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Agenda

� Motivations, Research Questions and Methodology

� Geometric Interpretation of Search Operators

� Fitness Landscape of Geometric Operators

� Unification of Evolutionary Algorithms

� Principled Design of Crossover Operators

� Principled Generalization of Search Algorithms

� Unified Theory of Evolutionary Algorithms

� A Vision of the Future

� Conclusions
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Objectives of the Tutorial

� Introduce the Geometric View of Evolutionary Algorithms

� Provide a unifying framework to think intuitively, formally 
and generally about Evolutionary Algorithms across 
Representations

� Give a comprehensive overview of the benefits 
of the Geometric View

� Illustrate a way to bridge Theory and Practice

� Give evidence of general principles behind 
Evolutionary Search

� Think about a desirable future scenario

� Gather ideas, suggestions and criticisms from the 
participants!
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Motivations, 

Research Questions 

and Methodology
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Fragmentation

� Different flavors of (traditional) Evolutionary Algorithms

• Very many variations on each flavors

• It is desirable to have a coherent picture (De Jong)

� Evolutionary Algorithms are very similar:

• Algorithmically irrelevant differences 

(e.g., application domain and phenotype interpretation)

• Algorithmic elements that can be freely exchanged 

(e.g., selection scheme)

� Real difference:

• Solution representation (e.g., binary strings, real vectors)

• Search operators (i.e., mutation and crossover)

� Is there a deeper unity encompassing all Evolutionary 

Algorithms beyond the specific representation?

Practice: ad-hoc operators design

� For every new problem and new solution representation 
search operators are designed ad-hoc

� No systematic way of designing new search operators

• No guidelines or only informal rule-of-thumbs (heuristic)

• Not applicable to all representations/problems (limited scope)

• Mostly for mutation and less for crossover (simple operators)

• Application of guidelines to specific representation is a black art 

(vague)
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Practice: ad-hoc operators design

� No formal thinking about search operator design

• Can we formally define mutation and crossover in general 

for any representation?

• Can we formally derive representation-specific operators 

for any target representation?

• Can we automatically construct representation-specific 

operators from their general definitions?
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Practice: vague meta-heuristics

� Meta-heuristic: a space/problem-independent algorithmic 
template of a search algorithm that can be specified to 
new spaces/problems

• Neighbourhood-based (e.g., local search) vs. 

Representation-based (e.g., evolutionary algorithms)

� Meta-heuristics have vague non-formal definitions

• Can we formally define a meta-heuristic in a 

space/problem independent way? 

• Can we formally specify it to any target space without ad-

hoc adaptations? 

• Can we prove general search properties of a meta-

heuristic?
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Practice: vague meta-heuristics

� New meta-heuristics can be obtained by generalizing 
search algorithms defined on specific representations

• E.g., Particle Swarm Optimization can be generalized from 

continuous to combinatorial spaces

• Is there a formal/systematic way of generalizing search 

algorithms for specific search spaces to (formal) meta-

heuristics?
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Theory: rigorous XOR general

� No general theory (general principles)

• General “theories” are not rigorous 

(e.g., landscape analysis (Merz))

• General theories are not about performance (e.g., modern 

schema theories (Poli), dynamical systems (Stephens))

• Rigorous theory about performance are very problem specific 

(e.g., run-time analysis (Wegner))

• Are there truly general principles common to all 

evolutionary algorithms across representations?

• Is a general rigorous theory of performance possible?
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Theory: relevant to practice XOR rigorous

� No practically useful theory (analysis vs. design)

• Most theories are about algorithm analysis (descriptive)

• Theories of algorithm/operators design (prescriptive):

– Heuristic/not formal (e.g., Building-Blocks (Goldberg), 

Locality (Rothlauf))

– Formal but without performance guarantee 

(e.g., Forma Analysis (Radcliffe))

• Is a general formal theory of algorithm design that 

guarantees some form of performance possible?
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Geometric Framework

� Recombination and mutation across representations 
admit surprisingly simple geometric characterizations 
relating parents and offspring (geometric operators).

� Formalizes and simplifies the relationship between 
representations, search operators, distance of the search 
space/neighbourhood structure, and fitness landscape.

� Allows us to extend the geometric intuition and reasoning 
valid on continuous spaces to combinatorial spaces.

� The geometric team:

• My PhD work + 50 publications with many co-authors

• Other people working on it by their own initiative ☺
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Other Formal Unifying Frameworks

� Radcliffe: formal theory of representations based on 
equivalence classes

� Poli: unification of schema theorem for genetic algorithms 
and genetic programming

� Stephens: EAs unification using dynamical systems and 
coarse graining

� Rowe: theory of representations based on group theory

� Stadler: theory of landscapes which links representations 
and search operators based on algebraic combinatorics
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Geometric Interpretation 
of Search Operators

Metric Space
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Geometric Crossover & Mutation

� Geometric operators are defined on the structure of the 
search space by means of simple geometric shapes, like 
balls and segments. These shapes are used to delimit the 
region of space that includes all possible offspring with 
respect to the location of their parents.

� Geometric crossover: a recombination operator is a 
geometric crossover under the metric d if all its offspring 
are in the d-metric segment between its parents.

� Geometric mutation: a mutation operator is a r-
geometric mutation under the metric d if all its offspring 
are in the d-ball of radius r centred in the parent.

Example of Geometric Mutation

000
001

010 011

100 101

111110

Neighbourhood structure naturally associated with the 
shortest path distance.

�Traditional one-point mutation is 
1-geometric under Hamming distance.



Example of Geometric Crossover

�The traditional crossover is geometric 
under the Hamming distance.
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11010X
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H(A,X)  + H(X,B) = H(A,B)

Accessibility & Probability

� Geometric operators are defined in terms of accessibility:
where to find offspring relative to parents positions.

� More fine-grained classes of geometric operators which 
include the probability of generating offspring are 
possible. 

� For example, in uniform geometric crossover under d
offspring are uniformly distributed on the d-metric 
segment.

� Traditional uniform crossover for binary strings is uniform 
geometric crossover under Hamming distance.
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Uniform Crossover & Uniform Mutation

Uniform geometric crossover:

Uniform geometric ε-mutation:
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Representation-Search Space Duality

� Cartesian duality: via equating points in the plane and 
their coordinate geometric object (e.g., a line) have 
algebraic dual (e.g., a corresponding linear equation in 
the coordinates of the points on the line).

� An analogous duality applies to geometric operators: 
- coordinates that represent a point in a plane = 
representation (e.g., binary string) that represent a point 
in the search space (e.g., hamming space)
- the same geometric operator can be defined in 
geometric terms in terms of spatial relations and, at the 
same time, in can be defined in algebraic terms in terms 
of manipulation of the underlying representation
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Representation-Search Space Duality

� Example: traditional uniform crossover can be defined: 

(i) geometrically as uniform geometric crossover on the 
Hamming space 

(ii) algebraically by how the binary strings representing 
the parents are probabilistically recombined to obtain 
binary strings representing their offspring 

� Algebraic vs. Geometric:

• Operational (implementation) vs. Declarative (specification)

• Representation-specific (no distance) vs. 

Representation-independent (no representation)
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Functional Form

� Geometric Crossover can be also understood as a 
functional form (i.e., higher-order function) taking the 
distance function d as argument and returning the 
specific geometric crossover associated with d.

� Examples of balls and segments for different spaces 
shown earlier were obtained by thinking of metric 
segments and metric balls as functional forms, that when 
instantiated with different distances produce different 
space-specific notions of balls and segments. 

� The geometric definition of a search operator can be then 
applied - unchanged - to different search spaces 
associated with different representations. This, in effect, 
allows us to define exactly the same search operators 
across representations in a rigorous way.
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Abstract Form

� Specific vs. Abstract: 
- specific geometric crossover: d is specified
- abstract geometric crossover: d is fixed but unspecified

� Abstract geometric crossover is an axiomatic object 
whose properties are derived from the metric axioms only

� Search properties of the abstract geometric crossover are 
universal properties that all specific geometric 
crossovers have

� Looking at geometric crossover the abstract way allows 
us to prove very general statements (theory) that hold 
for all geometric crossovers across representations 
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Existential Form

� A recombination is a geometric crossover if it exists a 
metric d such as all its offspring are in the metric 
segment between parents under that metric for any 
choice of parents.

� If such a metric does not exist, a recombination operator 
is said to be non-geometric.

� Notice that a recombination operator may be geometric 
with respect to a certain distance and non-geometric 
with respect to another distance. From an existential 
point of view such operator is geometric, as it exists a 
metric that makes it so.

� Proving non-geometricity requires to show that a certain 
operator fails to be geometric under all distances, which 
are infinitely many.
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Fitness Landscape
of Geometric Operators

Fitness landscapes & search operators

� Visual metaphor to understand search behaviour

� Used in problem hardness studies

� A fitness landscape is a triple:

• Fitness function f

• Solution set S

• Structure on the search space (e.g., d/Nhd)

� Fitness landscapes are induced by search operators:

• In a search algorithm one can find f and S but not d or Nhd

• So fitness landscapes do not exist!

• What is the fitness landscape seen by a search algorithm then?

• The structure of the search space hence the fitness landscape is 

“induced” by the search operators

• What this actually means is not clear!
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Traditional View

� One operator, one landscape (Terry Jones)

� The structure of the space induced by a mutation 
operator is a graph with nodes representing candidate 
solutions and weighted edges indicating the probability of 
producing a certain offspring given a certain parent

� Different mutation operators induce different structures, 
hence different landscapes 

� Problem 1: when a search algorithm has two operators 
(e.g., mutation and crossover) each of them see a 
different fitness landscape. What is the fitness landscape 
seen by the search algorithm?
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Crossover Landscape

� What is the structure induced by crossover?

� As crossover has two parents edges, each pair of nodes 
are linked by edges to nodes representing possible 
offspring.

� This structure is not a graph, it is an hyper-graph.

� Problem2: the natural spatial interpretation of graph is 
lost, these fitness landscapes have difficult interpretation

� There are other approaches to induce structure of the 
search space from recombination operators by 
theoreticians (e.g., Stadler) or practitioners (e.g., 
Vanneschi)
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Geometric Landscape

� The structure of the landscape is given by the distance 
associated with the geometric operators. 

� As mutation and crossover operator can be defined using 
the same distance they see the same fitness 
landscape, which is also the landscape seen by the 
search algorithm.

� Mutation and crossover navigate the same fitness 
landscape in different ways, as mutation produces 
offspring (i.e., accesses) a ball around the parent, and 
crossover accesses the segment between the parents.

� Probabilities of accessing offspring are spatial 
distributions (weights on nodes) on balls and segments  
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Benefits

� Same fitness landscape for mutation, crossover and 
search algorithm. This allows to understand how they 
interact.

� Simple fitness landscape for crossover and more complex 
search operators.

� Intuitive interpretation of search dynamics in the search 
space and how it relates with the topography of the 
fitness landscape.

� Rigorous and complete description of the search. It can 
be used to prove performance of search algorithms on 
fitness landscapes.

� Unifies neighbourhood search view and representation-
based search view, that are now seen as dual and 
equivalent.

34
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Geometric Unification 
of Evolutionary Algorithms

Minkowski spaces – real vectors
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Pre-existing operators – real vectors

�Mutations:

• bounded spherical mutation: geometric under Euclidean distance

• creep mutation: geometric under Chessboard distance

� Recombinations:

• blend crossover: geometric under Euclidean distance

• box crossover: geometric under Manhattan distance

• discrete crossover: geometric under Manhattan distance

• extended-line & extended-box crossovers: non-geometric
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Hamming spaces – n-ary strings
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Pre-existing operators – n-ary strings

�Mutations:

• point-mutations for binary and n-ary strings: 

1-geometric mutation under Hamming distance

• position-wise mutations: 

n-geometric mutation under Hamming distance 

(with probability distribution only function of the distance)

� Recombinations:

• all mask-based crossovers (including 1-point, 2-point, uniform) 

for binary and n-ary strings: 

geometric crossover under Hamming distance

• intermediate recombination for integer vectors:

geometric crossover under Manhattan distance on integer vectors
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Cayley spaces - permutations
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Pre-existing operators – permutations

�Mutations:

• single edit-move mutations: 1-geometric mutation under 

corresponding edit distance

� Recombinations:
• PMX: geometric crossover under swap distance

• Cycle crossover: geometric crossover under swap distance and 
Hamming distance (restricted to permutations)

• Cut-and-fill crossovers (adaptations of 1-point crossover):

geometric crossovers under swap and adjacent swap distances

• Merge crossover: geometric crossover under insertion distance

• Davis’s order crossover: non-geometric crossover

• Most recombinations for permutations are geometric crossovers
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Syntactic tree spaces –
Homologous Crossover
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Pre-existing operators – syntactic trees

�Mutations:

• point and sub-tree mutations: geometric mutation under 

structural Hamming distance on trees (mutations towards the 

root have larger radius)

� Recombinations:

• Koza’s sub-tree swap crossover: non-geometric

• Homologous crossover: geometric under structural Hamming 

distance
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Sequence spaces –
Homologous Recombination

Parent1=AGCACACA
Parent2=ACACACTA

best inexact alignment (with gaps):best inexact alignment (with gaps):best inexact alignment (with gaps):best inexact alignment (with gaps):

AGCA|CAC-A � Child1=AGCACACTA
A-CA|CACTA � Child2=ACACACA



Pre-existing operators – sequences:
Biological Recombination

�Mutation: 

• insertion, deletion or substitution of a single amino acid: 1-

geometric mutation under Levenshtein distance

� Recombination:

• Homologous recombination for variable length sequences (1-

point, 2-points, n-points, uniform):

geometric crossover under Levenshtein distance

• More realistic models of homologous biological recombination 

with respects to gap size and base-pairs matching preference:

geometric crossovers under weighted and block-based 

Levenshtein distance
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Significance of Unification

�Most of the pre-existing crossover operators 

for major representations fit the geometric 
definition

�Established pre-existing operators have 

emerged from experimental work done by 

generations of practitioners over decades

�Geometric crossover compresses in a 
simple formula an empirical phenomenon
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Principled Design
of Crossover Operators

Crossover Principled Design

� Domain specific solution representation is effective

� Problem: for non-standard representations it is not clear 
how crossover should look like

� But: given a problem you may know already a good 
neighbourhood structure/distance/mutation

� Geometric Interpretation of Crossover:
• your representation and space structure => 

• specific geometric crossover by plugging the space 
structure in the definition =>

• operational definition of crossover manipulating the 
underlying representation
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Crossover Design: Graph Example
Non-labelled graph neighbourhood

MOVE: Insert/remove an edge

Edit distance: minimum number 
of moves to transform a graph 
to the other

0

1

2

1

2

3

+

Offspring
Operational Geometric Crossover

� Edit distance has a natural dual interpretation:

• measure of distance in the search space

• measure of similarity on the underlying representation

• this can be used to help identifying an operational definition of 

crossover representation (implementation) which corresponds its 

geometric definition in terms of distance (specification)

� For graphs under ins/del edge edit distance the 
operational crossover is as follows:

• Pair up the nodes of the parent graphs such that there are the 

minimum number of edges mismatches

• Recombine the aligned parent graphs using a recombination 

mask on the edges

• This recombination implements exactly the geometric 

crossover
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Crossover Design: TSP Example

� Edit distance duality for permutations: 

• producing offspring in the segment between parents on a space 
generated by moves of type x (e.g., swaps) �

• producing offspring permutations on minimal sorting 

trajectories to sort a parent permutation into the other using 

move of type x

� Sorting Crossovers:

• Geometric crossover for permutations can be implemented using 

traditional sorting algorithms and returning as offspring a partially 

sorted permutation

• Adj. Swap -> bubble sort

• Swap -> selection sort, 

• Insertion ->insertion sort

� Pre-existing geometric crossovers for permutations are 
sorting crossovers in disguise
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Crossover Design: TSP example

�A known good neighbourhood structure for TSP 

is 2opt structure = space of circular permutations 
endowed with reversal edit distance

�Geometric crossover for TSP =

picking offspring on the minimal sorting 
trajectories by sorting one parent circular 

permutation toward the other parent by reversals 
(sorting circular permutations by reversals) 

Operational Geometric Crossover for TSP

�BAD NEWS: sorting circular permutations by 
reversals is NP-Hard!

�GOOD NEWS: there are approximation 
algorithms that sort within a bounded error to 
optimality

�A 2-approximation algorithm sorts by reversals 
using sorting trajectories that are at most twice 
the length of the minimal sorting trajectories 

�Approximation algorithms can be used to build 
approximated geometric crossovers for TSP

�In experiments, this crossover beats Edge 
Recombination which is the best for TSP 



Product Geometric Crossover

� It is a simple and general method to build more complex 
geometric crossovers from simple geometric crossovers

� GX1:AxA�A  geometric under d1
� GX2:BxB� B geometric under d2

� A product crossover of GX1 and GX2 is an operator 
defined on the cartesian product of their domains 
PGX:(A,B)x(A,B)�(A,B) that applies GX1on the first 
projection and GX2 on the second projection. GX1 and 
GX2 do not need to be independent and can be 
based on different representations.

� Theorem: PGX is a geometric crossover under the 
distance d = d1+d2

Crossover Design: Sudoku Example

Fill in the grid so that every row,

every column, and every 3x3 box

contains the digits 1 through 9 

4 types of constraints:

1) Fixed Elements

2) Rows are permutations

3) Columns are permutations

4) Boxes are permutations

Crossover Design: Sudoku Example

� We start from an initial population of solutions (filled grids) 
correct with respect to constraints 1) and 2)

� We want a geometric crossover defined on the entire 
Sudoku grid that preserves constraints 1) and 2) so that 
we search a smaller search space

� Constraints 3) and 4) are treated as soft constrains and 
the fitness of a solution is the number of unsatisfied 
constraints (to minimze)

� The Hamming distance between grids gives rise to a 
smooth landscape because close grids have similar fitness
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Crossover Design: Sudoku Example

� The cycle crossover on a row preserves constraints 1) and 
2) and it is geometric under Hamming distance

� For the product geometric crossover theorem, the row-
wise cycle crossover is geometric under Hamming distance 
on the entire grid

� The fitness landscape seen by this crossover is smooth

� This crossover performed very well in experiments 
compared with other recombinations
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Path-relinking = Crossover

� The meta-heuristic path-relinking (Glover) searches on a 
path between solutions in the neighbourhood structure 
(not necessarily on a shortest path/segment). It has been 
successfully applied to many combinatorial problems.

� From a design viewpoint, geometric crossover can be 
understood as a formalized generalization (to metric 
spaces) of path-relinking that gives a formal recipe to 
design new crossover operators rather than suggesting 
heuristically how to search the neighbourhood structure.

� Geometric crossover unifies the notions of recombination  
(i) as manipulation of the parental representation and
(ii) as neighbourhood search between parental location.
It shows that the dichotomy neighbourhood search vs. 
representation-based search is only illusory and that 
essentially path-relinking is dual and equivalent to 
crossover. 
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Principled Generalization 
of Search Algorithms

Motivations

�Problem: ad hoc extensions of continuous 
search algorithms to combinatorial spaces. 
Is there a systematic way? 

�Solution: Principled generalization: formal 
generalization of continuous search algorithm 
via geometric interpretation of operators

�Applied to

• Particle Swarm, Differential Evolution, Nelder&Mead

• Binary strings, Permutations, GP trees
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Generalization Methodology

1. Take a continuous optimization algorithm

2. Rewrite search operators using geometric objects 
as functions of only the Euclidean distance

3. Substitute Euclidean distance with a generic 
metric � formal geometric algorithm

4. Plug a new distance in the formal algorithm �

instance of the algorithm for a new space

5. Rewrite the search operators getting rid of the 

distance and using the associated representation
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Differential Evolution Example

DM

DX

65

Differential Mutation

Construction of U using vectors

66

Convex Combination & Extension Ray

A

B

C=?

Convex Combination

C=CX(A,B)
A

C

B=?

Extension Ray

B=ER(A,C)

• Extension ray is the inverse operation of convex combination

• They are well-defined in any metric space

67

Differential Mutation

Construction of U using convex combination and extension ray

68



Weighted CX and ER

�C = CX(A,B) with weights WAC and WBC

�Weights are attraction coefficients

�Distances inversely proportional to weights

�B = ER(A,C) with weights WAC and WBC

�Weights have the same meaning in CX & ER

�But different givens and unknowns

WAC=0.7 WBC=0.3

A C=? B

A C B=?

CX:

ER:
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Formal Geometric Differential Evolution

DM

DX
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Specialization (Hamming space)

�The GDE is a formal algorithm that is specialized to 

the Hamming space once all its operators (DM and 
DX) are specialized to the Hamming space

�DM and DX can be rewritten solely in terms of convex 

combination and extension ray combination

�So, to obtain the specialization of the GDE to the 

Hamming space, we only need the specializations of 
convex combination and extension ray

Convex Combination & Extension Ray 
(Hamming space)

� Convex combination: it is a form of biased uniform 
crossover which prefers bits form one or the other 
parents according to their weights

� Extension ray recombination: the offspring C of 
binary extension ray originating in parent A and passing 
through parent B can be obtained by starting from B and 
with a suitable probability flipping those bits that, at the 
same time, increase the Hamming distance form B and 
from A

� These operators are provably conforming to the 
geometric formal definitions of convex combination and 
extension ray under Hamming distance
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Results

� When ported from continuous to Hamming space all the 
algorithms (DE, PSO, NM) worked very well out-of-the-
box. This shows that continuous algorithm can be ported 
using this methodology to discrete spaces.

� When specified to permutations and GP trees spaces a 
number of surprising behaviours appeared.

� As we applied the very same algorithms to different 
spaces, the cause of their specific behaviours are specific 
geometric properties of the underlying search space they 
are applied to. This allows us in principle to create a 
taxonomy of search spaces according to their 
corresponding effects on search behaviour. 

� Relevant properties: symmetry, curvature, deformation
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Unified Theory
of Evolutionary Algorithms

Formal Evolutionary Algorithm

� Geometric Crossover can be understood as a functional 
form taking the distance d as argument.

� An evolutionary algorithm with geometric crossover can 
be understood as a function of the metric d (d is a 
parameter as e.g., the mutation rate).

� From an abstract point of view, an evolutionary 
algorithm with geometric crossover with any metric is a 
well-defined representation-independent formal 
specification of a search algorithms whose properties 
derive form the metric axioms (formal evolutionary 
algorithm (see also Radcliffe)).

Abstract Evolutionary Search

� What happens if we “run” a formal evolutionary 
algorithm?

� A formal model of a search algorithm can be used to 
infer (some properties of) the behaviour of a partially-
specified algorithm, where the metric parameter is left 
unspecified.

� Abstract evolutionary search: the behaviour obtained by 
“running” a formal evolutionary algorithm. This can be 
described axiomatically (from the metric axioms). 

� The abstract evolutionary search process is the 
behaviour of the formal evolutionary algorithm on ALL 
possible search (metric) spaces and associated 
representations.



Abstract Convex Evolutionary Search

� Theorem: For any evolutionary algorithm repeating the 
cycle selection, crossover, replacement we have that the 
convex hulls of the populations form a nested chain:

� This is very general: it holds for any representation, 
any distance, any problem (landscape), any offspring 
distribution of geometric crossover, any selection and 
replacement. It even applies to varying population sizes. 
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Abstract Convex Evolutionary Search

Matching Abstract Search & 
Abstract Landscape

� NFLT: any non-futile theory which aims at proving 
performance better than random search of a class of 
search algorithms must indicate w.r.t. which class of 
fitness landscapes.

� Are there general conditions on the fitness landscape 
that guarantee good performance of the convex search 
for any space/representation?

� At an abstract level, all evolutionary algorithms (with 
geometric crossover) present a unitary behaviour.
Is there a class of fitness landscapes well-defined at an 
abstract level that leads to good performance 
independently from the specific d?

Concave Fitness Landscapes

This generalises to general metric spaces with ANY representation

Convex search works well on (approximately) concave landscapes 



Steady-Improvement Theorem

� On a concave fitness landscape, by applying geometric 
crossover to parents sampled uniformly at random from 
ANY population of parents, the expected average fitness 
of the offspring population is not less than the average 
fitness of the parent population.

� As (non-adversary) selection cannot get the fitness of the 
offspring worse, this is a statement about the one-
step performance of the formal evolutionary 
algorithm on an abstract fitness landscape.

� Performance degrades nicely as landscapes become less 
concave.

Two Remarks

� 1) Good News: this result shows that concave landscapes 
in this sense are extremely “crossover-friendly” as 
normally to achieve avg. fitness of the offspring not 
worse than the avg. fitness of the parent one does 
require selection!

� 2) Bad News: this result cannot be reiterated to obtain 
not trivial lower-bound after n-steps.

Work in Progress

� Looking at fitness landscapes arising from combinatorial 
problems (big valley HP)

� N-step performance (curvature of the concave landscape)

� How can mutation be naturally included in this 
framework? (from accessibility to probability)

� How far can a theory be pushed forward at this level of 
abstraction? Only time will tell…
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A Vision of the Future:
Automatic Evolutionary 
Problem Solving



A Future Scenario

� Goal: automated design of efficient EAs for any problem

� Time line:

• PAST: original GA: we thought we had a magic solver 
� NFL said no

• PRESENT: black art: how to tailor EA to the problem at 
hand? 

• FUTURE (theory): formal general theory of design of 
provably efficient EA

• FUTURE (practice): automated design, automated 
implementation, theory-led parameter settings 
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Magic Evolutionary Meta Solver

� INPUT: Problem Description 
->Magic Evolutionary Meta Solver ->
OUTPUT: Solution with Guaranteed Approximation

� NFL does not apply because the Meta Solver uses full 
knowledge of the problem to derive a problem-
tailored evolutionary algorithm which is provably efficient 
by the theory

� At this point the human designer would be made 
redundant, people would not even know or care what is 
inside the magic box, they will just use it!

� This is a desirable remote future scenario, is it in 
principle at all possible? Is it pure science fiction?
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From Problem to Solution

� INPUT: problem description

� 1) Formulation: choice of solution representation and 
space structure (e.g., distance, neighbourhood structure) 
such that the problem is turned into a EA easy class 
(e.g., “smooth” landscape)

� 2) Adaptation: the EA scheme is applied to the chosen 
representation and space structure

� 3) Implementation: the specific EA for the problem at 
hand with a given representation and structure is derived

� 4) Tuning: parameter values are chosen

� 5) Execution: the problem specific algorithm is executed 
and the best solution obtained

� OUTPUT: solution
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Automatic Formulation

� A theory should be abstract and accept as input 
parameters landscape based on different representations 
and neighbourhood structures

� A theory should relate performance guarantee of the EA 
on the landscape as a function of its degree of 
smoothness

� From the algebraic description of the problem, the 
system should be able to infer the degree of smoothness 
(e.g., Lipchitz continuity) without experiments for any 
choice of representation and neighbourhood structure

� The choice of representation and neighbourhood 
structure available have to be restricted to those that 
admit an efficient implementation of search operators
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Automatic Formulation

� Each combination of representation and neighbourhood 
structure gives rise to a certain degree of smoothness of 
the landscape for the problem at hand

� Choose the combination of representation and 
neighbourhood structure such that the theory predicts 
the best performance guarantee

� As the theory is sound, the solution obtained by the 
problem-specific EA that will be constructed will meet this 
guarantee
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Automatic Adaptation

� Automatic Adaptation: the formal specification of the 
problem specific EA can be obtained unambiguously by 
instantiation of the formal EA on the specific fitness 
landscape (solution representation, neighbourhood 
structure and fitness function)
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Automatic Implementation

� Automatic Implementation: the implementation of the 
specification of the problem-specific EA can be obtained 
by deriving operational descriptions in terms of 
representation manipulation of the geometric operators 
for the specific representation and space structure. This 
can be done using a library of pre-implemented operators 
meeting the specifications, by operators compositions or 
by operator synthesis.

� Differently from pre-existing software-suite that allow the 
user to build custom EA by combining components, the 
specific EA obtained as above has a formal semantic 
dictated by the theory which certifies that the solution 
found by the specific EA will conform to the theoretical 
performance guarantees 
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Automatic Parameter Setting

� The performance guarantee produced by the theory is 
expressed as a functions of the parameters of the EA 
(e.g., crossover rate, selection intensity). The optimal 
values of the parameters can be obtained analytically by 
choosing those values that give the best guarantee. 
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How far are we?

� The geometric framework makes in principle possible the 
outlined scenario as it covers all the necessary conceptual 
steps

� The necessary theory for the performance guarantee can 
be hard to obtain, but it may be possible (e.g., the 
general results on convex evolutionary search is 
promising)

� The formal synthesis machinery to pass from 
specifications to implementation may be within reach 
(see also Fonseca). If we replace the missing formal 
theory by a “heuristic theory” or by experiments, we 
could be able to implement a prototype of the system.   
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Open Questions, 
Future Work and Conclusions

Bridging Mathematical Optimization

� Heuristic Optimization: use biology/nature as an 
inspiration for optimization (practice-driven)

� Mathematical Optimization: use calculus and linear 
algebra (and more) to derive optimizer (theory-driven)

• Robust Optimizers vs Inflexible Optimizers

• Expressive Representations vs Numeric Representations

• General Applicability vs Specific Classes 

• No General Performance Guarantees vs Performance Guarantee

• Ad-hoc solver design vs Standardized solvers

� Notion of smoothness and convexity are important both 
in heuristic and mathematical optimization

� Is a more general framework encompassing both 
possible?
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Matching Search & Landscape

� NFL: Search Behaviour + Matched Landscape Class = 
Efficient Search

� A good class of landscapes is a class that encompass 
naturally many real-world problems (when a suitable 
representation and space structure are considered)

� A good class of search algorithms is a class that is well-
matched with landscapes occurring in practice

� What does it exactly mean “being matched”?
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Bridging Bayesian Rationality

� Bayesian inference may offer a rational/general answer:

• Prior Distribution: class of fitness landscapes

• Matched search algorithm: the sequence of sampling moves that 

are most likely to produce the best solution in n steps

• This produces the most rational search algorithm in the 

Bayesian sense for the class of landscapes considered

• This is a form of spatial reasoning

• Problems: 

– analytical derivation of such search strategy impossible

– derivation by strategy search of such search strategy 

infeasible

� Is evolutionary algorithm search inherently geometric 
because it approximates efficiently a rational spatial 
reasoning strategy best-matched with commonly 
occurring fitness landscapes?
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Bridging Biological Evolution

� The geometric framework may encompass biological 
recombination. Are there consequences?

� In biology, the fitness landscape is only used as a 
metaphor. The geometric framework can make this 
notion formal and rigorous. By eliciting the distance 
associated with biological recombination one could 
determine the “real” biological fitness landscape

� In biology, the benefit of sex (i.e., crossover) is not well 
understood. The geometric framework might be used for 
showing that biological recombination is well-matched 
with the biological fitness landscape, hence the benefit of 
sex would be making evolution an efficient search 
process
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Bridging Biological Evolution

� In biology, genes are “units of inheritance” and at a 
physical level they correspond to sequence of amino-
acids. Identifying which sequences correspond to genes 
is a open problem in biology. 

� The notion of schema can be generalized to the notion of 
convex set that is any property that can be inherited by 
offspring from their parents under geometric crossover. 
Convex sets can be specified for the specific case of 
biological crossover for the “biological sequence 
representation”. These would correspond to those sub-
sequences that are inheritable by offspring sequences 
from their parent sequences. These sub-sequences are 
potentially real biological genes. 
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Current Work

� Generalizing:

• Established Algorithms, e.g., Estimation of Distribution Algorithms

• Established Concepts, e.g., Schema

• Older and newer theories, e.g., Schema Theorem, Run-Time Analysis

� Reformulating non-geometric theories in geometric terms:

• Elementary Landscapes (Stadler) 

• Forma Analysis (Radcliffe)

� Formalizing rigorously practical theories geometric in 
flavour: 

• Landscape Analysis, e.g., Global Convexity (Boese)

• Locality and Redundancy of Genotype-Phenotype map (Rothlauf)

� Applying the framework to specific domain & problems:

• Semantic Crossover for Genetic Programming (Krawiek)
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Take home message

� There are fundamental geometric principles lurking 
behind the scene of all evolutionary algorithms, which are 
made explicit by the geometric view.

� The geometric view is also a unifying way of thinking 
about evolutionary algorithms which is general, rigorous 
and intuitive at the same time, with interesting 
consequences for (bridging) theory and practice.

� I hope from now on you will think geometrically about 
whatever aspect of evolution interests you! ☺

� Collaborations are most welcome!
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