
RESE ARCH FE ATURE

COMPUTER 66 Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

an average of six unsolved flaws (www.whitehatsec.com/
home/resource/stats.html). These vulnerabilities create and
feed an underground economy based on attacking and
stealing data and resources.

Web applications need a defense-in-depth approach to
avoid and mitigate security vulnerabilities.1 This approach
assumes that every security precaution can fail, so security
depends on having several layers of mechanisms that cover
the failures of each other. To minimize the probability of
successful attacks, software engineering teams must apply
the effort necessary to introduce adequate security precau-
tions. Achieving this goal is only possible by using various
techniques and tools to ensure security in all phases of the
software product’s development life cycle.

SECURITY IN THE SOFTWARE
DEVELOPMENT LIFE CYCLE

Although the software development life cycle can be
divided in different ways, as Figure 1 shows, it usually
includes the following phases, which application develop-
ers can repeat iteratively: initialization, specification and
design, implementation (coding), testing, deployment, and
decommissioning.2

Although developers should address code security
concerns during the entire software product develop-
ment life cycle,3 they should specifically focus on three
key phases:1

T oday’s Web applications can contain dangerous
security flaws. The global distribution of these
applications makes them prone to attacks that
uncover and maliciously exploit a variety of secu-

rity vulnerabilities.
The two most common risks in the Web environment,

injection—namely SQL injection, which lets attackers alter
SQL queries sent to a database—and cross-site scripting
(XSS), are also two of the most dangerous (www.owasp.org/
index.php/Category:OWASP_Top_Ten_Project). Injection
attacks take advantage of improperly coded applications to
insert and execute attacker-specified commands, enabling
access to critical data and resources. XSS vulnerabilities
exist when an application sends user-supplied data to a
Web browser without first validating or encoding that
content.

Although a 2009 report from the Open Web Applica-
tion Security Project (OWASP) indicated that investment
in security was increasing (www.owasp.org/index.php/
Category:OWASP_Security_Spending_Benchmarks), NTA
Monitor’s 2010 Web Application Security Report demon-
strated that Web security had actually decreased compared
to the previous year (www.nta-monitor.com). In fact, Web
application vulnerabilities represent huge problems for
companies and organizations. According to WhiteHat Se-
curity’s most recent Website Security Statistics Report, 63
percent of assessed websites are vulnerable, each having

Although no single tool or technique can guard against the host of
possible attacks, a defense-in-depth approach, with overlapping
protections, can help secure Web applications.

Nuno Antunes and Marco Vieira

University of Coimbra, Portugal

Defending
against Web
Application
Vulnerabilities

67FEBRUARY 2012

•	 Implementation. During coding, develop-
ers must use best practices that avoid the
most critical vulnerabilities in the specific
application domain. Example practices
include input and output validation, the
identification of malicious characters,
and the use of parameterized com-
mands.4 Although these techniques are
usually effective in avoiding most Web
security vulnerabilities, developers do
not always apply them or they apply them incorrectly
because they lack security-related knowledge. The
“Why Don’t Developers Use Secure Coding Practices?”
sidebar addresses this issue in more detail.

•	 Testing. Many techniques are available for identify-
ing security vulnerabilities during testing, including
penetration testing (by far the most popular tech-
nique), static analysis, dynamic analysis, and runtime
anomaly detection.4 The problem is that developers
often focus on testing functional requirements and
disregard security aspects. Furthermore, existing au-
tomated tools usually provide poor results—either
low vulnerability detection coverage or too many false
positives.

•	 Deployment. At runtime, it is possible to include differ-
ent attack detection mechanisms in the environment.
These mechanisms can operate at different levels and
use various detection approaches. Obstacles to their
use relate to performance overhead and to the false
positives that disrupt normal system behavior.

DEVELOPING SECURE CODE
To produce code without vulnerabilities,4 developers of

business-critical Web-based infrastructures
should follow coding practices that include
a defense-in-depth approach, assuming that
each security precaution can fail. Using an
approach that depends on several layers of
defense mechanisms is extremely important
during implementation, as a unique precau-
tion or protection can be insufficient to avoid
security vulnerabilities.

The characteristics of Web applications
require the use of three distinct lines of de-
fense: input validation, hotspot protection,
and output validation.

Input validation
Most security exploits are only possible

because the target application incorrectly
verifies the input data.1 Therefore, applica-
tions must consider all inputs malicious until
proven otherwise, including any data that
comes from untrusted environments.

Input validation is a first line of defense that consists of
reducing an application’s input domain as a whole, acting
directly upon the user-provided values. This type of defense
relies on forcing the input parameters to be within a given
valid domain, or on stopping execution when a user pro-
vides a value outside the domain. In Web applications, this
should start with normalization of the inputs to a baseline
character set and encoding. Then, the application must use
filtering strategies on the normalized inputs, rejecting those
that contain values outside the valid domain. This practice
can avoid many problems in Web applications, which use
positive pattern matching or positive validation to perform
input validation. In these cases, developers establish input
validation routines that identify acceptable inputs, rather
than unacceptable ones. Although developers cannot pre-
dict every type of attack, they should be able to specify all
forms of legal input.

A key issue is that input validation is frequently inad-
equate because an input parameter’s data domain can
allow for the existence of malicious data, independently
of the validation performed. For example, in the case of
SQL injection vulnerabilities, most SQL statements use
a quotation mark as a string delimiter, but that means

Figure 1. Simplified version of a software development life cycle.

Initialization Speci�cation
and design Implementation

Decommissioning Deployment

Testing

WHY DON’T DEVELOPERS USE SECURE
CODING PRACTICES?

E xperience shows that the failure to use secure coding practices relates to
training and education: developers cannot prevent security flaws in code

if they do not know how. Unfortunately, most computer science programs
lack courses about secure design and coding or security testing.

Some developers give less importance to security than to functional require-
ments because they consider security boring and uninteresting: it does not
directly contribute to developing new and exciting applications. In fact, many
developers think that someone else should take care of security, like network
management staff. But what developers do not know is that their code is the
main target of attackers.

Another reason for neglecting security is that developers often see security
practices as limiting application functionality. However, while building an appli-
cation that allows anyone to read data without prior authentication and
authorization might enhance usability, it also lets attackers access data. Includ-
ing more features in an application introduces additional potential security
vulnerabilities. In practice, more features usually lead to more hotspots that
attackers can exploit with some imagination and patience. Thus, applications
that are easy for users to access are also easy for attackers to penetrate.

RESE ARCH FE ATURE

COMPUTER 68

attackers can use it to perform a SQL injection attack.4 How-
ever, in some cases, a string input’s domain must allow
the presence of quotation marks, so applications cannot
exclude all the values that contain quotation marks.

Hotspot protection
A second line of defense is necessary to mitigate the

limitations of input validation.
Each type of attack targets a hotspot, a given set of state-

ments in the application’s code that is prone to specific
types of vulnerabilities. Contrary to generic input valida-
tion, in which the application validates or changes inputs
in the context of the entire Web application, this second-
ary defense focuses on protecting only key hotspots, for
instance by guaranteeing that the values actually used in
these lines lie within their input domain.

A specific example is SQL injection attacks, the major-
ity of which use single and double quotation marks. Some
programming languages provide mechanisms for escaping
these characters so that they can be used within an SQL
expression, but only for delimiting values in the statement.4
These techniques, however, have two main problems. First,
more elaborate injection techniques, such as combining
quoting with escaping characters, can circumvent these
mechanisms. Second, introducing characters for escaping
increases the length of the string and thus can cause data
truncation when the resulting string is longer than what
the database allows.

Correctly using parameterized commands is the most
effective way to avoid injection vulnerabilities.1 In this case,
the developer defines the structure of the commands using
placeholders to represent the command’s variable values.
Later, when the application attaches the respective values to
the command, the command interpreter can use them cor-
rectly, without interfering with the command’s structure.

The most well-known use of this technique is database
prepared statements, also called parameterized queries.4
When an application creates a prepared statement, the
statement’s structure goes to the database. The application
uses placeholders—typically question marks or labels—to
mark the query’s variable parts. Afterward, each time the
query executes, the application must bind values to the
corresponding variable part. No matter what the data’s
content, the application will always use the expression as
a value and not SQL code. Consequently, it is impossible to
modify the query’s structure.

To help ensure the correct use of data, many languages
allow typed bindings. However, prepared statements by
themselves cannot fix insecure statements—developers
must use them correctly. For example, using prepared
statements in the same way as regular statements—that
is, building the SQL queries using string concatenation—
instead of using placeholders for the variable part of the
query will result in similar vulnerabilities.

Output validation
Validating the output of a process before it is sent out

prevents users from receiving information they should not
have, such as details about exceptions inside the application
that can help in conducting other attacks. In another ex-
ample of output validation, the protection system searches
an application’s output for critical information, such as a
credit card number, and replaces it with asterisks before
sending it to the recipient. Encoding is a type of output
validation that avoids XSS vulnerabilities.4 If the data sent
to the browser goes into a webpage, it should be encoded
using either HTML or percent encoding, depending on its
destination in the page. This way, even malicious characters
used in XSS attacks become innocuous, but the encoding
preserves the data’s meaning.

DETECTING VULNERABILITIES
Identifying security issues requires not only focusing

on testing the application’s functionalities but also on find-
ing dangerous hidden flaws in the code that attackers can
exploit.5 The two main approaches for detecting vulner-
abilities are white-box analysis and black-box testing.

White-box analysis
White-box analysis consists of examining the code with-

out executing it. Developers can do this in one of two ways:
manually, during code inspections and reviews; or auto-
matically, using automated analysis tools.

Code inspection is the process in which a programmer’s
peers systematically examine the delivered code, search-
ing for programming mistakes.6 Security inspections are
the most effective way to minimize vulnerabilities in an
application; they are a crucial procedure when developing
software for critical systems. Nevertheless, such inspec-
tions usually take a long time, are expensive, and require
deep knowledge of Web security.

A less expensive alternative is code review,6 a simpli-
fied version of inspections that is useful for analyzing less
critical code. Reviews are also done manually, but they do
not include a formal inspection meeting. Several experts
perform the review individually, and a moderator filters and
merges the outcomes. Although also an effective approach,
code review is still quite expensive.

To reduce the cost of white-box analysis, developers
sometimes rely on automated tools, such as static code

Security inspections are a crucial
procedure when developing software
for critical systems.

69FEBRUARY 2012

conducting hundreds or even thousands of tests by hand
for each vulnerability type. The most common automated
security testing tools for Web applications are generally
called either Web security or Web vulnerability scanners.
These scanners allow easy testing of applications against
vulnerabilities. Because they have a predefined set of test
cases adapted to the target application, users only need to
configure the scanner and let it test the application. Once
the scanner completes the test, it reports any detected vul-
nerabilities. While most scanners are commercial tools,
there are also some free application scanners, but these
often have limited use because they lack most of the func-
tionalities of their proprietary counterparts.

Limitations of vulnerability detection
Penetration testing and static code analysis can be

manual or automatic. Because manual tests or inspections
require specialized security resources and are time-con-
suming, automated tools are the typical choice of Web
application developers. An important fact when considering
the limitations of vulnerability detection tools is that testing
for security is difficult. Indeed, measuring an application’s
security is challenging: although finding some vulnerabili-
ties can be easy, guaranteeing that the application has no
vulnerabilities is difficult.1

Both penetration testing and static code analysis tools
have intrinsic limitations. Penetration testing relies on ef-
fective code execution; however, in practice, vulnerability
identification only examines the Web application’s output.
Thus, the lack of visibility into the application’s internal
behavior limits penetration testing’s effectiveness.

On the other hand, exhaustive source code analysis can
be difficult. Code complexity and the lack of a dynamic
(runtime) view might prevent finding many security flaws.
Of course, penetration testing does not require access to the
source code, while static code analysis does.

Using the wrong detection tool can lead to the deploy-
ment of applications with undetected vulnerabilities. Figure
2 compares the effectiveness of well-known and widely
used penetration testing and static analysis tools in the
detection of SQL injection vulnerabilities in Web services.8
Results show that the coverage of static code analysis
tools—including FindBugs, Fortify 360, and IntelliJ IDEA
(anonymized as SA1 through SA3 in the figure)—is typically
much higher than that of penetration testing tools, includ-
ing HP WebInspect, IBM Rational AppScan, Acunetix Web

analyzers. Static code analysis tools vet software code,
either in source or binary form, in an attempt to identify
common implementation-level bugs.4 The analysis per-
formed using existing tools varies depending on their
sophistication, ranging from those that consider only indi-
vidual statements and declarations to others that consider
dependencies between lines of code. Among their other
uses, such as for model checking and data flow analysis,
these tools automatically highlight possible coding errors.
The main problem is that exhaustive analysis is difficult
and cannot find many security flaws because of the source
code’s complexity and the lack of a dynamic (runtime) view.

Although of great importance, the use of static code
analysis tools sometimes reduces programmer productiv-
ity, predominantly because of the false positives reported,
which leads to useless additional work.7 To avoid this situa-
tion, in addition to having adequate time to learn how to use
these tools, developers need policies to ensure correct tool
use. For example, it is necessary to specify rules for clas-
sifying and selecting the warnings that developers should
address. Also, developers must configure the analysis tools
to report only the warnings that are relevant to the cur-
rent development context. Developers who do not adopt
effective practices for using static analysis usually end up
underestimating its real benefits and consequently do not
take advantage of all its functionalities.

Black-box testing
Black-box testing refers to the analysis of program ex-

ecution from an external point of view. In short, it consists
of comparing the software execution outcome with the ex-
pected result.5 Testing is probably the most used technique
for software verification and validation.

There are several levels for applying black-box testing,
ranging from unit to integration to system testing. The test-
ing approach also can be formal (based on models and
well-defined test specifications) or less formal (referred
to as “smoke testing,” a type of rough testing intended to
quickly reveal simple bugs).

The goal of robustness testing, a specific form of black-
box testing, is to characterize the system’s behavior in the
presence of erroneous input conditions. Penetration test-
ing is a special type of robustness testing that analyzes
program execution in the presence of malicious inputs,
searching for potential vulnerabilities. In this approach, tes-
ters apply fuzzing techniques, which consist of submitting
unexpected or invalid items of data, to a Web application
and review its responses, using HTTP requests.4 Testers do
not need to know the implementation details—they test
the application inputs from the user’s point of view. The
number of tests can reach hundreds or even thousands for
each vulnerability type.

Penetration testing tools automatically search for vul-
nerabilities, avoiding the repetitive and tedious task of

The use of static code analysis tools
sometimes reduces programmer
productivity, predominantly because of
the false positives reported, which leads
to useless additional work.

RESE ARCH FE ATURE

COMPUTER 70

dent, the tools’ success is unrelated to the application’s
operational profile or any training process.

Tools that operate at the network level usually monitor
and analyze network traffic to detect attacks before they
reach the Web application. Attack detection tools that work
at the application level analyze requests sent to the applica-
tion and try to take advantage of the application-specific
correlations between server-side programs and param-
eters inside the requests. Tools that work at the resource
level protect resources related to each vulnerability type.
These tools operate below the application level and close
to the protected resource. A common example is IDSs that
detect SQL injection attacks by monitoring accesses to the
database server.

Tools use various strategies to gather the information
about application requests and possible attacks. Some tools
use sniffing strategies to monitor and analyze the data
transferred over the network to observe HTTP traffic, but
encryption, encoding, or encapsulation can limit their ef-
fectiveness. Also, networks can carry large amounts of
data unrelated to the protected application. Other tools
analyze the logs produced by the application or even the
logs produced by the server that is running the application.
Although this strategy does not directly delay requests to
the application, it is limited by the information available
in logs.

Yet another strategy is to introduce a proxy between
the source of requests and the protected application or
resource. This can easily stop attacks because it provides
useful information about the target application or resource,
however it impacts an application’s normal behavior by
introducing undesirable delays.

Limitations of attack detection
Because the specifics of each Web application affect

the performance of attack detection tools, as does the
architectural level at which the tools operate, their real ef-
fectiveness is frequently unknown.9 Research shows that
well-known tools have low effectiveness and only perform

Vulnerability Scanner, and a prototype tool developed at
the University of Coimbra (anonymized as VS1 through
VS4 in the figure). False positives are a problem for both
approaches, but have more impact in static analysis. A key
observation is that different tools implementing the same
approach frequently report different vulnerabilities in the
same code.

The results of studies highlighting the limitations of vul-
nerability tools suggest that it is necessary to improve the
state of the art in vulnerability detection by, for instance,
combining different approaches. Also, developers need to
define mechanisms for evaluating and comparing different
tools so they can select the tools that best fit each develop-
ment scenario.

DETECTING ATTACKS
To prevent attacks against Web applications, software

engineering teams must put in place attack detection
mechanisms, usually called intrusion detection systems
(IDSs) or Web application firewalls (WAFs). Different tools
can function at the application or network level or even at
one of the application’s resources, such as the database,
and they can use diverse approaches such as anomaly de-
tection or signature matching to detect attacks.

Attack detection approaches
Attack detection consists of identifying deviations from

learned behavior. Attack detection tools use approaches
based on either anomaly detection or signatures.8

Anomaly detection tools usually require a training
phase. Training exposes the system to nonmalicious
requests, and the tool observes its behavior at a given ar-
chitectural level and learns the regular operation. These
tools consider the specifics of each Web application, but
can produce many false warnings when the application’s
correct behavior changes or learning is incomplete.

In contrast, signature-based tools look for patterns of a
predefined set of rules or signatures indicating an attack.
Because these signatures are usually application indepen-

Figure 2. (a) Penetration testing versus (b) static code analysis.

VS1(a) VS2 VS3 VS4 SA1 SA2 SA3

100

80

60

40

20

0

Co
ve

ra
ge

 (p
er

ce
nt

)

VS1(b) VS2 VS3 VS4 SA1 SA2 SA3

30

20

15

10

5

0

25

Fa
lse

 po
sit

ive
s (

pe
rce

nt
)

71FEBRUARY 2012

well in specific scenarios.10 Most tools achieve low detec-
tion coverage (less than 20 percent in many cases), and
they can report many false alarms (as high as 50 percent
of the alarms generated). In addition, some tools present
interesting results in particular scenarios, but provide poor
results in others.

Database-level tools generally perform better than ap-
plication-level tools,10 which generate many false positives
from requests that could never successfully attack the da-
tabase. Anomaly-detection-based tools perform better for
simpler applications, while signature-based tools are better
for more complex applications. Tools can learn and better
characterize behavior in simpler applications, consequently
detecting deviations from a pattern more accurately. In fact,
anomaly detection’s success depends on the training phase.
If training is incomplete or if the application’s regular op-
erational profile changes after training, the attack detection
tool’s effectiveness decreases.

Developers who use these tools often lack the training
required to create adequate configurations. This reduces
the tool’s effectiveness, highlighting the importance of
benchmarking methodologies to evaluate and compare
different tools and configurations.10

NEW TRENDS AND DIRECTIONS
Achieving better results and improved effectiveness re-

quires new techniques to overcome the intrinsic limitations
of vulnerability-detection tools. However, overcoming these
limitations is not easy because it requires shifting from
traditional approaches to disruptive methods. The key is
to relax some constraints and combine different methods
to overcome individual limitations.

Acunetix AcuSensor is an example of a commercial
technology that combines black-box scanning with feed-
back obtained during test execution (www.acunetix.com/
websitesecurity/rightwvs.htm). This feedback comes from
sensors previously implanted in the target application’s
code. Acunetix states that this technique finds more vulner-
abilities and indicates exactly where they are in the code,
while reporting fewer false positives.

A recently proposed technique that tries to achieve
similar effects in a less intrusive way uses attack signa-
tures together with interface monitoring to overcome the
limitations of penetration testing for injection vulner-
abilities.11 This is a black-box testing technique because it
only monitors the interface between the application and
the resources related to the vulnerabilities (the database
interface).

The Analysis and Monitoring for Neutralizing SQL-In-
jection Attacks (Amnesia) tool combines static analysis
with runtime monitoring to detect SQL injection attacks.12
It performs static analysis of a Web application’s source
code, building a model of legitimate queries that such ap-
plications generate. At runtime, it monitors dynamically

generated queries, checking for compliance with the stati-
cally generated model. This tool classifies a query that
violates the model as an attack and prevents that query
from accessing the database.

Development processes also must evolve to react to
new threats to Web application security. For example, the
Microsoft Security Development Lifecycle complements
the company’s development process and is particularly
aimed at addressing security issues, including activities
such as specific security training for developing teams.13
According to Microsoft, adopting this process has reduced
the number of security flaws in its software. Although
this is just an example, it shows that work on security
processes for software development is a key issue in the
industry.

Developers must consider security during the entire
software product development and deployment
life cycle. They must apply best practices in secure

coding, perform adequate security testing, and use attack-
detection systems to protect applications at runtime.
Developers need help in this task both with training to
acquire the required skills and the tools to increase their
productivity.

Researchers should find ways to propose innovative
tools that can be easily adopted in the development process
and that are efficient and productive to meet deployment
constraints. In the center of this evolution are the security
testing tools that will continue to be crucial for verifying
and validating applications to detect security vulnerabili-
ties. Nevertheless, new hypotheses must be explored. A
foreseeable possibility is the development of compilers that
not only enforce the use of best coding practices, but also
can automatically fix existing security vulnerabilities.

References
 1. M. Howard and D.E. Leblanc, Writing Secure Code, Micro-

soft Press, 2002.
 2. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of

Software Engineering, Prentice Hall, 2002.
 3. G. McGraw, Software Security: Building Security In, Addison-

Wesley, 2006.
 4. D. Stuttard and M. Pinto, The Web Application Hacker’s

Handbook: Discovering and Exploiting Security Flaws, John
Wiley & Sons, 2007.

 5. B. Arkin, S. Stender, and G. McGraw, “Software Penetration
Testing,” IEEE Security & Privacy, Jan.-Feb. 2005, pp. 84-87.

 6. D.P. Freedman and G.M. Weinberg, Handbook of Walk-
throughs, Inspections, and Technical Reviews: Evaluating
Programs, Projects, and Products, Dorset House, 2000.

 7. N. Ayewah and W. Pugh, “A Report on a Survey and Study
of Static Analysis Users,” Proc. Workshop Defects in Large
Software Systems (DEFECTS 08) ACM, 2008, pp. 1-5.

 8. N. Antunes and M. Vieira, “Comparing the Effectiveness
of Penetration Testing and Static Code Analysis on the

RESE ARCH FE ATURE

COMPUTER 72

Nuno Antunes is a PhD student in the Department of Infor-
mation Science and Technology at the University of Coimbra,
Portugal, where he received an MSc in informatics engineer-
ing. His research interests include methodologies and tools for
developing secure Web applications and services. Antunes is a
member of the IEEE Computer Society. Contact him at nmsa@
dei.uc.pt.

Marco Vieira is an assistant professor in the Department of
Information Science and Technology at the University of Coim-
bra, Portugal. His research interests include dependability and
security benchmarking, experimental dependability evaluation,
fault injection, software development processes, and software
quality assurance. Vieira received a PhD in computer engineer-
ing from the University of Coimbra. He is a member of the IEEE
Computer Society and ACM. Contact him at mvieira@dei.uc.pt.

Detection of SQL Injection Vulnerabilities in Web Services,”
Proc. 15th IEEE Pacific Rim Int’l Symp. Dependable Comput-
ing (PRDC 09), IEEE CS, 2009, pp. 301-306.

 9. E. Biermann, E. Cloete, and L.M. Venter, “A Comparison of
Intrusion Detection Systems,” Computers & Security, Dec.
2001, pp. 676-683.

 10. I.A. Elia, J. Fonseca, and M. Vieira, “Comparing SQL
Injection Detection Tools Using Attack Injection: An Ex-
perimental Study,” Proc. 21st IEEE Int’l Symp. Software
Reliability Eng. (ISSRE 10), IEEE CS, 2010, pp. 289-298.

 11. N. Antunes and M. Vieira, “Enhancing Penetration Testing
with Attack Signatures and Interface Monitoring for the
Detection of Injection Vulnerabilities in Web Services,”
Proc. IEEE Int’l Conf. Services Computing (SCC 11), IEEE CS,
2011, pp. 104-111.

 12. W.G.J. Halfond and A. Orso, “Preventing SQL Injection At-
tacks Using AMNESIA,” Proc. 28th Int’l Conf. Software Eng.
(ICSE 06), IEEE CS, 2006, p. 798.

 13. M. Howard and S. Lipner, The Security Development Life-
cycle, Microsoft Press, 2006.

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

NEW from

ESSENTIAL INDUSTRIAL
IMPLEMENTATIONS
OF FLOATING-POINT
UNITS DURING THE LAST
DECADE: VOLUMES 1 & 2
Edited by Elisardo Antelo
Surveys the industrial design of � oating-point units
during the last decade. This EssentialSet is broken
into two volumes, sold separately.

PDF edition • $15 each ($9 members) • 103 & 79 pp.

Order Online:
computer.org/store

