computation using volatile or stable storage that may or may not result
in the generation of a message for the client; the “;” action refers to atomically saving a
response and any system state changes to stable storage; and “D” refers to deleting all
state associated with a given request from stable storage. Note that this latter action
differs from the release operation (r), where the client releases all references to a given
request (although crash-recovery clients may also optionally delete state from stable
storage). Since a server must recover from failures, all state associated with a request
is saved in stable storage, thus the “D” operation (used, for instance, when the server
has been informed that the client received a response) must delete that information
from the storage.

Table 6.1: Client and server set of actions

Action Endpoint Description
g client Generate a request.
c client Perform computation using volatile or stable storage.
. client Atomically save a response and any system state

changes to stable storage (only in crash-recovery
clients).

r client Release all memory references to a request. Crash-
recovery clients may delete all state related to the re-
quest from stable storage.

C server Perform computation using volatile or stable storage,
which may result in generating a response.

; server Atomically save a response and any system state
changes to stable storage.

D server Delete all state related to a request from stable storage.

There is no symbol to identify a send operation because each interleaving point in the
protocols means that a message is sent from one endpoint to another. A final remark
regarding the unique identifier of the requests is necessary, at this point. Although we
could expect the “g” action to generate the identifier, we found cases where the server
creates such identifier (e.g., in a “C” operation).

In Table 6.2, we identify the actions that may require the use of stable storage, with
respect to crash-stop clients (in at-most-once interactions), crash-recovery clients (in
exactly-once interactions), and also the server. In Table 6.2, “Y es” means that stable
storage must be used and “No” means that it is not used. The term “Maybe” means that

138

Taxonomy of Reliable Request-Response Protocols

it may or may not be used, and in either case, the desired goal (guaranteed exactly-once
or at-most-once semantics) is achieved. Note that, in addition to the normal case (i.e.,
no failure), we also consider (when applicable) the action in the context of a recovery
procedure and this may have implications on the use of stable storage.

As we can see in Table 6.2, the request generation (“g”) does not need stable storage
in crash-stop clients. Their nature disallows them from saving requests or state (i.e.,
at least with the goal of using them for recovery) and, they will not read the request
or any other data necessary to generate it from stable storage. In the case of crash-
recovery clients, this operation may need to read some data (or even the entire request)
from stable storage to regenerate the request, upon recovery. Since reading from stable
storage is not mandatory (other mechanisms may be used), we use “Maybe” for exactly-
once semantics in crash-recovery clients.

Table 6.2: Storage actions for the reliable protocols

Action Crash-stop client
(at-most-once)

Crash-recovery client
(exactly-once) Server

g No Maybe —
. or ; — Yes Yes
c or C Maybe Maybe Maybe
r or D No Maybe Yes

The “.” action is used only in crash-recovery clients (to save state for recovery purposes),
and not used in crash-stop clients. When recovering from failure, crash-recovery clients
will go back to the previous preserved state, thus, the need for stable storage is manda-
tory in this type of clients. The server must also keep the state in stable storage to be
able to safely recover after a failure. For example, if a failure has occurred after the “;”
action, upon reception of the same request, the server must not do computation (“C”)
again, thus, the “;” action always requires stable storage to send the response of the
repeated request without re-execution.

The computation actions “c” and “C” can either involve computation using stable stor-
age or simply in-memory manipulation of data, this depends on the specific applications.
Note that these actions are just generic computation and do not account for operations
executed in a recovery procedure. For this reason, crash-stop clients, crash-recovery
clients and server all are marked with “Maybe” for the computation action. In general,
with crash-stop clients, since they do not try to recover from endpoint crashes, the

139

Chapter 6

use of stable storage always depends on the application’s business logic and not to the
recovery procedure.

In crash-stop clients, the “r” action simply releases the references to a request from
memory while in crash-recovery clients it may also delete state associated with the
request from stable storage. The “D” also releases references from memory and perma-
nently deletes the associated state from stable storage. Note that the endpoints stop
re-sending a message once they delete all resources associated with a request.

6.3 Generation and Organization of Reliable Protocols

In this section, we present the process from generation to organization of all possible
reliable request-response protocols, through the following key steps:

• Generation of all protocols: Starting with a set of basic constraints (e.g.,
the first action must be the generation of a request by a client), we define all
possible sequences of actions for both client and server. We then exhaustively
combine them in interleaved sequences (i.e., protocols based on alternating client
and server sequences of actions).

• Removal of invalid protocols: We remove invalid protocols, which, for in-
stance, cause multiple processing of the same request or lead peers into inconsis-
tent states.

• Organization of the protocols into a prefix tree: The generated protocols
are organized in a tree structure (each node of the tree is a protocol), according
to the similarity of their actions. For instance, two protocols will be placed under
the same parent if both share the same initial actions.

6.3.1 Generating the Protocols

The first obstacle to generate all possible protocols from interleaving the client and
server actions is that their number is infinite, as the client and server could keep ex-
changing messages forever. To limit the number of protocols, we consider the following
restrictions:

140

Taxonomy of Reliable Request-Response Protocols

• The client must start with a “g” operation;

• The client and server can only save once (“.” or “;”) — this minimizes the number
of operations that involve stable storage;

• Once both client and server save, they do not engage in more message exchanges
(except possibly for releasing memory and deleting state);

• Their interaction prior to saving is limited to two rounds of exchanges, with the
exception of faulty runs, in which client and server may repeat messages, thus
engaging in more than two rounds of exchanges;

• The server does not perform any computation after saving response and deleting
state.

The above-mentioned restrictions allow us to define “gcc.cr” as the largest sequence of
client actions. A client may not execute some of the actions in this sequence (only the
“g” must always be present). For example, crash-stop clients do not need to save data
(.). Computation steps (c) and releasing memory (r) are also not mandatory. The final
“cr” instead of simply “r” may provide a few more options for deletion.

A crash-recovery client may re-generate a given request (or the same identifier) if it
crashes between “g” and “.” (i.e., by returning back to the “g” operation). Otherwise, if
the crash occurs after “.”, the client will return to “.”, but does not need to continue the
protocol because the crash would work as a release (r). Thus, considering “gcc.cr” as the
largest sequence of client actions, we can have the following variants: CLIENT_SEQ

= {“g”, “gcccr”, “gc”, “gc.r”, “gc.”, “gcc.r”, “gcc”, “g.cr”, “g.c”, “gcc.”, “gcc.cr”, “g.”, “gr”,
“gc.cr”, “gc.c”, “gcc.c”, “gcr”, “g.r”, “gccr”, “gccc”}. As an example, a sequence like “gc”
can be applicable to crash-stop clients, as they simply do computation, without saving
state. On the other hand, a crash-recovery client could use “gc.”, which means that the
client does some computation (c) and saves the state or the result of the computation
(.).

Considering the above-mentioned restrictions, we can define the largest sequence of
server actions as “CC;D”. Again, a server may not execute all actions, which results in
the following possible sequences: SERV ER_SEQ = {“CC;”, “C;”, “CC;D”, “C;D”}.
As we can see, in some cases the server does not delete state (e.g., when memory is
unbounded).

141

Chapter 6

In order to enumerate all protocols, we compute the Cartesian product between the
client and server set of action sequences (CLIENT_SEQ and SERV ER_SEQ). For
each element in the resulting set we generate combinations between client and server
actions. These combinations follow two rules: 1) The first action must be executed by
the client and followed by a server action; 2) The order of client and server actions must
be the same before and after the combinations (although they may be interleaved). For
instance, given the element (gc., C;) generated by the Cartesian product, we may have
the protocols “gCc.;”, “gC; c.”, “gCc; .” (among others), but not “Cgc.;” or “g;Cc.”.
An alternation of client and server actions implies an exchange of one message (e.g.,
g ! C). Thus, for each set in the Cartesian product, the number of protocols started
by “g” and followed by the first action of the server is

�ls+lc�2
ls�1

�
, where ls and lc are the

length of the server and client sequences, respectively. Considering the entire product
set we have 1646 possible protocols.

6.3.2 Eliminating Invalid Protocols

After generating the protocols (as described in the previous section), we eliminate
invalid or redundant protocols. Although this step could be integrated in the first step,
we have separated them to decrease implementation complexity. The (non mutually
exclusive) rules for elimination are the following:

(a) The action “.” must not happen before “;”, because at save time (.) the client
cannot be sure that the server will commit; for the same reason, if “.” does not
exist, the client cannot release (r) before “;” (“gC.;” or “gCr;” are incorrect);

(b) The server cannot delete (D) before the client saves (“.”) (e.g., “gC; cD.” is in-
correct) and also before the client uses the result with “c” or “r” (e.g., “gC;Dc”
is incorrect), because the client may re-send or regenerate the request causing a
second execution on the server;

(c) Sequences that repeat actions on the same side, such as “.c”, “cc”, “;C” are useless
and can be removed. We also remove sequences finishing with a “c”, because the
final c is implicit (the protocol must finish with a reply from the server and the
client can continue with any computation from that point on).

142

Taxonomy of Reliable Request-Response Protocols

Restrictions a), b), and c) respectively delete 855, 254, and 507 protocols, for a total of
1646� 855� 254� 507 = 30 protocols.

6.3.3 Organizing the Valid Protocols

In this step, we organize the protocols in a prefix tree, based on the similarity of their
actions. Those with similar initial actions will be under the same branch (e.g., “gC; .”,
“gC; cD” , and “gC; r”). Figure 6.1 presents the prefix tree of protocols. As we can see,
the prefix tree has three main branches that correspond to three families of protocols:
“gCc;” on top, “gCcCc;” in the middle, and “gC;” below (which is similar to Request-
Reply (Spector, 1982)). At level 2 (i.e., the direct children of the root), all protocols
reach the point where the server commits and saves the state to stable storage (“;”) and
may send a message to the client, if necessary. Then, level 3 adds one of three options
for the client: “.”, “c” or “r”. From that level on we have different deletion variants.
Their suffixes are “r”, “D”, “rD” and “Dr” and are common to all families.

6.4 Analyzing and Classifying the Reliable Protocols

In this section, we describe how the protocols presented in the prefix tree can be classi-
fied in meaningful categories. Since we considered both crash-stop and crash-recovery
clients, one important aspect for classification is the reliability semantics offered by
each protocol. Given the explanation regarding non-FIFO channels in Section 6.2, the
classification of the protocols according to memory requirements is another important
aspect in request-response interaction pattern with unreliable and non-FIFO channels.
One of the difficult problems to address in this kind of interactions is the deletion of
memory (or stable storage) used to keep information regarding the messages, as an
improper deletion of a given message may easily violate the desired reliability seman-
tics. Thus, the final part of this section presents and discusses time-based solutions for
deleting memory when implementing the protocols.

6.4.1 Reliability Semantics

We first classify the protocols according to their reliability semantics, and distinguish
them as exactly-once or at-most-once. The protocols where crash-stop clients do not

143

Chapter 6

g

gCc;

gCc;.

gCc;.D

gCc;.r

gCc;.Dr

gCc;.rD

gCc;cD

gCc;r

gCc;cDr

gCc;rD

gCcCc;

gCcCc;.

gCcCc;.D

gCcCc;.r

gCcCc;.Dr

gCcCc;.rD

gCcCc;cD

gCcCc;r

gCcCc;cDr

gCcCc;rD

gC;

gC;.

gC;cD

gC;r

gC;.D gC;.Dr

gC;.rDgC;.r

gC;cDr

gC;rD

Figure 6.1: Organization of the reliable protocols in a prefix tree

save response and state (i.e., without “.”) are shown as octagon nodes in Figure 6.2.
Since the client does not save state, the exactly-once semantics can be violated when
the client crashes, thus these nodes represent at-most-once protocols. The remaining
nodes, where crash-recovery clients (that save state changes) are included, are exactly-
once. As visible in Figure 6.2, the suffixes for at-most-once and exactly-once protocols
are similar among families.

6.4.2 Memory Utilization

The second part of the analysis considers memory requirements and deletion of state
in each protocol. Analysis according to memory requirements is quite important in
reliable request-response interactions with unreliable and non-FIFO channels. In fact,

144

Taxonomy of Reliable Request-Response Protocols

g

gCc;

gCcCc;

gC;

gCc;.

gCc;cD

gCc;r

gCc;.D

gCc;.r

gCc;.Dr

gCc;.rD

gCc;cDr

gCc;rD

gCcCc;.

gCcCc;cD

gCcCc;r

gCcCc;.D

gCcCc;.r

gCcCc;.Dr

gCcCc;.rD

gCcCc;cDr

gCcCc;rD

gC;.

gC;cD

gC;r

gC;.D

gC;.r

gC;.Dr

gC;.rD

gC;cDr

gC;rD

g gCcCc;
T

gCcCc;r

gCcCc;.

gCc;r

gCc;.

gC;.
gC;

gC;r

gC;.r

gCc;

gCcCc;.r

gCc;.Dr

gCc;.rD

gCc;cDr

gCc;rD

gCcCc;.Dr

gCcCc;.rD

gCcCc;cDr

gCcCc;rD

gCc;.D

gCcCc;.D

gCc;cD

gCcCc;cD

gC;.D

gC;cD

gC;.Dr

gC;.rD

gC;cDr

gC;rD

gCc;.r

Incomplete

At-Most-Once

Legend

Unbounded
Server Memory

Unbounded
Client Memory

 Timeout-
Based Deletion

Exactly-Once

Explicit
Deletion

Node Type

Memory
Utilization

Legend

Node Type

Incomplete

At-Most-Once

Exactly-Once

Memory
Utilization

Unbounded
Server Mem.

Unbounded
Client Mem.

Timeout-based
Deletion

Explicit
Deletion

Figure 6.2: Taxonomy of exactly-once and at-most-once protocols

one of the main challenges to address is the deletion of memory used to keep information
regarding the messages, as an improper deletion of a given message may easily violate
the desired semantics. Thus, the following paragraphs discuss timeout-based solutions
for deletion when implementing the protocols.

To avoid re-execution of a request, the server needs to save the state. It can delete
the state whenever it knows that the client received the response and no duplicate
request will arrive later on. The implementation of this scenario is easy using a FIFO
channel, but most channels are non-FIFO. Here, we need to emphasize the common
TCP and HTTP FIFO fallacy, as both, TCP and HTTP plus client sessions, may
reorder messages in the presence of channel failures or client failures, respectively. This
may break naive implementations of exactly-once request-response interactions.

145

Chapter 6

If we consider a non-FIFO channel, it is impossible to know (excluding specific cases) if
a duplicate request will arrive later or not. This turns deletion of state into a problem
for the server, as it needs to avoid re-execution. Consider the following case with the
“gC; .D” protocol: the initial “Request” (transition from g to C, written as g ! C) of
the client does not pass through the channel. The client re-sends the request, receives
the reply and acknowledges (. ! D), letting the server delete all associated state.
Then, the first request finally arrives at the server, causing an undesired re-execution.
On the other hand, memory conservation demands for the deletion of state concerning
processed and completed requests on the server. Hence, we may say that deleting state
is challenging, because: 1) channels may deliver repeated messages out of order and
there is no guarantee that the server will not receive the same request after deleting its
state; 2) even in protocols where the client sends a deletion order to the server (! D)
(e.g., “gC; .D”), deletion may not occur, because the client may crash before sending
the message.

6.4.3 Timeout-Based Deletion of Interaction State

The solution for the problem described in the previous subsection is to use timeouts.
Timeouts can help releasing memory in protocols where the deletion of state cannot be
easily guaranteed (e.g., due to a client failure). In fact, clocks can be used for harmlessly
deleting the state in the “gC;” family of protocols; obviously, only if they have bounded
drifts and if client and server synchronize beforehand, using some mechanisms like
NTP (Mills, 1992), or Christian’s algorithm (Cristian, 1989).

In a timeout-based scenario, at the moment “g ! C” the client sends a timestamp
with the request and keeps both. The server receives the message and associates a
timeout past this timestamp. Once the timeout expires, the server may delete all data
associated with the request and refuse to re-execute afterwards. The client can help
the server releasing memory earlier if it knows that there are no pending messages in
the channel for that request (e.g., because it received all replies). This corresponds to
the “! D” part of the protocols. Also, the server may use the timeout to delete the
state, even if the client does not send the deletion message. In the next paragraphs,
we prove that this “timeout-based deletion” of server state prevents re-execution of
requests.

146

Taxonomy of Reliable Request-Response Protocols

Theorem 1. In the “gC;” prefix protocols with timeout-based deletion, the server exe-
cutes each request at most once.

Proof. For a request sent by the client at time tc, the server sets a timeout that expires
at tc +�, where � is the duration of the timeout. Before this timeout, the server has
the state of the request and does not execute it a second time. After the timeout, the
server discards the requests. Since the client cannot change the timestamp tc of further
copies, no duplicate execution can occur.

� should be much larger than clock skews and channel delivery time, otherwise the
request could fail to reach the server before tc+� according to the server’s clock. One
should notice that if client and server clocks may differ by �, the channel must not take
more than � � � to deliver the message to the server or else the request may not get
there in time.

The initial exchange of the “gCc;” family can offer better solutions for the deletion
problem. When the server first replies (“gC ! c”), it can insert a deadline for the
commit (“gCc !;”). If duplicate messages of the same request arrive, the server
will respond with the same timestamp (or even with the reply, if available). Any
client commit order must include this timestamp. If the client fails to meet the
deadline, the server aborts the request, deletes its state, and refuses to commit
thereon. The server will also not commit if it has no previous information on the
commit request. In this family, the server can delete the state as soon as it receives
a delete order (“! D”), which we name as “explicit deletion”. Nonetheless, to limit
memory utilization, the server may delete the state if the client fails to commit
within a time frame �. For this reason, even crash-recovery clients must ensure that
they do not repeat requests that arrive at the server spaced by an interval larger than �.

Theorem 2. In the “gCc;” prefix protocols with explicit deletion, the server executes
each request at most once.

Proof. Assume that the server committed orders with timestamps ts1 and ts2 for the
same request. Note that the server does not lose committed state even if it crashes.
Hence, the server must have explicitly deleted the state of the request. If this resulted
from a client delete message (“! D”), by definition of the protocols, the client must not

147

Chapter 6

generate new commit orders (even if it crashes). Any other commit order, must still
have been in the channel, and would therefore not match any future timestamp set by
the server for this request, in case the server received an old “g ! C” message, also still
in the channel. If the server deleted the state after time ts1 +�, then ts2 > ts1 +�.

Demonstrating the at-least-once part (to ensure exactly-once) depends on many imple-
mentation details. We already assumed a fair channel and a crash-recovery server, but
we need the following additional properties: 1) the client must recover from crashes or
it must not fail; 2) the server must get the request within the timeout �; and 3) client
and server must agree to execute the protocol. For instance, in banking operations,
banks may request security codes before committing. If the client fails to provide the
correct code, the request will go unanswered. Nonetheless, if we assume that all the
three previous conditions hold, we can discard the intermediate “Cc” or “CcCc” oper-
ations before commitment and restrict our analysis to the “gC;” as the head of family
(because the structure of the tree is the same in the three main families mentioned).
In this case, the evaluation is simple: if the client crashes before sending the request,
it will resume to re-generate and resend the request, according to the definition of “g”.
Since the channel is fair and the server is crash-recovery, it will receive and commit the
request in “;” at least once.

We can now explain the different gray tones in Figure 6.2, from darker to lighter. Pro-
tocols that do not release server memory are the darkest; protocols that do not release
client memory have the second darkest tone; protocols that release client memory but
depend on timeout-based deletion at the server are next (these belong to the “gC;” fam-
ily); finally, protocols that delete client memory and enable explicit deletion of server
memory are white and have solid lines. Note that in this latter case, the server should
also use timeouts, to clean data from clients that crash and do not recover.

As previously discussed, both TCP and HTTP with sessions can easily fail to provide
FIFO ordering, when connections or endpoints crash. To avoid depending on properties
that the channel cannot easily offer (which must be carefully added by the programmer),
reliable protocols should resist to message reordering even when the server deletes the
state of requests. We showed three families of exactly-once protocols that can do this,
with different tradeoffs. The extra initial exchange of messages in the “gCc;” family (or
“gCcCc;”) enables immediate deletion of server data, at the cost of requiring a previous
round of messages per request (“g ! C ! c”), whereas the “gC;” family requires

148

Taxonomy of Reliable Request-Response Protocols

synchronized clocks and does not allow immediate deletion of data, usually forcing the
server to keep data up to a timeout.

6.5 Reliable Protocols in Real Services

The protocols presented in our taxonomy match different types of real software and
on-line services. The simplicity of the shortest family (“gC;”), makes it appealing to
be used in many cases. For instance, the Exactly-Once E-Service Middleware (EOS)
(Shegalov et al., 2002) uses the protocol “gC; .” of this family. In the Shegalov et al.
implementation, the server does not delete the state and the client, which is crash-
recovery, saves all the requests but not their responses. Thus, the client has to send all
the requests again upon recovery. Since the server does not delete the state, exactly-
once is achieved.

Protocols with deletion, such as “gC; .D”, which correspond to Spector’s RRA (Spector,
1982), are implemented in our solutions for at-most-once and exactly-once middleware
of Chapter 5. We are also aware of a metropolitan-scale ticketing system, where clients
are pieces of equipment that periodically send data to a central database. Since this
set of equipments does not grow too large, the server may keep a version number per
client indefinitely. The server does not need to delete the last version number of each
client’s data.

We can find implementations similar to the sequences starting with “gCc;” in on-line
services, although their main goal might be to prevent over-usage of the service and
not to prevent duplicate executions of the same request. For example, many sites use
captchas to prevent automatic submission of forms. The user requests a page (g),
the server computes the page and sends a captcha (C), the user enters the data and
the captcha text (c). Then the server processes the data and replies to the client.
These captchas, which can be served as a unique identifier of invocations, are usually
associated to a timeout window, which is similar to the � timeout mechanism of the
“gCc;” family discussed earlier. Changing the identifier of a request is a pitfall that
may disrupt any delivery guarantees.

We found one implementation of a “gCc;” protocol where the captcha changes on each
reload, thus making all requests seem different and breaking any possibility of ensur-
ing exactly-once semantics. In a cell phone operator (uzo.pt), we found a “gCc;”-like

149

Chapter 6

implementation of a service providing on-line text messages (SMS). Users must fill the
target phone number, the text, and a captcha that may be used as a unique identifier.
The SMS submission page recreates the captcha on each reload of the page (possibly
for security), which ends up providing a different identifier for the same message. This
approach allows neither the user to understand if the request was successful, nor the
site to correlate HTTP requests1.

We tested the uzo.pt service as follows. After submitting an SMS and receiving a
response, if we press the back button of the Safari 7.0.3 web browser and accept to
reload the page, the forms are entirely filled as before, but the captcha text is not the
same anymore (it changes on reload). This happens regardless of the response to the
previous request. If we switch off the network and the response is an error message
from the browser, the behavior is exactly the same, once we turn the network back on.
If a page reload returned the same captcha, we would know that the previous message
did not get through. This type of implementation is simply best-effort, from the point
of view of the reliability semantics.

Longer sequences serve to provide better protection, by using the additional interactions
to request security codes. Banking systems tend to use these more complex protocols,
often of the “gCcCc;” family. In fact, once the client requests a money transfer (g),
the bank will ask for the details (first C), the client will fill them in (first c), the server
will respond with a test (second C) and the client will reply to that test (second c).
After this point, the server can commit (;) and respond, to let the client change page
(r). Only then should the server delete the request (D).

This can ensure an at-most-once semantics, by providing some clues to the user about
the success of his previous attempts. Note however that the first goal of the developers
is likely to be security2.

We also tested an on-line banking site (name not disclosed due to security issues), to
observe to which extent they force the security code repetition. We can refer that
within the same login session, the bank keeps requesting the same code until one uses
it. This lets the user know if the request got through and enables the server to filter

1We must emphasize that the developers of this system and web site may well have as their single
goal to prevent automatic submission of messages. Eensuring at-most-once might not have been their
primary goal. Nevertheless, given the nature of the service, we argue that the invocation semantics is
important here.

2Again, the first goal of the developers is likely to be security, but it is difficult to pick a better case
to demand for invocation reliability.

150

Taxonomy of Reliable Request-Response Protocols

duplicates. However, if the user logs out and then logs in, or if he uses a different
browser in a simultaneous login, the code will be different3.

Many banks also include a case that our tree does not cover: the test may have two
simultaneous messages to the client: a new page for the browser requesting credentials,
and an SMS with a code to insert in the web page, to ensure that only a person with
access to the cell phone can perform the transfer.

Another excellent study for the at-most-once semantics comes from big social networks,
such as Facebook and Twitter. They do not delete server state, to ensure that each
post is new. They apparently follow a simple “gC; r”, where the “g” actually creates
a unique message identifier (unlike the banking). However, we tried to submit the
same message twice, faster than it would be possible to a human. For this, we wrote a
browser extension in JavaScript that submits the same form twice within a configurable
interval. With an interval of 10 ms, we managed to replicate posts in one social network
(we omit its name for security reasons). Why exactly this happens is beyond the scope
of this thesis, but hugely popular sites like Twitter or Facebook are typically backed
by NoSQL databases that do not preserve all the ACID properties.

Some protocols used in real systems may elude our taxonomy. As we mentioned, bank-
ing sites may send two messages instead of one: one for the browser and a confirmation
code for the user’s cell phone. Many developers will also rely on hand-shaking, from
TCP connections to HTTP cookies. They would first set up a session, before repeatedly
invoking reliable operations. This sort of solution is halfway between the “gCc;” (or
even “gCcCc;”) and the “gC;” families, because it requires a single handshake, before
invoking operations in single messages, possibly multiple times.

6.6 Conclusion

In this chapter, we presented an approach designed to generate a comprehensive set
of reliable (exactly-once and at-most-once) protocols. The generated protocols are
organized in a prefix tree and each node of the tree is classified based on the relia-
bility semantics and memory requirements. We believe that this provides a detailed
understanding of reliable request-response interactions and the challenges involved for

3Nevertheless, the bank had a security scheme that suspended the account of the user around the
5th code without response.

151

Chapter 6

ensuring exactly-once or at-most-once semantics, helping developers to build correct
services. In summary, the main contributions of this chapter are as follows.

A Prefix tree of all reliable request-response protocols is presented, which is built upon a
complete set of client and server actions. Both crash-stop and crash-recovery clients are
considered, thus protocols either ensure exactly-once (i.e., with crash-recovery clients)
or at-most-once semantics (i.e., with crash-stop clients). The prefix tree holds three
different families of protocols that clearly match common real-world implementations,
which might be used by developers for their future services and applications and also
to understand if their current applications.

Moreover, an analysis of the protocols is presented by considering their use with unre-
liable and non-FIFO channels and with respect to memory requirements. Accordingly,
some time-based solutions are presented allowing to safely delete the state of the in-
teraction. This analysis and the time-based solutions can be vital for developers to
implement reliable services according to specific requirements or resource restrictions.

Furthermore, we analyzed several implementations of real online services (a mobile
phone operator, a social network application, and a bank) that match protocols of our
taxonomy. The analysis showed the applicability of the taxonomy and pointed out
several pitfalls in the implementation of these services.

152

Chapter 7

Experimental Evaluation and

Discussion

In this thesis, we proposed several solutions for building reliable communication in
distributed point-to-point applications. Our solutions address the main challenges of
reliable stream-based applications (Chapter 3), one-way message-based applications
(Chapter 4), and request-response conversation-based applications (Chapter 5). We
also proposed a taxonomy of all possible reliable request-response protocols, offering
exactly-once and at-most-once guarantees (Chapter 6). This chapter aims to evaluate
these solutions.

The remainder of this chapter is organized as follows. Section 7.1 presents the gen-
eral experimental setup. Section 7.2 presents the experiments and analyzes the results
obtained for the stream-based solution using the Connection Handler design pattern.
Section 7.3 presents the experiments and analyzes the results obtained for the Messen-
ger, Trackable Messenger, and Reliable Messenger. Section 7.4 presents the experiments
and analyzes the results obtained for the Exactly-once Middleware. Finally, Section
7.5 presents the evaluation performed on the taxonomy of reliable request-response
protocols.

153

Chapter 7

7.1 Experimental Setup

We implemented all the solutions proposed in this thesis in Java. Our implementations
of reliable stream-based, message-based, and conversation-based solutions are freely
available online and are respectively named FSocket1 (fault-tolerant socket), FTSL2

(fault-tolerant session-layer), and EoMidd3 (exactly-once middleware).

In our tests, we use two versions for each application: a reliable one, using one of our
reliability solutions, and an unreliable one, without any reliability mechanism. These
applications contain three main operations, Invoke1, Invoke2 and Invoke3. These
operations receive a small string and return another small string (10 bytes). The
major difference between them is that Invoke1 replies immediately, Invoke2 sleeps 1

millisecond (ms) before replying, whereas Invoke3 sleeps 2 ms. Nevertheless, putting
a thread to sleep and waking it up takes around 0.08 ms on the machine where we ran
the server (and 0.15 on the client machine). To determine this number, we ran a single-
threaded program that slept for 1 ms 1000 times. The reason why we used different
sleep times essentially is to emulate scenarios where processing time is negligible or
where there is some processing or access to a database involved.

We used two computers sharing the same Local Area Network (LAN), to run the client
and server endpoints. We ran all the clients on a single process, using different threads
on a Mac OS X, version 10.10.5, with a 2.4GHz Intel Core 2 Duo processor, 4GB of
RAM and 3MB of cache. The server ran on a machine with Linux, version 2.6.34.8,
with a 2.8 GHz Intel processor with four cores, 12 GB of RAM and 8 MB of cache.
Refer to Table 7.1 for details.

Table 7.1: Systems used in the experiments

Endpoint OS CPU Memory

Client Mac OS X
version 10.10.5

2.4 GHz Intel
Core 2 Duo

4 GiB RAM,
3 MiB cache

Server Linux
version 2.6.34.8

2.8 GHz Intel(R)
4 Cores(TM) i7

12 GiB RAM,
8 MiB cache

1https://sourceforge.net/projects/fsocket/
2https://sourceforge.net/projects/ftsl/
3https://sourceforge.net/projects/eomidd/

154

Experimental Evaluation and Discussion

The experiments carried out in this thesis mainly focus on four key aspects: correctness,
performance, overhead, and implementation complexity. To evaluate correctness, we
test the solutions, when they recover from crashes. To do so, we let client and server
exchange data for 5 minutes (each test was repeated 100 times) and use tcpkill to
cause connection crashes and kill to crash the client and server process at random
instants during each test (three crashes per test). We then verify if communication
is resumed without data losses, and whether the desired reliability semantics (e.g.,
exactly-once) is achieved.

To evaluate performance, we measure latency (round-trip-time of a data) and
throughput (number of requests or operations per time unit). Latency is simply the
round-trip-time of the request-response interaction, and includes the transmission time
of the request, waiting time of the request before being served, processing time of the
request, and transmission time of the response. To examine the latency of the proposed
solutions, we send a request to the server and calculate the time taken from sending
the request to receiving the reply from the server. We use the same approach even
for the solutions given for one-way messaging in Chapter 4. In this case, we force the
server to send an acknowledgment message to the client, and then we divide the time
calculated for latency by two. All the results for latency are the average of 1000 trials.
We also measure the latency for an unreliable application with the same operations
to demonstrate performance degradation of the reliable version in comparison to the
unreliable version. The latency degradation is computed according to Equation 7.1.

(Latencyreliable � Latencyunreliable) ⇤ 100/Latencyreliable (7.1)

The throughput is defined as the number of messages processed in a unit of time
(e.g., requests per second). To examine the throughput, we send a large number of
requests (1000 in our tests) to the server without waiting for any response (a different
thread takes care of that), and calculate the time taken from receiving the first request
to sending the last reply (or to finishing the process of the last request, when the
interaction pattern is one-way). We calculate the throughput degradation according to
Equation 7.2.

(Throughputunreliable � Throughputreliable) ⇤ 100/Throughputunreliable (7.2)

155

Chapter 7

To evaluate overhead, we measure the resource utilization in terms of memory and
CPU. To examine the CPU and memory overhead, we set the client to send 100 requests
per second to the server during 5 minutes, which we experimentally observed to be
enough to show the usage of resources. Then, we ran the ps command to periodically
read memory and CPU occupation on the server.

Finally, to evaluate implementation complexity, we measure three important com-
plexity metrics, Lines of Code (LOC), Cyclomatic Complexity (CC), and Nested Block
Depth (NBD) (Jorgensen, 2008). For Lines of Code, we simply count the number of
lines in the source code of the solutions; for cyclomatic complexity, the number of
linearly independent paths through the source code is measured (here it is applied to
the methods of the classes); and for nested block depth, the average depth of nested
blocks in the source code is measured (Fenton and Bieman, 2014). To perform these
measurements, we used Metrics 1.3.6 (Sauer, 2013).

To minimize random and transitory effects on the experiments and possible warm-up
periods, in the performance and overhead tests, we run 20 more tests and ignore the
first 20 results. Moreover, we increase the number of clients from 1 to 1000, to evaluate
the effect of concurrent clients on the performance and resource utilization.

7.2 Evaluation of the Stream-Based Solution

In this section, we present the experimental evaluation carried out on our reliable
stream-based solution, named FSocket. This solution allows recovery from connection
crashes, by using the Connection Handler design pattern, and enables reliable large-
scale stream-based applications using the Multi-Threaded Acceptor-Connector design
pattern, presented in Chapter 3. It works with legacy software and proxy, independently
of the application layer protocol. Thus, there are several issues, including applicability,
good performance, reliability, scalability, simplicity, and working with legacy software
and proxies, that should be experimentally proven by the evaluation.

7.2.1 Demonstration of Applicability

To explore our solution in practice, we used FSocket in two existing servers, an FTP
server and an HTTP server. The FTP server is the ANOMIC open source FTP

156

Experimental Evaluation and Discussion

server (Christen). We called ftANOMIC (Fault-Tolerant ANOMIC) to the reliable ver-
sion of this server, and we made its source code available online (Ivaki and Araujo, a).
We also inserted FSocket into the Apache Tomcat 7.0.13 HTTP connector (Goodwill,
2002) included in JBoss AS 7.1.1 (Fleury and Reverbel, 2003).

To accomplish the modifications in these servers, we simply replaced every TCP
Socket object by an FSocket object in their source code. We also used an equivalent
passive handle in our implementation, called ServerFSocket, to replace all the
ServerSockets. Upon accepting a new connection, the ServerFSocket returns an
FSocket instead of a Socket. Moreover, all the read and write operations done on the
TCP socket’s InputStream and OutputStream must be replaced with the read and
write operations on the FSocket objects. These replacements are summarized below:

FSocket fsocket = new FSocket (server,port)

// instead of

Socket socket = new Socket (server,port)

ServerFSocket serverFSocket = new ServerFSocket(port)

// instead of

ServerSocket serverSocket = new ServerSocket(port)

FSocket fsocket = ServerFSocket.accept()

// instead of

Socket socket = serverSocket.accept()

int read = fsocket.read(data)

// instead of

int read = inputStream.read(data)

fsocket.write(data)

// instead of

outputStream.write(data)

outputStream.flush()

In addition to these changes, we needed to do one more modification in the FTP server,
as the server may listen on more than one port, to accept control and data connections.
For self-containment, we briefly explain the active and passive modes of FTP servers.
In the active mode, the client connects from a random port N to the FTP server
port (usually 21). Then, the client starts listening on port N + 1 and sends a control
message to the server, with the number N+1. The server will then connect back to the
client’s specified data port. In contrast, in the passive mode, the client initiates both
connections to the server. After opening the first TCP connection, the client sends the
PASV command. The server then opens a random port (above 1023) and sends the
number back to the client. The client responds by initiating a new data connection to
the server on that port.

157

Chapter 7

The FTP server in passive mode needed an important change. In this mode, although
the server continuously checks on the command port (usually 21) for new control con-
nections, it checks the data port for connections only once. This will cause a problem
when the connection crashes, because the client’s reconnection to the server will fail
due to the lack of any listener socket on that port. To solve this problem, we forced
the server to keep listening on the data port, until the data connection is closed.

7.2.2 Evaluation of Correctness

To verify the correctness of the Connection Handler design pattern, used by the stream-
based solution, when recovering from connection crashes, we let client and server ex-
change data during 5 minutes (each test was repeated 100 times), and, as said, we use
tcpkill to cause connection crashes at random instants during each test. We then
verify if all data correctly arrive at the destination. The results showed no failures
on the Connection Handler design pattern and its implementation for stream-based
applications. For 100 repetitions of the test, we also observed that, while the first con-
nection establishment to the server takes 15 ms in average, reconnection plus sending
lost messages took an average of 26 ms, which, we believe, is quite fast.

To evaluate the correctness of our solution in compatibility with legacy software and
proxies, we considered different HTTP client-server communication scenarios. In each
scenario, we refer to reliable and non-reliable peers (i.e., client or server), respectively,
as using or not using our reliable communication solution. The scenarios are as follows:
1) a reliable HTTP client communicating with a non-reliable (legacy) JBoss AS; 2) a
non-reliable HTTP client communicating with a reliable JBoss AS; 3) a reliable HTTP
client communicating with a reliable JBoss AS, without any proxy in the middle; 4) a
reliable HTTP client communicating with a reliable JBoss AS via a proxy. Scenarios
1) and 2) are used to show that our solution is compatible with legacy and unreliable
software; and scenarios 3) and 4) are used to show that our design pattern is able to
tolerate connection crashes with and without proxies.

We first used a browser to generate HTTP requests for a set of typical web resources
deployed in the non-reliable JBoss AS. We used those requests within our custom HTTP
client and also used the responses as oracle for comparison with the responses obtained
from the reliable JBoss AS during the tests. For each of the four scenarios, we let client
and server exchange messages during 5 minutes (each test was repeated 10 times).

158

Experimental Evaluation and Discussion

We observed that reliable and non-reliable peers were able to communicate perfectly
in scenarios 1) and 2). To evaluate the ability to recover from crashes (scenarios 3
and 4) without and with proxy, we emulated connection crashes, and observed that
all interactions worked correctly even in the presence of the crashes and all expected
messages were correctly received.

7.2.3 Evaluation of Performance

To begin our performance evaluation, we first measured the latency and throughput
of the application with three different invocations (Invoke1, Invoke2, and Invoke3),
when using the single-threaded (plain) Acceptor-Connector design pattern for handling
concurrent connections. We will use the results of this experiment as a baseline for
comparison and analysis of the next evaluations, where the application uses the Multi-
Threaded Acceptor-Connector design pattern to handle concurrent connections.

Figure 7.1: Latency of the application using the single-threaded Acceptor-
Connector design pattern

Figure 7.1, shows the latency of the application. We get three plots with three dif-
ferent slopes for the three invocations due to the differences in their sleeping time (or

159

Chapter 7

processing time). The slope for the first invocation, with processing time equal to 0, is
close to 0, which means that the latency remains almost at the same level. When the
processing time is zero, the server responds immediately after receiving each request,
and therefore the waiting time of the next requests is almost zero too. In this situation,
the latency only includes the transmission time of the request and response, which is
not very influenced by the number of the clients.

For the other two invocations, the latency significantly increases with the number of
clients that are continuously sending requests. As an example, for Invoke3 the latency
increases from 2.8 to 2051 ms, by increasing the number of clients from 1 to 1000. This
happens because the server is single-threaded, which means that the waiting time of
the requests will increase by increasing the number of requests arriving at the same
time from concurrent clients.

Figure 7.2: Throughput of the application using the single-threaded Acceptor-
Connector design pattern

The last observation is that the transmission time is very low, because client and server
share the same LAN. As previously said, the value shown in Figure 7.1 for the latency of
the first invocation (Invoke1) can represent the round-trip transmission time, because
the the processing time is zero. The comparison between the values shown for the

160

Experimental Evaluation and Discussion

Invoke2 and Invoke3 confirms this observation, because the latency doubles (e.g.,
with 1000 clients, the latency is 1011 for Invoke2 and 2051 for Invoke3) when the
sleeping time doubles. It means that the latency, in our experiments, is not influenced
by the transmission time, but rather influenced by the waiting and processing time in
the server.

Figure 7.2 shows the throughput of the single-threaded application for three invocations.
The results show different throughputs for the distinct invocations, which clearly is
caused by their different sleeping time. Thus, the throughput is expected to be lowest
for Invoke3 and highest for Invoke1, which is proved by the results. With Invoke2,
since its processing time is half of the Invoke3, the throughput is almost doubled
(from 463 to 921 requests per second for 1000 clients). The throughput with Invoke1

becomes extremely high (up to about 423000 requests per second), due to the fact that
its processing time is zero.

The results show that the server behaves consistently during the experiments for these
three invocations, as the throughput first increases radically and then stays almost
constant, even when the number of clients grows. This is caused by the fact that, when
the number of requests is low (less than the processing capacity of the server), the
throughput varies with the number of the requests arriving on the server. When the
number of the requests increases and saturates the processing capacity of the server,
the throughput stays constant.

In the next step, we took similar measurements for an unreliable application that uses a
TCP Socket and a reliable application that uses an FSocket for communication. Both
applications do three invocations and use the Multi-Threaded Acceptor-Connector,
for handling the concurrent connections. Figure 7.3 shows the latency of these two
applications for different numbers of clients.

As the results for Invoke2 and Invoke3 show, the server behaves quite differently
when it uses the multi-threaded Acceptor-Connector design pattern rather than the
plain Acceptor-Connector. In both cases, latency increases very smoothly. In Invoke3,
it just reaches 4 ms when the number of the clients is 1000. This is not the same for
throughput, as we can see in Figure 7.4.

161

Chapter 7

Figure 7.3: Latency of the unreliable (without FSocket) and reliable applications
(with FSocket) using the Multi-Threaded Acceptor-Connector design pattern

Figure 7.4: Throughput of the unreliable (without FSocket) and reliable applica-
tions (with FSocket) using the Multi-Threaded Acceptor-Connector design pattern

162

Experimental Evaluation and Discussion

For both latency and throughput, the results show that the reliable application (with
FSocket) is almost on par with the unreliable application (without FSocket) in perfor-
mance. As shown in the plots, the maximum degradation we had in our evaluation for
latency is less than 1 percent (0.52%). Throughput for the slower invocations, Invoke2
and Invoke3 is pretty much the same in both applications. Invoke1 shows a higher
degradation, but still below 10%. This invocation is indeed the worst case for mea-
suring the FSocket’s performance degradation, because Invoke1 does nothing in the
server, thus exposing all the communication overheads.

We also evaluated the performance with the HTTP client and server in the following
four scenarios: 1) Non-reliable client and server interacting without proxy; 2) Non-
reliable client and server with proxy; 3) Reliable client and server without proxy; 4)
Reliable client and server with proxy. The proxy server used in our tests was Squid 3.1
(Saini, 2011).

Figure 7.5 and Figure 7.6 show the results obtained for latency and throughput. The
plots also show the performance degradation for the reliable application, in comparison

Figure 7.5: Latency of unreliable and reliable HTTP servers in the scenarios with
and without proxy

163

Chapter 7

Figure 7.6: Throughput of unreliable and reliable HTTP servers in the scenarios
with and without proxy

to the unreliable one on the right side vertical axis. As we can see, latency increases
progressively in all cases; the same happens with throughput. In the scenarios with
proxy, the latency is higher in comparison to the scenarios without proxy. The through-
put in all scenarios increases rapidly in the beginning and then stays at the same level,
as expected. The main observation is that the throughput of unreliable applications
in both scenarios, with and without proxy, reaches the same level, although in the
beginning it is slightly higher when there is no proxy. This does not happen for the
reliable application. This difference is caused by the extra control connection and extra
actions taken in FSocket when a proxy exists. However, the important aspect for both
latency and throughput is that, when we compare the scenarios that use reliable peers
with those that use the non-reliable peers, even with proxy, performance degradation
show low values (about 3 percent). In fact, although we have all necessary mechanisms
for reliable communication in place and in operation, performance degradation is quite
small.

In addition to the above evaluation, we also used our reliable FTP server and a growing
number of clients requesting files of two sizes: 6 bytes and 1 GiB. We use the former file

164

Experimental Evaluation and Discussion

size to compute the latency of the requests (the time since the client requests the file to
the time it gets the file), while the latter file serves to compute the throughput (in bits
per second). The higher complexity of setting up a connection should be noticeable
in the latency, whereas memory copies to the Stream Buffer could impact through-
put. However, our results show that the effects of these operations are negligible. We
downloaded files from 1 to 50 clients, observing only a small degradation of latency,
which is common to the non-fault-tolerant version (from 100 ms to 111 ms), whereas
throughput held on at 89 Mbps4, again, with no visible penalty for the fault-tolerant
version. These results were the averages of 10 trials.

7.2.4 Evaluation of Complexity and Overhead

We used these complexity metrics to evaluate the implementation complexity of our
solution. The measurements show that we used 485 extra lines of code in the application
with FSocket in comparison with the plain unreliable application. In addition, the
average cyclomatic complexity per method in both cases is around 1.87, while the depth
of nested blocks of the reliable application is 1.4, close to the 1.26 of the unreliable
application. Table 7.2 summarizes these numbers. These results demonstrate that
providing reliability using our solution is quiet cheap. We took the same measurements
for the FTP server with and without FSocket. The increase in these costs is also
negligible. The Anomic server grew from 2548 to 2677 lines of code; the cyclomatic
complexity did not increase from 4.1; the nested block depth grew slightly from 1.84
to 1.87.

Table 7.2: Implementation complexity of FSocket

Applications Lines of Code
(LOC)

Cyclomatic
Complexity (CC)

Nested Block
Depth (NBD)

With Plain TCP 572 1.873 1.26
With FSocket 1057 1.875 1.40

Regarding resource usage, we again increased the number of clients, and used each
HTTP client to send 100 requests per second during 5 minutes. Figure 7.7 and Figure

4A small, but relevant detail here is that we do not write the files to disk on the client. This allows
this number to be closer to the limit of 100 Mbps.

165

Chapter 7

7.8 show that the overhead in terms of memory (a) and CPU (b) is kept under acceptable
limits.

Figure 7.7: CPU utilization for unreliable and reliable HTTP servers in the scenarios
with and without proxy

Figure 7.8: Memory utilization for unreliable and reliable HTTP servers in the
scenarios with and without proxy

166

Experimental Evaluation and Discussion

The memory used by our reliable server is, as expected, higher than the non-reliable one,
with a maximum overhead of 60%, due to the extra buffering placed on top of TCP. The
CPU overhead is again quite low (maximum of 15%), which is an excellent indication,
as this resource can be many times of critical importance. Moreover, we can see that
both CPU and Memory Usages are higher in the scenarios with proxy. This overhead
is caused by the extra control channel and extra messaging (e.g., acknowledgment
messages) of FSocket when proxies exist.

7.2.5 Discussion

FSocket is a session-based solution for the TCP’s inability to handle connection crashes.
FSocket provides full-duplex communication and supports the same interaction patterns
as TCP. In this section, we showed that FSocket’s performance degradation in all
scenarios is negligible in comparison to TCP’s performance.

Table 7.3: FSocket among other stream-based solutions presented in Chapter 2

Solutions Reliability	Mechanisms Fault	Tolerance Reliability	Semantics

TCP Buffering,	Acknowledgemnt	and	Retransmission,	
None	(regarding	connection	or	endpoint	crashes)

None		(regarding	crashes) Best-effort	(regarding		crashes)

RTP None	(regarding	connection	or	endpoint	crashes) None		(regarding	crashes) Best-effort	(regarding		crashes)
RSocket Buffering	and	Explicit	Acknowledgment Connection	Crashes At-most-once
FSocket Buffering	and	Implicit	Acknowledgment Connection	Crashes At-most-once
FT-TCP Logging Server	Crashes At-most-once

Rocks	&	Racks Buffering	and	Implicit	Acknowledgment,	
Checkpointing,	and	Migration

Connection	Crashes	and	
supports	for	server	crashes

At-most-once

SCTP,	cmpSCTP,	MPTCP Multiple	connections Connection	Crashes At-most-once
ST-TCP,	HotSway,	
HydraNet-FT Active	Replication Server	Crashes At-most-once

ER-TCP Active	Replication	and	Logging Server	Crashes At-most-once

Among other reliable solutions, as presented in Table 7.3, FSocket shares more similar-
ities with RSocket because both use similar mechanisms to tolerate connection crashes.
As with RSocket, it uses an extra level of buffering, to ensure reliable communication.
Its main difference to RSocket comes from the use of a buffering mechanism that does
not always require explicit acknowledgments and an extra control channel.

We also did some simple experiments to compare FSocket with RSocket. Our initial
results showed that RSocket is particularly slow due to Nagle’s algorithm (Rencheng
et al., 2010), which we could not switch off. To do a fair comparison, we have imple-
mented that possibility in RSocket. We then observed that FSocket performance is a

167

Chapter 7

little bit better than RSocket performance in the scenarios without proxy and on par
with it, when there is a proxy.

7.3 Evaluation of the Message-Based Solution

In this section, we evaluate and compare the performance, complexity, and overhead of
the message-based solutions proposed in Chapter 4, including Messenger (M), Trackable
Messenger (TM), and Reliable Messenger (RM). We also verify the behavior of Reliable
Messenger in the presence of connection crashes.

7.3.1 Evaluation of Correctness

To evaluate correctness, we performed a set of tests, to verify the correct functionality
of Messenger, Trackable Messenger, and Reliable Messenger. In the case of Messenger,
we carried out basic functionality tests targeting the correct delivery of messages in
the tests. In Trackable Messenger, we programatically verified the correct exchange of
multi-level acknowledgments and errors. As an illustrative example, to check if error
messages are delivered to the sender’s application, we let the client send messages while
their Confirmation attribute is set to true, and let the server to randomly confirm
the messages with error.

In the case of Reliable Messenger, we verified its correct operation when recovering
from connection crashes. In short, we let the client send messages to the server during
5 minutes, and generated connection crashes, by switching off the network interface at
random instants during communication (we used tcpkill to cause connection crashes
at random instants three times during each test). We then verify if communication is
resumed without data losses. For 100 repetitions of the test, we observed that, even in
the presence of connection crashes, all messages arrived correctly at the server.

7.3.2 Evaluation of Performance

Figure 7.9 shows the latency of three applications (with three invocations), which re-
spectively use the Messenger, Trackable Messenger, and Reliable Messenger. The re-
sults obtained for the application using Messenger are used as baseline to measure the

168

Experimental Evaluation and Discussion

Figure 7.9: Latency of the Messenger, Trackable Messenger, and Reliable Messenger

overhead and performance degradation of the Trackable Messenger, and likewise, the
results obtained for the Trackable Messenger are used to measure the overhead and
performance degradation of the Reliable Messenger.

In all scenarios and with all invocations, the latency increases smoothly by increasing
the number of clients. We see three different levels of latency for different invocations,
due to the different processing time of the invocations. We calculated the latency
degradation of the Trackable Messenger in comparison to the Messenger as well as the
latency degradation of the Reliable Messenger in comparison to the Trackable Messen-
ger. The results showed higher degradation in the former case and very low degradation
in the latter case. The overhead of Trackable Messenger is mainly associated to the
extra operations it has for acknowledgment: assign message identifier, application layer
confirmation, piggyback the acknowledgment information, extract the acknowledgment
information, and periodical acknowledgment.

It is worth mentioning that the maximum imposed degradation belongs to the Invoke1
and when the number of the clients is very low (22.51%), which is the worst case for
measuring the performance degradation. In fact, with all invocations, the degradation

169

Chapter 7

Figure 7.10: Throughput of the Messenger, Trackable Messenger, and Reliable
Messenger

decreases as the number of clients increases. The maximum degradation in all scenarios
is 2.57%, when the number of the clients is 1000. This observation shows that in highly
concurrent applications, the latency imposed by Trackable Messenger will be very low.

The Reliable Messenger, in addition to the extra operations mentioned for the Track-
able Messenger, buffers the messages on send and removes them from the buffer when
acknowledged, but the results show that these operations do not impose a sensible
overhead to the application, as the maximum degradation for latency we observed in
the application using Reliable Messenger is only 1.64 %.

Figure 7.10 shows the results obtained for throughput of the applications using the
different Messengers. Unlike latency that increases smoothly, the throughput increases
rapidly in the beginning, by increasing the number of clients, and then pretty much
levels out. Although our resources did not allow us to increase the number of clients to
more than 1000, the figures show that the slope of the plots starts to decrease rapidly,
by increasing the number of clients to more than 200 clients.

170

Experimental Evaluation and Discussion

Throughput for Invoke1 starts at a very higher value of more than 11000 requests per
second, Invoke2 at about 900 request per second, and Invoke3 at about 450 requests
per second). The plots show that the this difference remains until the end. However, the
most interesting observation is that the performance degradation is very low with both
Trackable Messenger (maximum 4.09%) and Reliable Messenger (maximum 3.77%) in
all scenarios.

The final observation is that we obtained better performance for the application using
FSocket, evaluated in the previous section, than the applications with the Messengers.
We found out that the main source of overhead in Messengers belongs to the serialization
and deserialization operations plus the operations required for writing and reading the
size of the messages.

7.3.3 Evaluation of Complexity and Overhead

To evaluate complexity of the message-based solutions, we measure three important
complexity metrics, Lines of Code (LOC), Cyclomatic Complexity (CC), and Nested
Block Depth (NBD) for using Messenger, Trackable Messenger and Reliable Messenger.

Table 7.4: Implementation complexity of the messengers

Lines of Code
(LOC)

Cyclomatic
Complexity (CC)

Nested Block
Depth (NBD)

Messenger 178 1.33 1.38
Trackable Messenger 338 1.78 1.56
Reliable Messenger (FTSL) 447 1.98 1.58

The measurements, presented in Table 7.4, show that we used 178 lines of code to
implement the Messenger design pattern, 160 extra lines of code to implement the
Trackable Messenger, and 109 more lines of code than the Trackable Messenger, to
implement the Reliable Messenger. In addition to LOC, the cyclomatic complexity
increases from 1.33, to 1.78 in the Trackable Messenger, and to 1.98 in the Reliable
Messenger. In all cases, the number of paths that go through each method, in average,
stays between 1 and 2, which is a very good indication of low complexity in our designs
and implementations (Jorgensen, 2008). The difference between the values for nested
block depth, that increases from 1.38 in Messenger to 1.56 in Trackable Messenger and

171

Chapter 7

Figure 7.11: CPU utilization with Messenger, Trackable Messenger, and Reliable
Messenger

to 1.58 in Reliable Messenger, confirms this fact. In general, these results show how
simple our design solutions are, by taking their functionalities into consideration.

We also measure the CPU and memory usages in three applications that use Messenger,
Trackable Messenger, and Reliable Messenger. Figure 7.11 presents the results obtained
for CPU utilization.

As shown, the extra complexity of Trackable Messenger, in comparison to Messenger,
imposes an extra price in the CPU utilization (maximum 37%) to the applications
with Trackable Messenger and Reliable Messenger. The results for memory utilization,
presented in Figure 7.12, show that the Trackable Messenger has very similar behavior
as Messenger in terms of memory utilization, while the Reliable Messenger has a much
higher overhead (maximum 68%), due to the extra buffering of messages. Further-
more, the results show that the memory overhead in the Reliable Messenger increases
by increasing the number of clients. However, adjusting the time difference between
periodical acknowledgments, which allows the peers to release some space in the buffer,
can help to improve memory utilization, although it may impact on other performance
and overhead parameters like CPU usage.

172

Experimental Evaluation and Discussion

Figure 7.12: Memory utilization with Messenger, Trackable Messenger, and Reliable
Messenger

7.3.4 Discussion

In general, there are two groups of message-based solutions that exist in the literature
and that can offer reliability to the one-way interaction pattern. The first group includes
messaging protocols used in communication, where there is no intermediate broker that
could provide additional reliability guarantees. The second group of solutions include
the presence of a broker that decouples communication and can provide additional
reliable communication guarantees.

Our implementation of the Reliable Messenger is called FTSL, which is a message-
oriented reliable protocol that addresses the limitations of TCP regarding connection
crashes and provides special support for one-way communication. Our solution stands
between the two main groups of solutions, presented in Table 7.5. It provides syn-
chronous communication, like HTTP and HTTPR, with the difference that it is not
based on the request-response interaction pattern, and on the other hand, it offers
supports for one-way messaging, like JMS and MSMQ, but it does not use a broker.
XMPP seems to be more similar, but it does not tolerate faults. The WS-Reliability

173

Chapter 7

and WS-ReliableMessaging, that offer reliable delivery in the presence of failures, are
designed only for SOAP messages. Our solution, besides providing full-duplex commu-
nication for message-based applications offers additional reliability services: it tolerates
connection crashes, and it allows tracking of messages in one-way communication. It is
general-purpose and independent of platform, technology and programming language.
Moreover, neither request-response protocols, nor broker-based solutions for reliable
one-way interaction can compete with our solution in terms of performance. In the
former case, the single-message basis acknowledgment (i.e., one reply for each message
sent), and in the latter case, the extra component in between the sender and receiver,
negatively affect the performance.

Table 7.5: FTSL among other message-based solutions presented in Chapter 2

Solutions Interaction	Patterns Reliability	Mechanisms Fault	Tolerance Reliability	Semantics

HTTP Request-Response,	Synchronous,	
Transient

None		(regarding	crashes) None		(regarding	crashes) None		(regarding	crashes)

XMPP One-way,	Request-Response,	
Synchronous,	Transient

None		(regarding	crashes) None		(regarding	crashes) None		(regarding	crashes)

HTTPR Request-Response,	Synchronous,	
Transient

Buffering,	Logging	&	
retransmission

Connection	and	endpoint	
crashes

Exactly-once	delivery	and		
at-most-once	processing

CoRAL Request-Response,	Synchronous,	
Transient

Active	replication	and	logging Server	crashes At-most-once	delivery

WS-Reliability,	WS-
ReliableMessaging

Request-Response,	Synchronous,	
Asynchronous,	Transient

Buffering	and	retransmission Connection	crashes
At-most-once	delivery	and	

processing

FTSL One-Way,	Synchronous,	Transinet
Buffering	and	retransmission,	and	
multi-level	acknowledgement

Connection	crashes	 At-most-once	delivery

ZeroMQ
One-way,	Request-Response,	

Synchronous,	Asynchronous,	Transient	,	
Persistent

- None At-most-once	delivery

JMS,	AMQP,	MSMQ,	
WebSphere	MQ,	Oracle	AQ One-Way,	Asynchronous,	Persistent	

Broker,	acknowledgment,	and	
support	for	transactions

Connection	crashes	and	
endpoint	crashes

At-most-once	delivery

Finally, the experimental evaluation showed that our reliable solution is simple and
have a quite low overhead, considering the reliability services offered.

7.4 Evaluation of the Conversation-Based Solution

We implemented the protocol and design proposed for the exactly-once middleware of
Chapter 5, in Java. To implement the logging operations of the Connection Logger

with stable storage, we used SQLite 3.8.11, which is a self-contained, embeddable,
zero-configuration SQL database engine (Owens and Allen, 2010). Our implementa-
tion of the exactly-once middleware is called EoMidd. In this section, we measure its
correctness, performance, overhead and complexity.

174

Experimental Evaluation and Discussion

7.4.1 Evaluation of Correctness

Here we evaluate the correctness of the EoMidd implementation, regarding its ability
in recovery from connection, client and server crashes. For evaluating the recovery
procedure, we run the client and server, three times for 5 minutes, to exchange messages,
each time with a different failure scenario (with connection crashes, client crashes or
server crashes). We use tcpkill to cause connection crashes and kill to crash the
client and server processes at random instants during each test. Each test was repeated
10 times.

The results of our experiments showed that the EoMidd could successfully ensure the
exactly-once execution of each request and delivery of its response in all scenarios.

7.4.2 Evaluation of Performance

To measure the performance of our solution, we implemented two request-response
applications: a reliable application that uses EoMidd and an unreliable application
that just uses the Messenger (shown by M in the figures), to implement its message-
based communication. Figure 7.13 presents the latency of these two applications, with
three types of operations, for an increasing number of clients. The results show that
the operations with stable storage can significantly impact latency. The latency of
the unreliable application increases from 0.72 ms for Invoke1 with one client to a
maximum of 6.56 ms for Invoke3 with 1000 clients, while the latency of the reliable
application starts from 1.12 for Invoke1 with one client to 336.26 ms for Invoke3

with 1000 clients. To make sure that the overhead is mainly caused by the logging
operations, we temporarily eliminated these operations from the EoMidd and repeated
the tests. We could observe that the latency of the reliable application without logging
operations is on par with the latency of the unreliable application.

We also measured the throughput of the applications. Figure 7.14 presents the through-
put for an increasing number of clients. Fortunately, the disk operations do not impose
a big overhead on throughput. Unlike the latency case, we do not see a very big differ-
ence between the two applications. The maximum degradation we observed is 8.63%.
In general, the performance degradation is small, by considering the stable storage
operations involved in the exactly-once protocol.

175

Chapter 7

Figure 7.13: Latency without and with the Exactly-once Middleware

Figure 7.14: Throughput without and with the Exactly-once Middleware

176

Experimental Evaluation and Discussion

7.4.3 Evaluation of Complexity and Overhead

Here, we measure the LOC, CC, and NBD of the EoMidd and compare it with the
complexity of Messenger that is extended with the exactly-once middleware, to insert
reliability.

Table 7.6: Implementation complexity of EoMidd

Lines of Code
(LOC)

Cyclomatic
Complexity (CC)

Nested Block
Depth (NBD)

Messenger 178 1.33 1.38
EoMidd 369 1.9 1.62

The measurements, presented in Table 7.6, show that we used 191 lines of code to im-
plement reliability over the Messenger. In addition to LOC, the cyclomatic complexity
increases from 1.33, to 1.90, and the average nested block depth increases from 1.38 to
1.62. These numbers are a good indication of the very low implementation complexity
of EoMidd.

In addition to the implementation complexity, we measure the overhead of the EoMidd
on CPU and memory utilization. The results, as presented in Figure 7.15 and Figure
7.16, show that both memory and CPU utilization increase by increasing the number of
clients in both reliable and non-reliable scenarios. In both cases, a significant overhead
is imposed by our reliability mechanism. In contrast to the proposed stream-based and
message-based solutions evaluated in the previous sections, the results show a higher
overhead on the CPU utilization than in memory utilization in this conversation-based
solution. This difference is mainly caused by the logging operations.

177

Chapter 7

Figure 7.15: CPU utilization without and with the Exactly-Once Middleware

Figure 7.16: Memory utilization without and with the Exactly-Once Middleware

178

Experimental Evaluation and Discussion

7.4.4 Discussion

In this section, we measured and presented the correctness, performance and overhead
of the solution proposed for the exactly-once middleware. The results showed that
implementing the exactly-once protocol proposed is not complex from the software
engineering perspective, but its overhead on latency and CPU utilization is quite high.
However, we believe that our session-based exactly-once protocol and design provide
some clear advantages to developers, by making recovery from connection and endpoint
crashes nearly or completely transparent, and second, because they do not compromise
throughput.

Table 7.7: EoMidd among other conversation-based solutions presented in Chapter
2

Solutions Reliability	Mechanisms Fault	Tolerance Reliability	Semantics
EOS2 Logging Endpoint	crashes Exactly-once	

Phoenix Logging	and	checkpointing Endpoint	crashes Exactly-once	
iSAGA Logging Client	crashes At-least-once	

Exactly-once	middleware Buffering	and	Logging Connection	and	endpoint	crashes Exactly-once	

In comparison to the existing conversation-based solutions, as shown in Table 7.7,
the Exactly-Once Middleware (EoMidd) uses a buffering and logging mechanism to
enable recovery form both connection and endpoint crashes and guarantee exactly-
once semantics. Moreover, EoMidd’s protocol and design, unlike the other solutions, is
presented independently of the platform and programming language.

7.5 Evaluation of the Taxonomy: Cost Analysis

In this section, we present a set of analysis and experiments, to evaluate the overhead of
using a popular reliable request-response protocol in a typical services environment. We
analyze the implementation complexity of the protocols and use a Java implementation
of the TPC-C benchmark (jTPCC) (Barbosa and Tlemsani, 2005) to observe that the
performance impact of running these reliable protocols on a server is negligible.

179

Chapter 7

7.5.1 Analysis of Implementation Complexity

The commit operation (;) might be complex to implement, but developers may use a
single commit to simultaneously change their state and save the response. Deletion of
responses (D) is simpler, as it involves a single database table. Re-issuing a deletion
order is not a problem for the server and, therefore, crashes do not raise any problem
to the protocol.

On the client, the generation (g) may require a unique identifier, but the identifier may
also come from the server (e.g., when the client is a browser). This case, which we
described in the SMS and banking services will certainly involve the use of cookies. To
implement the save operation (.), the client can first save and then send a message to
let the server delete (if the protocol requires so), in a separate step. We never require
an atomic disk write and message send neither in the client nor in the server.

We still need to know the cost to provide reliable invocations, from the server perspec-
tive. The cost for the client is clearer: in the “gCc;” family it involves two round-trip
times, or even a third one, if the client must send a deletion order and does not use an
additional thread for that; the “gCcCc;” will take even longer. Memory costs for the
server depend on the size of the responses and on the time the server keeps them on
disk (and possibly memory), before deleting them.

7.5.2 Evaluation of Performance

To evaluate the throughput degradation, we ran a simple benchmark with the “gCc;”
reliable protocol. We did not consider “gCcCc;”, because in the cases we are aware
of, the extra “Cc” serves to ensure that the correct human is in the loop, thus making
throughput less important. Furthermore, this extra round-trip might affect latency
more than throughput. The other family (gC;) is too simple for conducting a realistic
test.

To evaluate the impact of adding reliable interaction semantics to a service, we carried
out an experimental evaluation using three versions of jTPCC v5.4, an implementation
of the well-known TPC-C (Raab, 1993), which is a benchmark for Online Transac-
tion Processing systems (OLTP). The versions used (and described in the following
paragraphs) are:

180

Experimental Evaluation and Discussion

(a) The default version of jTPCC;

(b) A Java RMI client-server version of jTPCC;

(c) A reliable version of jTPCC (two RMI calls, respective disk operations, plus a
periodical deletion thread).

The standard form of jTPCC is a monolithic application (version a), with multiple
terminals simulating operations on the database. We split the standard jTPCC, to run
the client terminals and the server on different machines, using RMI for the commu-
nication (version b). The TCP connection that RMI first sets up between client and
server is not a problem for us. On the contrary, RMI will try itself to ensure the at-most
once semantics for each exchange of the protocol, for example, the “g ! C” part of the
protocol, which involves a client-to-server message and its response.

In our reliable version of TPC-C (version c), all terminals at the client-side request
transactions to the same remote object of the server. Notice that most RMI implemen-
tations, namely our Oracle Java 1.7.0_51 implementation, will provide multi-thread
access to this remote object and will therefore create parallel requests to the OLTP
system. Since we tried “gCc;”, each client interaction occurs in two separate calls: a
first one to get a timestamp, a second one to execute the operation. The typical server
response to this operation is a text string with nearly 1 KiB. Since it must ensure
at-most-once, the server saves the response on disk.

In some cases, we use a single transaction to run the operation and to save the re-
sponse (committing in the end). In other cases, the requests involve multiple separate
transactions (e.g., with independent queries), and we use an extra transaction to save.
Since the server always needs a timer to delete replies to clients that abruptly cease
interaction, we simply did not use any deletion on the protocol and resorted to a timer.
The server deletes all responses with more than � = 1 minute, every 20 seconds (see
Theorem 2). The precise protocol we ran was “gCc; r” (with no “.”), because we did
not need to protect the client from crashes.

To accomplish the test, 10 simultaneous clients are used to invoke the TPC-C oper-
ations. Table 7.8 presents the results (in transactions per minute - TPM) obtained
for an average of 40 tests. The throughput loss is around 3.5% for the reliable ver-
sion. This value is small enough to suggest that the main additional cost of a reliable
implementation is the extra round-trip times seen by the client.

181

Chapter 7

Table 7.8: Throughput of exactly-once version of jTPCC compared with unreliable
ones

TPC-C Version TPM Standard Deviation

a 389.11 42.28
b 389.03 22.69
c 375.37 15.00

As a summary, in this section, we analyzed the implementation complexity of the
operations involved in a reliable request-response protocol. The analysis shows that the
implementation cost of a popular protocol of the taxonomy can be quite low, comparing
to solutions like distributed transactions or other protocols requiring agreement.

182

Chapter 8

Conclusion and Future Work

In this chapter, we summarize the thesis and briefly explain the main achievements of
this research work. Then, we state the research directions that may follow.

8.1 Summary of the Thesis

These days, distributed applications support many businesses and services. However,
given the unreliable nature of distributed systems, providing some guarantees to ap-
plications regarding delivery and utilization of data is a non-trivial and error-prone
task. Tolerating crashes is a very difficult task, due to the incomplete and inconsistent
knowledge in peers about the state of the interactions.

The point-to-point communication model is, by far, the most popular means of com-
munication used to support critical services (e.g., e-commerce, banking, healthcare),
where reliable communication is a primary concern. Within the point-to-point com-
munication model, applications present largely different interaction patterns (e.g., one-
way or request-response, synchronous or asynchronous) and require different reliability
semantics (e.g., ordered delivery, or exactly-once execution), depending on their char-
acteristics and goals. Thus, ensuring the reliability of point-to-point communication
can become an extremely difficult task for developers, which have to make the right
design and development choices (e.g., selecting and configuring the middleware that
provides the right reliability guarantees). To make informed decisions, developers must

183

Chapter 8

be supported by an appropriate knowledge base, or they might end up designing and
deploying applications, whose reliability requirements have not been properly met.

This thesis started by presenting a survey on reliable distributed communication. In
fact, the number of solutions offering some form of reliable communication in distributed
systems is quite large. This is due to the increasing need for highly reliable distributed
applications, but also due to the fact that tolerating distributed component crashes is
quite difficult. Each solution supports a specific interaction pattern, uses some specific
reliability mechanisms, and offers specific reliability semantics. Thus, the number of
combinations available for developers is huge. Selecting the right reliability solution
for an application is quite far from being a trivial task, due to the diversity of imple-
mentation solutions and configurations. In fact, the lack of synthesized information
often leads developers to create their own ad hoc and error-prone solutions for reliable
communication.

In this survey, we classified and analyzed available solutions for distributed commu-
nication, including protocols and middleware, as well as the applications, their spec-
ifications, and reliability requirements. The analysis is performed based on several
key features, including the interaction pattern (e.g., one-way vs. request-response, syn-
chronous vs. asynchronous), the reliability semantics (e.g., at-least-once, at-most-once),
the reliability targets (e.g., stream, message, object, conversation), and the reliability
mechanisms (e.g., Buffering, Acknowledgment and Retransmission). This helped us to
find out the gaps between the state of the art solutions and the reliability requirements
of the applications.

As a result of this survey, it is observed that, in most cases, the more elaborate commu-
nication solutions offering stronger or a larger number of guarantees are purely academic
efforts that can, by no means, compete with the popularity, maturity and importance
of older, more established, albeit poorer solutions, such as TCP. This survey also pro-
vides a knowledge base to researchers and developers that intend to work in the field
of dependable distributed systems.

In the following chapters, this thesis addressed some of the main limitations of TCP for
reliable distributed programming. Over the last few decades, TCP has been one of the
cornerstones of the Internet, for building reliable communication, but it does neither
handle connection crashes, nor provide information about the data sent and received
to facilitate the recovery of crashed connections. Thus, it is totally up to developers to

184

Conclusion and Future Work

rollback communicating peers to some coherent state. In this thesis, we proposed the
Connection Handler design pattern, to facilitate the recovery process, independently of
programming language or platform. This solution is also applicable to other protocols
or middleware like Websockets.

The Connection Handler design pattern is then applied to reliable stream-based ap-
plications (e.g., multimedia streaming) and, by taking several challenges into consid-
eration (e.g., legacy peers and proxies), a complete, reusable, extensible, and efficient
design pattern, named Reliable Transporter Design Pattern, is proposed. This solution
fills the gaps between the reliability requirements of a wide range of applications and
the existing solutions, not by creating a new middleware or library, but by showing
a detailed road map to enable correct and efficient implementation of more reliable
communication.

This thesis also addressed some other limitations of TCP, regarding message-based
communication, particularly, where application peers do not follow a request-response
interaction pattern. TCP is a stream-based protocol and has no means to place ap-
plication layer data into an envelope in order to be sent and received as a message.
Moreover, in TCP-based one-way communication, the sender has no means to deter-
mine whether its messages were received or processed. Furthermore, the limitation of
TCP in recovering from connection crashes are also relevant in this type of applications.

We proposed three design solutions, named Messenger, Trackable Messenger, and Re-
liable Messenger to overcome these limitations. The Messenger, besides offering a
TCP-like full-duplex connection, provides a mean on top of transport layer for sending
and receiving messages. The Trackable Messenger, which uses the Messenger design
pattern to exchange messages, enables tracking of messages during its life cycle by us-
ing multi-level acknowledgments. The Reliable Messenger, besides using the Messenger
and Trackable Messenger for exchanging and tracking messages, tolerates connection
crashes by applying the Connection Handler design pattern.

This thesis further addressed the reliability issue in request-response interactions, in
which the server must execute a given request once and only once (exactly-once se-
mantics). This form of interaction is being used to support business and safety-critical
operations in diverse sectors, such as banking or healthcare. Implementing this reli-
ability semantics in request-response interactions is quite difficult, because the client,
server, and communication channel may fail, potentially requiring diverse and complex

185

Chapter 8

recovery procedures, which may result in duplicate messages being processed at the
server. An exactly-once protocol is proposed and a design pattern, named Exactly-
once Middleware, is presented to facilitate the development of this type of interaction.

We also developed a taxonomy of all possible reliable request-response protocols. To
do this, valid sequences of client and server actions were generated, organized into a
prefix tree, and classified according to their reliability semantics and memory require-
ments. The taxonomy reveals three families of protocols matching common real-world
implementations that try to deliver exactly-once or at-most-once. Some solutions were
also presented, to enable safe deletion of the stored state in all families of protocols.
This taxonomy, with its strict organization of the protocols, provides a knowledge base
and a solid foundation for creating correct services.

Several experiments are carried out in this thesis to demonstrate the applicability of the
solutions proposed, and measure their correctness, performance, overhead, and imple-
mentation complexity. Moreover, some experiments are performed over the taxonomy
of reliable request-response protocols, to explore its applicability in the real-world ap-
plications, and to evaluate the overhead exposed by these exactly-once protocols.

8.2 Future Work

We believe that this thesis increased the knowledge and experience on reliable commu-
nication and design patterns. However, due to time and space restrictions there were
certain topics that we could not explore entirely, but that might be interesting research
directions for the future:

• The Hypertext Transfer Protocol (HTTP) and the Transmission Control Proto-
col (TCP) are the most popular protocols used in the development of web-based
applications. Despite their popularity, their use brings two limitations to applica-
tions and systems that require reliable interactive real-time communications. One
of these limitations comes from HTTP itself, as it follows a strict request-response
paradigm, between clients and servers. This interaction paradigm limits the inter-
active real-time communication between the web parties, because HTTP servers
can only send messages back to clients in response to client requests. Hence, on
one hand, distributed applications and systems are forced to work in this manner,

186

Conclusion and Future Work

even if a reply is not actually needed for some requests; on the other hand, an
HTTP-based server cannot send anything to a client if the client does not ask for
it. Furthermore, TCP connection crashes can interrupt HTTP communication.
Thus, we aim to use the Connection Handler design pattern to offer a solution
for building Fault-Tolerant Bi-Directional Communication in Web-Based Appli-
cations. To make this possible, we can combine WebSocket (Fette and Melnikov,
2011) and the Connection Handler Design Pattern to create a fault-tolerant Web-
socket (FtWebSocket). A preliminary version of this idea is already presented in
(Ivaki and Araujo, 2014). We believe that FtWebSocket can help web-based ap-
plications requiring reliability in their interactive real-time communication. Here
we enumerate three target applications for FtWebSocket:

– Collaborative online editing, where a distributed group of people working di-
rectly on the single copy of a document or board may benefit from improved
communication resilience;

– Online multi-players games. These games allow several players to interact
simultaneously via the Internet. These applications require a real-time in-
teractive communication among players. Reliable protocols must not impair
performance, and all the players must reliably receive all events. FtWeb-
Sockets could be the right solution for this kind of application. In fact, by
imposing no overhead to WebSockets/TCP (apart from the connection mo-
ment), FtWebSockets would not compromise performance in exchange for
reliability;

– Stock market systems. For instance, companies that use dashboard tracking
systems to monitor stock indexes should get up to date and reliable infor-
mation, to take accurate decisions. FtWebSockets may help to stream this
kind of data rapidly and reliably.

• We have already built a taxonomy of reliable request-response protocols. We
intend to model and formally verify the protocols presented in this taxonomy.

• Strong reliability semantics, in particular exactly-once execution of non-
idempotent operations, is very important in business and safety-critical appli-
cations. Ensuring this type of semantics can be extremely difficult and costly due
to the complexity of the necessary mechanisms and operations with stable stor-
age. One excellent solution for this type of applications could be to convert their

187

Bibliography

non-idempotent operations to idempotent operations, as these can tolerate dupli-
cate invocations (Ramalingam and Vaswani, 2013). Thus, having the means that
facilitate the design and implementation of idempotent operations can be vital in
implementing applications where reliable communication is of critical importance.

• Designing and developing applications and systems that function in a hard-real-
time environment with strict timing constraints (e.g., air-traffic control), is a
non-trivial task. Most of these applications require real-time databases to man-
age time-constrained data transactions. With real-time databases, developers
face different challenges when compared to general-purpose database systems
(Bestavros and Fay-Wolfe, 2012). In general, real-time databases hide a major
source of complexity to developers. We believe these complexities and challenges
can be partially tackled, by building design patterns that help to correctly model
and design real-time applications.

• Having design-based solutions does not exclude the need for implementation of
such solutions. This means that the correctness of the implementation must be
evaluated, which brings in the specific need for testing techniques that allow eval-
uating reliable communication implementations. Such techniques might involve
fault injection (e.g., dropping packets, duplicating messages), code analysis, just
to name a few options. The goal should be to provide developers with a way of
verifying if their implementations actually meet the requirements in this specific
scenario. Thus, we believe that using model-based testing (Utting et al., 2012)
can be the right approach to address this problem. Ideally each design pattern
could be presented with a model to test its implementations.

• The difficulty in selecting the right reliable communication solution, which is
shown by the common fallback to the use of a popular but less reliable solution,
like TCP , also suggests that there is a strong need for techniques that help de-
velopers evaluating and selecting solutions. Benchmarking might help developers
with a way of assessing how good a given solution is. In the end, this assess-
ment should allow for comparison of different solutions, thus helping to make
the right selection. However, despite perfectly fitting the needs described, creat-
ing this type of benchmark involves significant challenges, mostly related to the
complexity involved in these scenarios.

188

Bibliography

Abie, H., Savola, R. M., and Dattani, I. (2009). Robust, secure, self-adaptive and
resilient messaging middleware for business critical systems. In Future Computing,
Service Computation, Cognitive, Adaptive, Content, Patterns, pages 153–160. IEEE.

Aghdaie, N. and Tamir, Y. (2009). CoRAL: A transparent fault-tolerant web service.
Journal of Systems and Software, 82(1):131–143.

Alexander, C., Ishikawa, S., and Silverstein, M. (1977). A pattern language: towns,
buildings, construction, volume 2. Oxford University Press.

Alvisi, L., Bressoud, T., and El-Khashab, A. (2001). Wrapping Server-Side TCP to
mask connection failures. IEEE International Conference on Computer Communi-
cations (INFOCOM).

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. (2004). Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33.

Azaiez, M. N. and Bier, V. M. (2007). Optimal resource allocation for security in
reliability systems. European Journal of Operational Research, 181(2):773–786.

Banks, A., Challenger, J., Clarke, P., Davis, D., King, R., Witting, K., Donoho, A.,
Holloway, T., Ibbotson, J., and Todd, S. (2002). HTTPR specification. IBM Software
Group, 10.

Barbosa, R. and Tlemsani, M. (2005). Open source java implementation of the TPC-C
benchmark.

Barga, R., Lomet, D., Paparizos, S., Yu, H., and Chandrasekaran, S. (2003). Persistent
applications via automatic recovery. In Proceedings of the Seventh International
Database Engineering and Applications Symposium, pages 258–267. IEEE.

189

Bibliography

Bestavros, A. and Fay-Wolfe, V. (2012). Real-Time Database and Information Systems:
Research Advances, volume 420. Springer Science & Business Media.

Bicakci, M. V. and Kunz, T. (2012). TCP-Freeze: Beneficial for virtual machine live
migration with ip address change? In The 8th International on Wireless Communi-
cations and Mobile Computing Conference (IWCMC 2012), pages 136–141. IEEE.

Bilorusets, R., Box, D., Cabrera, L. F., Davis, D., Ferguson, D., Ferris, C., Freund, T.,
Hondo, M. A., Ibbotson, J., Jin, L., et al. (2005). Web services reliable messaging
protocol (WS-ReliableMessaging). Specification, BEA, IBM, Microsoft and TIBCO.

Birman, K. P. (1997). Building secure and reliable network applications. Springer.

Birman, K. P. (2012). Group communication systems. In Guide to Reliable Distributed
Systems, pages 369–405. Springer.

Birrell, A. D. and Nelson, B. J. (1984). Implementing remote procedure calls. ACM
Transactions on Computer Systems (TOCS), 2(1):39–59.

Boutros, B. S. and Desai, B. C. (1996). A two-phase commit protocol and its per-
formance. In Proceedings of the Seventh International Workshop on Database and
Expert Systems Applications, pages 100–105. IEEE.

Braden, R., Borman, D., and Partridge, C. (1989). Computing the internet checksum.
ACM SIGCOMM Computer Communication Review, 19(2):86–94.

Brown, N. and Kindel, C. (1998). Distributed component object model protocol–
dcom/1.0. Online, November.

Buchmann, A. and Koldehofe, B. (2009). Complex event processing. it-Information
Technology Methoden und innovative Anwendungen der Informatik und Information-
stechnik, 51(5):241–242.

Burton-Krahn, N. (2002). HotSwap-Transparent server failover for linux. In LISA,
volume 2, pages 205–212.

Canning, R. (2012). Real-Time Web Technologies in the Networked Performance En-
vironment. Ann Arbor, MI: Michigan Publishing, University of Michigan Library.

Carvalho, N., Araujo, F., and Rodrigues, L. (2005). Scalable QoS-based event routing
in publish-subscribe systems. In Fourth IEEE International Symposium on Network
Computing and Applications, pages 101–108. IEEE.

190

Chakradhar, S. T. and Raghunathan, A. (2010). Best-effort computing: re-thinking
parallel software and hardware. In Proceedings of the 47th Design Automation Con-
ference, pages 865–870. ACM.

Chakravorty, S. and Kale, L. V. (2007). A fault tolerance protocol with fast fault recov-
ery. In IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 1–10. IEEE.

Chakravorty, S., Mendes, C. L., and Kale, L. V. (2006). Proactive fault tolerance in
mpi applications via task migration. In High Performance Computing-HiPC, pages
485–496. Springer.

Chandy, K. M. and Lamport, L. (1985). Distributed snapshots: determining global
states of distributed systems. ACM Transactions on Computer Systems (TOCS),
3(1):63–75.

Chockler, G. V., Keidar, I., and Vitenberg, R. (2001). Group communication specifi-
cations: a comprehensive study. ACM Computing Surveys (CSUR), 33(4):427–469.

Christen, M. AnomicFTPD: A freeware FTP server in java. http://

anomic-ftp-server.e-programy.pl/.

Coulouris, G. F., Dollimore, J., and Kindberg, T. (2005). Distributed systems: concepts
and design. pearson education.

Crispin, M. R. (2003). Internet message access protocol-version 4rev1.

Cristian, F. (1989). Probabilistic clock synchronization. Distributed Computing,
3(3):146–158.

Cristian, F. (1991). Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2):56–78.

Daigneau, R. (2011). Service Design Patterns: Fundamental Design Solutions for
SOAP/WSDL and RESTful Web Services. Addison-Wesley Professional, 1 edition.

Dantas, W. S., Bessani, A. N., and Correia, M. (2009). Not quickly, just in time:
Improving the timeliness and reliability of control traffic in utility networks. networks,
9:12.

Douglass, B. P. (2003). Real-time design patterns: robust scalable architecture for real-
time systems, volume 1. Addison-Wesley Professional.

191

http://anomic-ftp-server.e-programy.pl/
http://anomic-ftp-server.e-programy.pl/

Bibliography

Downing, T. B. (1998). Java RMI: remote method invocation. IDG Books Worldwide,
Inc.

Driscoll, K., Hall, B., Sivencrona, H., and Zumsteg, P. (2003). Byzantine fault toler-
ance, from theory to reality. In Anderson, S., Felici, M., and Littlewood, B., editors,
Computer Safety, Reliability, and Security, number 2788 in Lecture Notes in Com-
puter Science, pages 235–248. Springer Berlin Heidelberg.

Dutta, K., VanderMeer, D., Datta, A., and Ramamritham, K. (2001). User action
recovery in internet sagas (isagas). In Technologies for E-Services, pages 132–146.
Springer.

Egwutuoha, I. P., Chen, S., Levy, D., Selic, B., and Calvo, R. (2012). A proactive
fault tolerance approach to high performance computing (HPC) in the cloud. In
The Second International Conference on Cloud and Green Computing (CGC), pages
268–273. IEEE.

Ekwall, R., Urbán, P., and Schiper, A. (2002). Robust TCP connections for fault
tolerant computing. In Proceedings of the Ninth International Conference on Parallel
and Distributed Systems, pages 501–508. IEEE.

Elnozahy, E. N., Alvisi, L., Wang, Y.-M., and Johnson, D. B. (2002). A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Surveys
(CSUR), 34(3):375–408.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec, A.-M. (2003). The many
faces of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131.

Evans, C., Chappell, D., Bunting, D., Tharakan, G., Shimamura, H., Durand, J.,
Mischkinsky, J., Nihei, K., Iwasa, K., Chapman, M., et al. (2003). Web services
reliability (WS-Reliability), ver. 1.0. joint specification by Fujitsu, NEC, Oracle,
Sonic Software, and Sun Microsystems.

Feather, C. D. (2006). Network news transfer protocol (NNTP), rfc 3977,
https://tools.ietf.org/html/rfc3977.

Fekete, A., Lynch, N., Mansour, Y., and Spinelli, J. (1993). The impossibility of
implementing reliable communication in the face of crashes. Journal of the ACM
(JACM), 40(5):1087–1107.

192

Feng, W.-c., Liu, M., Krishnaswami, B., and Prabhudev, A. (1998). Priority-based
technique for the best-effort delivery of stored video. In Electronic Imaging’99, pages
286–300. International Society for Optics and Photonics.

Fenton, N. and Bieman, J. (2014). Software metrics: a rigorous and practical approach.
CRC Press.

Ferrari, D. (1990). Client requirements for real-time communication services.

Fette, I. and Melnikov, A. (2011). The websocket protocol.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-
Lee, T. (2009). Rfc 2616, hypertext transfer protocol–http/1.1, 1999. URL
http://www. rfc. net/rfc2616. html.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382.

Fleury, M. and Reverbel, F. (2003). The JBoss extensible server. In Proceedings of the
ACM/IFIP/USENIX 2003 International Conference on Middleware, pages 344–373.
Springer-Verlag New York, Inc.

Galdun, J., Takac, L., Ligus, J., Thiriet, J., and Sarnovsky, J. (2008). Distributed con-
trol systems reliability: consideration of multi-agent behavior. In The 6th Interna-
tional Symposium on Applied Machine Intelligence and Informatics, pages 157–162.
IEEE.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional.

Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004). Rain-
bow: Architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54.

Garro, A. and Tundis, A. (2015). On the reliability analysis of systems and sos: the
RAMSAS method and related extensions. IEEE Systems Journal, 9(1):232–241.

Gartner, F. C. (1999). Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys (CSUR), 31(1):1–26.

193

Bibliography

Gawand, H., Mundada, R., and Swaminathan, P. (2011). Design patterns to implement
safety and fault tolerance. International Journal of Computer Applications, 18(2):6–
13.

Gawlick, D. (1998). Messaging/queuing in oracle8. In IEEE 29th International Con-
ference on Data Engineering (ICDE), pages 66–66. IEEE Computer Society.

Gharbi, G., Alaya, M. B., Diop, C., and Exposito, E. (2013). Aoda: an autonomic and
ontology-driven architecture for service-oriented and event-driven systems. Interna-
tional Journal of Collaborative Enterprise, 3(2/3):167–188.

Goodwill, J. (2002). Apache jakarta tomcat, volume 1. Springer.

Gray, J. and Reuter, A. (1993). Transaction Processing: Concepts and Techniques.
Morgan Kaufmann.

Gray, J. N. (1979). A discussion of distributed systems. IBM Thomas J. Watson
Research Division.

Guerraoui, R. and Schiper, A. (1996). Fault-tolerance by replication in distributed
systems. In Reliable Software Technologies-Ada-Europe’96, pages 38–57. Springer.

Haerder, T. and Reuter, A. (1983). Principles of transaction-oriented database recovery.
ACM Computing Surveys (CSUR), 15(4):287–317.

Halpern, J. Y. (1987). Using reasoning about knowledge to analyze distributed systems.
Annual Review of Computer Science, 2(1):37–68.

Hanmer, R. (2013). Patterns for fault tolerant software. John Wiley & Sons.

Hart, J. (2003). Web Sphere MQ: connecting your applications without complex pro-
gramming. IBM WebSphere Software White Papers.

Helland, P. (2012). Idempotence is not a medical condition. Communications of the
ACM, 55(5):56–65.

Herring, S., Stein, D., and Virtanen, T. (2013). Pragmatics of computer-mediated
communication, volume 9. Walter de Gruyter.

Hintjens, P. (2013). ZeroMQ: Messaging for Many Applications. " O’Reilly Media,
Inc.".

194

Hohpe, G. and Woolf, B. (2003). Enterprise Integration Patterns — Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley Professional.

Hohpe, G. and Woolf, B. (2004). Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional.

Holzmann, G. J. (1997). The model checker SPIN. IEEE Transactions on software
engineering, (5):279–295.

Holzmann, G. J. (2004). The SPIN model checker: Primer and reference manual,
volume 1003. Addison-Wesley Reading.

Horrell, S. (1999). Microsoft message queue. Enterprise Middleware.

Huebscher, M. C. and McCann, J. A. (2008). A survey of autonomic computing-degrees,
models, and applications. ACM Computing Surveys (CSUR), 40(3):7.

Iosif, R. (1998). The promela language.

Ivaki, N. and Araujo, F. Fault-tolerant AnomicFTPD: A fault-toleant freeware FTP
server in java. https://sourceforge.net/projects/ftanomic/.

Ivaki, N. and Araujo, F. An open-source java implementation of the exactly-once
middleware. https://sourceforge.net/projects/eomidd/.

Ivaki, N. and Araujo, F. An open-source java implementation of the reliable messenger.
https://sourceforge.net/projects/ftsl/.

Ivaki, N. and Araujo, F. An open-source java implementation of the stream-based re-
liable transporter design pattern. https://sourceforge.net/projects/fsocket/.

Ivaki, N. and Araujo, F. (2014). Fault-tolerant bi-directional communications in web-
based applications. In The 20th IEEE International Conference on Parallel and
Distributed Systems (ICPADS), pages 833–836. IEEE.

Ivaki, N., Boychenko, S., and Araujo, F. (2014). A fault-tolerant session layer with
reliable one-way messaging and server migration facility. In IEEE 3rd Symposium on
Network Cloud Computing and Applications (NCCA 2014), pages 75–82. IEEE.

Ivaki, N., Laranjeiro, N., and Araujo, F. (2015). A taxonomy of reliable request-
response protocols. In The 30th ACM/SIGAPP Symposium On Applied Computing
(SAC). ACM.

195

https://sourceforge.net/projects/ftanomic/
https://sourceforge.net/projects/eomidd/
https://sourceforge.net/projects/ftsl/
https://sourceforge.net/projects/fsocket/

Bibliography

Ji, X., Ma, Y., Ma, R., Li, P., Ma, J., Wang, G., Liu, X., and Li, Z. (2015). A
proactive fault tolerance scheme for large scale storage systems. In Algorithms and
Architectures for Parallel Processing, pages 337–350. Springer.

Jin, H., Xu, J., Cheng, B., Shao, Z., and Yue, J. (2003). A fault-tolerant TCP scheme
based on multi-images. In IEEE Pacific Rim Conference on Communications, Com-
puters and signal Processing (PACRIM 2003), volume 2, pages 968–971. IEEE.

Johnson, D. B. (1989). Distributed system fault tolerance using message logging and
checkpointing. Technical report, DTIC Document.

Jones, S., Wilikens, M., Morris, P., and Masera, M. (2000). Trust requirements in
e-business. Communications of the ACM, 43(12):81–87.

Jorgensen, P. C. (2008). Software Testing: A Craftsman’s Approach. Auerbach Publi-
cations, 3rd edition.

Knight, J. C. (2002). Safety critical systems: challenges and directions. In Proceedings
of the 24rd International Conference on Software Engineering (ICSE 2002), pages
547–550. IEEE.

Koloniari, G., Ntarmos, N., Pitoura, E., and Souravlias, D. (2011). One is enough:
distributed filtering for duplicate elimination. In Proceedings of the 20th ACM in-
ternational conference on Information and knowledge management, pages 433–442.
ACM.

Kopetz, H., Damm, A., Koza, C., Mulazzani, M., Schwabl, W., and Senft, C. (1989).
Distributed fault-tolerant real-time systems: The mars approach. IEEE Micro,
9(1):25–40.

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. (1992). Providing high availability
using lazy replication. ACM Transactions on Computer Systems (TOCS), 10(4):360–
391.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Lamport, L. (1987). Leslie lamport’s home page. http://research.microsoft.com/

en-us/um/people/lamport/.

196

http://research.microsoft.com/en-us/um/people/lamport/
http://research.microsoft.com/en-us/um/people/lamport/

Lann, G. L. (1997). An analysis of the ariane 5 flight 501 failure-a system engineering
perspective. In Proceedings of International Conference and Workshop on Engineer-
ing of Computer-Based Systems, pages 339–346. IEEE.

Laverdiere, M.-A., Mourad, A., Hanna, A., and Debbabi, M. (2006). Security design
patterns: Survey and evaluation. In Canadian Conference on Electrical and Com-
puter Engineering (CCECE’06), pages 1605–1608. IEEE.

Lee, P. A. and Anderson, T. (2012). Fault tolerance: principles and practice, volume 3.
Springer Science & Business Media.

Liao, J., Wang, J., and Zhu, X. (2008). cmpSCTP: An extension of SCTP to support
concurrent multi-path transfer. In IEEE International Conference on Communica-
tions (ICC 2008), pages 5762–5766. IEEE.

Linington, P. F., Milosevic, Z., Tanaka, A., and Vallecillo, A. (2011). Building enterprise
systems with ODP: an introduction to open distributed processing. CRC Press.

Lui, M., Gray, M., Chan, A., and Long, J. (2011). Scaling your spring integration
application. In Pro Spring Integration, pages 529–559. Springer.

Maier, M. W. (1996). Architecting principles for systems-of-systems. In INCOSE
International Symposium, volume 6, pages 565–573. Wiley Online Library.

Marwah, M., Mishra, S., and Fetzer, C. (2003). TCP server fault tolerance using
connection migration to a backup server. In null, page 373. IEEE.

Marwah, M., Mishra, S., and Fetzer, C. (2005). A system demonstration of ST-TCP.
In Proceedings of the International Conference on Dependable Systems and Networks
(DSN 2005), pages 308–313. IEEE.

McLean, S., Williams, K., and Naftel, J. (2002). Microsoft. net remoting. Microsoft
Press.

Mills, D. (1992). Network time protocol (version 3) specification, implementation and
analysis.

Mok, A. K. (1983). Fundamental design problems of distributed systems for the hard-
real-time environment.

Myers, J. and Rose, M. (1996). Post office protocol-version 3. Technical report, STD
53, RFC 1939, May.

197

Bibliography

Natarajan, B., Gokhale, A., Yajnik, S., and Schmidt, D. C. (2000). DOORS: Towards
high-performance fault tolerant CORBA. In International Symposium on Distributed
Objects and Applications, pages 39–48. IEEE.

Northcutt, J. D. and Kuerner, E. M. (1992). System support for time-critical applica-
tions. In Network and Operating System Support for Digital Audio and Video, pages
242–254. Springer.

Nowicki, B. (1989). Nfs: Network file system protocol specification. Technical report.

Owens, M. and Allen, G. (2010). SQLite. Springer.

Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and
directions. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE 2003), pages 3–12. IEEE.

Paterson, I., Smith, D., Saint-Andre, P., and Moffitt, J. (2010). Xep-0124: bidirectional-
streams over synchronous HTTP (BOSH). Draft Standard, July.

Pietzuch, P. R. and Bacon, J. M. (2002). Hermes: A distributed event-based middleware
architecture. In Proceedings of the 22nd International Conference on Distributed
Computing Systems Workshops, pages 611–618. IEEE.

Pleisch, S., Kupšys, A., and Schiper, A. (2003). Preventing orphan requests in the
context of replicated invocation. In Proceedings of the 22nd International Symposium
on Reliable Distributed Systems, pages 119–128. IEEE.

Popescu, A., Constantinescu, D., Erman, D., and Ilie, D. (2007). A survey of reliable
multicast communication. In Proceedings of the 3rd EURO-NGI Conference on Next
Generation Internet Networks.

Postel, J. (1981). RFC793: transmission control protocol. Information Sciences Insti-
tute, 27:123–150.

Postel, J. (1982). Simple mail transfer protocol, rfc 5321,
https://tools.ietf.org/html/rfc5321. Information Sciences.

Postel, J. and Reynolds, J. (1985). Rfc 959: File transfer protocol.

Protocol, U. D. (1980). RFC 768 j. postel ISI 28 august 1980. Isi.

Raab, F. (1993). TPC-C - The Standard Benchmark for Online transaction Processing.

198

Ramalingam, G. and Vaswani, K. (2013). Fault tolerance via idempotence. ACM
SIGPLAN Notices, 48(1):249–262.

Reis, D. and Miranda, H. (2012). FTRMI: fault-tolerant transparent RMI. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, pages 511–518.
ACM.

Rencheng, J., Xiao, M., Lisha, M., and Liding, W. (2010). A design of efficient trans-
port layer protocol for wireless sensor network gateway. In The 2nd International
Conference on Signal Processing Systems (ICSPS 2010), volume 1, pages V1–775.
IEEE.

Rentsch, T. (1982). Object oriented programming. ACM Sigplan Notices, 17(9):51–57.

Richards, M., Monson-Haefel, R., and Chappell, D. A. (2009). Java message service.
" O’Reilly Media, Inc.".

Roman, R., Zhou, J., and Lopez, J. (2013). On the features and challenges of security
and privacy in distributed internet of things. Computer Networks, 57(10):2266–2279.

Rushby, J. (1994). Critical system properties: Survey and taxonomy. Reliability Engi-
neering and System Safety, 43(2):189–219.

Sadjadi, S. M. and McKinley, P. K. (2003). A survey of adaptive middleware. Michigan
State University Report MSU-CSE-03-35.

Saini, K. (2011). Squid Proxy Server 3.1: Beginner’s Guide. Packt Publishing Ltd.

Saint-Andre, P. (2011). Extensible messaging and presence protocol (XMPP): Core.

Sauer, F. (2013). Metrics 1.3. 6.

Scharf, M. and Ford, A. (2013). Multipath tcp (MPTCP) application interface consid-
erations. Technical report.

Schmidt, D. C. (1995). Reactor: an object behavioral pattern for concurrent event de-
multiplexing and event handler dispatching. In Pattern languages of program design,
pages 529–545. ACM Press/Addison-Wesley Publishing Co.

Schmidt, D. C. (1996). Acceptor-connector: an object creational pattern for connect-
ing and initializing communication services. Pattern Languages of Program Design,
3:191–229.

199

Bibliography

Schmidt, D. C., O’Ryan, C., Kircher, M., Pyarali, I., et al. (2000). Leader/followers-a
design pattern for efficient multi-threaded event demultiplexing and dispatching. In
University of Washington. http://www. cs. wustl. edu/˜ schmidt/PDF/lf. pdf. Cite-
seer.

Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. (2003). RTP: a transport
protocol for real-time applications. Technical report.

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., and Sommer-
lad, P. (2013). Security Patterns: Integrating security and systems engineering. John
Wiley & Sons.

Shao, Z., Jin, H., Cheng, B., and Jiang, W. (2008). Er-tcp: an efficient tcp fault-
tolerance scheme for cluster computing. The Journal of Supercomputing, 43(2):127–
145.

Shegalov, G. and Weikum, G. (2006). EOS 2: unstoppable stateful PHP. In Proceed-
ings of the 32nd international conference on Very large data bases, pages 1223–1226.
VLDB Endowment.

Shegalov, G., Weikum, G., Barga, R., and Lomet, D. (2002). EOS: exactly-once e-
service middleware. In Proceedings of the 28th international conference on Very
Large Data Bases, pages 1043–1046. VLDB Endowment.

Shenoy, G., Satapati, S. K., and Bettati, R. (2000). HydraNet-FT: Network support
for dependable services. In Proceedings of the 20th International Conference on Dis-
tributed Computing Systems, pages 699–706. IEEE.

Sloane, N. J. and MacWilliams, F. J. (1981). The theory of error-correcting codes.
North Holland.

Smith, J. (2007). Inside microsoft windows communication foundation. Microsoft Press
Redmond.

So-In, C., Jain, R., and Dommety, G. (2009). PETS: persistent TCP using simple
freeze. In First International Conference on Future Information Networks (ICFIN
2009), pages 97–102. IEEE.

Spector, A. Z. (1982). Performing remote operations efficiently on a local computer
network. Communications of the ACM, 25(4):246–260.

200

Stankovic, J. A. and Ramamritham, K. (1989). Tutorial: hard real-time systems. IEEE
Computer Society Press.

Stewart, R. and Metz, C. (2001). SCTP: new transport protocol for TCP/IP. IEEE
Internet Computing, 5(6):64–69.

Stout, L., Moffitt, J., and Cestari, E. (2014). An extensible messaging and presence
protocol (XMPP) subprotocol for websocket. Technical Report No. RFC 7395.

Tanenbaum, A. S. and Steen, M. V. (2006). Distributed Systems: Principles and
Paradigms. Prentice Hall, 2 edition edition.

Tay, B. H. and Ananda, A. L. (1990). A survey of remote procedure calls. ACM
SIGOPS Operating Systems Review, 24(3):68–79.

Thomson, A., Diamond, T., Weng, S.-C., Ren, K., Shao, P., and Abadi, D. J. (2012).
Calvin: fast distributed transactions for partitioned database systems. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 1–12.
ACM.

Tindell, K. and Burns, A. (1994). Guaranteed message latencies for distributed safety-
critical hard real-time control networks. Dept. of Computer Science, University of
York.

Turner, D., Levchenko, K., Snoeren, A. C., and Savage, S. (2011). California fault
lines: understanding the causes and impact of network failures. ACM SIGCOMM
Computer Communication Review, 41(4):315–326.

Utting, M., Pretschner, A., and Legeard, B. (2012). A taxonomy of model-based testing
approaches. Software Testing, Verification and Reliability, 22(5):297–312.

Vaysburd, A. and Yajnik, S. (1999). Exactly-once end-to-end semantics in CORBA
invocations across heterogeneous fault-tolerant ORBs. In Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systems (SRDS), page 296.

Veljkovic, N., Punt, M., Bjelica, M. Z., and Crvenkovic, N. (2013). TV-centric multi-
player gaming over the cloud for consumer electronic devices. In Third International
Conference on Consumer Electronics-Berlin (ICCEBerlin 2013), pages 1–3. IEEE.

Vinoski, S. (2006). Advanced message queuing protocol. IEEE Internet Computing,
(6):87–89.

201

Bibliography

Waldby, J., Madhow, U., and Lakshman, T. (1998). Total acknowledgements: a ro-
bust feedback mechanism for end-to-end congestion control. In ACM SIGMETRICS
Performance Evaluation Review, volume 26, pages 274–275. ACM.

Wang, R., Salzberg, B., and Lomet, D. (2009). Transaction support for log-based mid-
dleware server recovery. In IEEE 25th International Conference on Data Engineering
(ICDE 2009), pages 353–356. IEEE.

Yoshioka, N., Washizaki, H., and Maruyama, K. (2008). A survey on security patterns.
Progress in informatics, 5(5):35–47.

Zandy, V. C. and Miller, B. P. (2002). Reliable network connections. In Proceedings of
the 8th annual international conference on Mobile computing and networking, pages
95–106. ACM.

202

Re
lia

ble
 D

ist
rib

ute
d

Co
mm

un
ica

tio
n:

De
sig

n
So
lut

ion
s a

nd
 P

rot
oc
ols

Na

gh
me

h
Ra

me
za
ni

Iva
ki

U
N

IV
E

R
S

ID
A

D
E

 D
E

 C
O

IM
B

R
A

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Main Objectives and Approach
	1.3 Results and Contributions
	1.4 Thesis Structure

	2 State of the Art on Reliable Distributed Communication
	2.1 Reliability in Distributed Interactions
	2.1.1 Distributed Interaction Patterns
	2.1.2 Failure Types
	2.1.3 Reliability Semantics
	2.1.4 Reliability Targets
	2.1.5 Reliability Mechanisms

	2.2 Solutions for Reliable Communication
	2.2.1 Stream-Based Solutions
	2.2.2 Message-Based Solutions
	2.2.3 Object-Based Solutions
	2.2.4 Conversation-Based Solutions
	2.2.5 Design Solutions

	2.3 Applications and Reliability Requirements
	2.4 Discussion
	2.5 Conclusion

	3 A Reliable Stream-Based Solution for Distributed Interactions
	3.1 Basic Design for Connection-Based Applications
	3.1.1 Components
	3.1.2 Collaboration Between the Components

	3.2 Connection Handler Design Pattern
	3.2.1 Reliable Endpoint
	3.2.2 Buffer
	3.2.3 Connection Handler
	3.2.4 Handlers Synchronizer
	3.2.5 Event

	3.3 Connection Handler In Stream-Based Applications
	3.3.1 Stream buffer
	3.3.2 Reliable Transporter
	3.3.3 Reliable Stream-Based Application

	3.4 Concurrent Connection Handling
	3.4.1 Supporting High Concurrency
	3.4.2 Scalable Design of Reliable Stream-Based Applications

	3.5 Conclusion

	4 Reliable Message-Based Solutions for One-way Interactions
	4.1 Overview of the Design Solutions
	4.2 Messenger Design Pattern
	4.2.1 Components of the Messenger Design Pattern
	4.2.2 Message Flow Diagram

	4.3 Trackable Messenger Design Pattern
	4.3.1 Components of the Trackable Messenger Design Pattern
	4.3.2 Collaboration between the Components

	4.4 Reliable Messenger Design Pattern
	4.4.1 Components of the Reliable Messenger Design Pattern
	4.4.2 Message Flow Diagram
	4.4.3 Handling Connection Crashes

	4.5 Conclusion

	5 A Reliable Conversation-Based Solution for Request-Response Interactions
	5.1 At-Least-Once Request-Response Interaction
	5.2 At-Most-Once Request-Response Interaction
	5.3 Exactly-Once Request-Response Interaction
	5.3.1 Exactly-Once Protocol
	5.3.2 Demonstration of Correctness

	5.4 Exactly-Once Request-Response Middleware
	5.4.1 Session-Based Exactly-Once Protocol
	5.4.2 Demonstration of Correctness
	5.4.3 Design of an Exactly-once Middleware

	5.5 Conclusion

	6 Taxonomy of Reliable Request-Response Protocols
	6.1 Approach Overview
	6.2 Definitions and Assumptions
	6.3 Generation and Organization of Reliable Protocols
	6.3.1 Generating the Protocols
	6.3.2 Eliminating Invalid Protocols
	6.3.3 Organizing the Valid Protocols

	6.4 Analyzing and Classifying the Reliable Protocols
	6.4.1 Reliability Semantics
	6.4.2 Memory Utilization
	6.4.3 Timeout-Based Deletion of Interaction State

	6.5 Reliable Protocols in Real Services
	6.6 Conclusion

	7 Experimental Evaluation and Discussion
	7.1 Experimental Setup
	7.2 Evaluation of the Stream-Based Solution
	7.2.1 Demonstration of Applicability
	7.2.2 Evaluation of Correctness
	7.2.3 Evaluation of Performance
	7.2.4 Evaluation of Complexity and Overhead
	7.2.5 Discussion

	7.3 Evaluation of the Message-Based Solution
	7.3.1 Evaluation of Correctness
	7.3.2 Evaluation of Performance
	7.3.3 Evaluation of Complexity and Overhead
	7.3.4 Discussion

	7.4 Evaluation of the Conversation-Based Solution
	7.4.1 Evaluation of Correctness
	7.4.2 Evaluation of Performance
	7.4.3 Evaluation of Complexity and Overhead
	7.4.4 Discussion

	7.5 Evaluation of the Taxonomy: Cost Analysis
	7.5.1 Analysis of Implementation Complexity
	7.5.2 Evaluation of Performance

	8 Conclusion and Future Work
	8.1 Summary of the Thesis
	8.2 Future Work

