
Geometric Generalisation of Surrogate Model
Based Optimisation to Combinatorial Spaces

Alberto Moraglio and Ahmed Kattan

School of Computing and Centre for Reasoning, University of Kent, Canterbury, UK
College of Computer and Information Systems, Um Al-Qura University, Saudi Arabia

a.moraglio@kent.ac.uk, akattan@uqu.edu.sa

Abstract. In continuous optimisation, Surrogate Models (SMs) are of-
ten indispensable components of optimisation algorithms aimed at tack-
ling real-world problems whose candidate solutions are very expensive
to evaluate. Because of the inherent spatial intuition behind these mod-
els, they are naturally suited to continuous problems but they do not
seem applicable to combinatorial problems except for the special case
when solutions are naturally encoded as integer vectors. In this paper,
we show that SMs can be naturally generalised to encompass combina-
torial spaces based in principle on any arbitrarily complex underlying so-
lution representation by generalising their geometric interpretation from
continuous to general metric spaces. As an initial illustrative example,
we show how Radial Basis Function Networks (RBFNs) can be used suc-
cessfully as surrogate models to optimise combinatorial problems defined
on the Hamming space associated with binary strings.

1 Introduction

Some typologies of tasks when cast as optimisation problems give rise to ob-
jective functions which are prohibitively expensive to evaluate. Furthermore,
oftentimes these problems are black-box problems, i.e., whose problem class is
unknown, and they are possibly mathematically ill-behaved (e.g., discontinuous,
non-linear, non-convex). For example, most engineering design problems are of
this type (see e.g., [12]). They require experiments and/or simulations to evalu-
ate to what extent the design objective has been met as a function of parameters
controlling the design. In evolutionary computation parlance, the controlling pa-
rameters are the genotype that encodes the design solution (i.e., the phenotype)
which needs to be expressed via an expensive simulation (i.e., the growth func-
tion) to be evaluated (i.e., fitness evaluation). The simulation can take many
minutes, hours, or even days to complete.

Optimisation methods based on surrogate models, also known as response
surface models, have been successfully employed to tackle expensive objective
functions (EOFPs). For a survey on surrogate model based optimisation methods
refer to [6]. A surrogate model is a mathematical model that approximates as
precisely as possible the expensive objective function of the problem at hand,
and that is computationally much cheaper to evaluate. The objective function is
considered unknown. The surrogate model is built solely from available known

values of the expensive objective function evaluated on a set of solutions. We
refer to the pair (solution, known objective function value) as data-point. When
the search space is the real line (i.e., solutions are real numbers), perhaps the
simplest example of surrogate model is linear interpolation which determines a
function from the graph of the data-points available by linking each data-point to
the closest with a straight line. A class of more natural-looking surrogate models
for the real line is the class of polynomial curves of suitable degree, which can be
used to interpolate all data-points and that are everywhere differentiable. These
and other methods to build surrogate models on the real line naturally extend
to higher dimensional spaces giving rise to various forms of spatial interpolation
and spatial regression.

The traditional procedure of surrogate model based optimisation (SMBO)
[6] is outlined in Algorithm 1. An initial surrogate model is constructed using
the objective values of a small set of solutions evaluated using the expensive
objective function. The remaining expensive objective function evaluations out
of a limited budget are applied to candidate solutions which the surrogate model
predicts to have promising performance. The process interleaves search of the
surrogate model to obtain its optimum, evaluation of the optimum solution of the
model using the expensive objective function, and update of the surrogate model
with the new data-point. Note that the role of the evolutionary algorithm in the
SMBO procedure is to infer the location of a promising solution of the problem
using the surrogate model, and it is not directly applied to the original problem
with the expensive objective function. This is feasible because the computational
cost of a complete run of the evolutionary algorithm on the surrogate model is
negligible (in the order of few seconds) with regard to the cost of evaluating a
solution using the expensive objective function of the problem (in the order of
minutes, hours or even days depending on the problem).

Algorithm 1 Surrogate Model Based Optimisation

1: Sample uniformly at random a small set of candidate solutions and evaluate them
using the expensive objective function (initial set of data-points)

2: while limit number of expensive function evaluations not reached do

3: Construct a new surrogate model using all data-points available

4: Determine the optimum of the surrogate model by search, e.g., using an evolu-
tionary algorithm (this is feasible as the model is cheap to evaluate)

5: Evaluate the solution which optimises the surrogate model in the problem with
the expensive objective function (additional data-point available)

6: end while

7: Return the best solution found (the best in the set of data-points)

Virtually all surrogate models are implicitly or explicitly spatial models as
their predictions involve exploiting some assumed spatial relations (e.g., smooth-
ness) between the values of the objective function at a query point whose value
is unknown and has to be predicted, and the known data-points. This makes
SMBOs naturally suited to continuous optimisation. However they do not seem

to be applicable to combinatorial optimisation problems except in those cases in
which solutions are naturally represented as vectors of integers, in which case ad-
equately discretized versions of the surrogate model may be used. Furthermore,
when solutions are vectors, integer or real, a host of techniques to build functions
from data-points can be borrowed from statistics (i.e., multi-variate regression
[3]) and machine learning (i.e., supervised learning by e.g., neural networks and
support vector machines [9]), which can be used to build surrogate models.

There is an increasing number of optimisation problems naturally associated
with complex solution representations which have also very expensive objective
functions. For example, permutations and related representations are natural
representations for solutions of many types of scheduling problems. In real-world
problems, candidate scheduling solutions may need to be tested in a complex
setting by running a computationally expensive simulation of, for example, an
entire production process, to be evaluated. Variable-length sequences are natu-
ral representations for biological sequences in bio-informatics problems. In this
context, surrogate model based optimisation may be used to determine which
particular biological sequences to study in detail by scientist or to simulate at
an atomic level that, for example, are more likely to correspond to proteins with
desired target properties/functions. Genetic Programming that normally uses
a tree representation, has a number of application domains with expensive ob-
jective functions. For example, one of them is when genetic programs encode
behavioral controllers of robots that may need to be tested in a virtual or real
environment a number of times to assess how good the controller is at controlling
the robot for certain target tasks (i.e., wall-following or obstacle avoidance).

The current situation of surrogate model with regard to solution representa-
tions is as follows. There is much existing literature on surrogate model based
optimisation using evolutionary algorithms or other search algorithms to opti-
mise the surrogate model for continuous spaces. See for example the survey [5].
Some recent work covers the case when the underlying solution representation
is discrete vectors (e.g., [1]). There are works focusing on specific real-world
applications with expensive objective functions which are inherently combina-
torial problems with structured solutions (e.g., graphs) which are approached
by encoding solutions in vectorial form to use standard surrogate models (e.g.,
[13][2]). There are also approaches in which evolutionary algorithms are not used
to search the surrogate model but to train the surrogate model on the known
data-points, see e.g. [8], in which Genetic Programming is used to do symbolic
regression to determine the best fitting vector-input function to the data-points.

To the authors’s best knowledge there are no works in literature on sur-
rogate models defined directly on more complex representations than vectors.
Therefore, for search problems naturally based on structured representations,
surrogate models can be used only after shoe-horning the original representation
to a vector form. This introduces extra non-linearity in the target expensive ob-
jective function, so making it harder to learn, and consequently requiring more
expensive samples to approximate it well enough to locate its optimum. The aim
of this paper is to introduce a framework that allows us to define systematically
surrogate models directly on any underlying solution representation, allowing us
to choose the most natural representation for the problem at hand.

A geometric framework of recent introduction [10] has been successfully used
to generalise various search algorithms from continuous spaces to combinato-
rial spaces in a principled way. This paper shows that the geometric methodol-
ogy extends naturally to the generalisation of machine learning algorithms. The
method is conceptually simple. Firstly, (i) the original algorithm on the contin-
uous space is rewritten only as a function of the Euclidean distance between
points. Algorithms that are inherently spatial can be often rewritten in these
terms. Then (ii) the generalisation is done by replacing the Euclidean distance
with a generic distance (i.e., formally a metric), obtaining a general formally
well-defined algorithm. Finally, (iii) the formal algorithm can be specified to any
solution representation by specifying it to an edit distance directly defined on
the target representation.

The generalised algorithms using the geometric methodology can be nat-
urally specified to complex representations because many types of structured
objects admit natural notion of distance/similarity between them. In particular
edit distances are well suited to structured objects. The edit distance between
two configurations is the minimum number of edit operations required to trans-
form one of them into the other. Edit operations are unitary modifications that
change one configuration into a similar configuration. For example, the Hamming
distance is an edit distance between binary strings based of the bit-flip edit move.
On permutations, the swap distance is the minimum number of swaps of two ele-
ments to sort one permutation into the other. On variable length sequences, the
Levenshtein distance is the minimum number of insertions, deletions, or changes
of characters in a sequence to transform it into the other. There are also various
types of edit distances defined on trees and graphs based on moves editing edges
and nodes.

In the reminder of the paper, we show how a supervised machine learning
algorithm to learn functions from data, namely Radial Basis Function Networks
(RBFNs) (see e.g., [4]), can be successfully generalised to encompass any solu-
tion representation using the geometric methodology. The generalised algorithm
obtained is then formally instantiated to the binary strings representation en-
dowed with the Hamming distance. As a preliminary experimental analysis, we
use the resulting learning model within a SMBO to optimise a well-known test-
bed of problems on binary strings, the NK-landscapes [7], which we will consider
having costly objective function 1. The generalised RBFNs model derived in this
paper is very general and can be used in principle with any solution representa-
tion. Furthermore, other learning algorithms naturally defined in spatial terms,
e.g., spatial regression algorithms (i.e., Gaussian Process Regression [11]) can be
generalised analogously.

1 The aim of the present paper is not to show that the generalised SMBO can be com-
petitive on real-world problems with expensive objective functions with structured
representations. It is to show that the generalised SMBO can be in principle applied
to such cases and that it provides meaningful results when applied to well-studied
toy problems on a simple discrete space. This preliminary step is necessary because
the transition from continuous to discrete spaces is a large conceptual leap, and there
is no guarantee that such an approach would work on even simple discrete spaces.

2 Radial Basis Function Networks

In the machine learning literature, there are a number of approaches to “learn-
ing” a function belonging to a certain class of functions from data-points (i.e.,
finding a function in that class that interpolates and best fits the data-points
according to some criteria), which can be naturally cast only in terms of (Eu-
clidean) distances between points, hence readily generalised to metric spaces, by
replacing the Euclidean distance with a general metric. These include Nearest-
Neighbors Regression, Inverse Distance Weighting Interpolation, Radial Basis
Function Network Interpolation, and Gaussian Process Regression (also known
as Kriging). The first two methods are simpler but they are not adequate to
be used as surrogate models because the global optimum of the learnt func-
tions from the data-points coincide with a data-point used in the construction of
the function. Consequently, these methods cannot be used to suggest a solution
that improves over the known data-points (i.e., they cannot extrapolate from
the data-points). Gaussian Process Regression is a very powerful method with a
solid theoretical foundation, which not only can make a rational extrapolation
about the location of the global optimum, but also gives an interval of confi-
dence about the prediction made. Radial Basis Function Network Interpolation
is conceptually simpler than Gaussian Process Regression and can extrapolate
the global optimum from the known data-points. In this paper, we focus on
RBFNs, and leave the generalisation of Gaussian Process Regression as future
work.

2.1 Classic RBFNs

A radial basis function (RBF) is a real-valued function φ : Rn → R whose
value depends only on the distance from some point c, called a center, so that
φ(x) = φ(‖x − c‖). The point c is a parameter of the function. The norm is
usually Euclidean, so ‖x− c‖ is the Euclidean distance between c and x. Other
norms are also possible and have been used. Commonly used types of radial basis
functions include Gaussian functions, multi-quadrics, poly-harmonic splines, and
thin plate splines. The most frequently used are Gaussian functions of the form:

φ(x) = exp(−β‖x− c‖2)

where β > 0 is the width parameter.
Radial basis functions are typically used to build function approximations of

the form:

y(x) = w0 +

N∑
i=1

wi φ(‖x− ci‖).

Therefore the approximating function y(x) is represented as a sum of N radial
basis functions, each associated with a different center ci, a different width βi,
and weighted by an appropriate coefficient wi, plus a bias term w0. Any con-
tinuous function can in principle be approximated with arbitrary accuracy by
a sum of this form, if a sufficiently large number N of radial basis functions is
used.

In a RBF network there are three types of parameters that need to be deter-
mined to optimise the fit between y(x) and the data: the weights wi, the centers
ci, and the RBF width parameters βi. The most common method to find these
parameters has two phases. Firstly, using unsupervised learning (i.e., clustering)
the position of the centers and the widths of the RBFs are determined. Then,
an optimal choice of weights wi that optimises the accuracy of the fit is done by
least squares minimisation.

A widely applied simplified procedure to fit RBF networks to the data, which
skips the unsupervised learning phase, consists of choosing the centers ci to
coincide with the known points xi, and choosing the widths βi according to some
heuristic based on the distance to nearest neighbors of the center ci (local model),
or to fix all widths to the same value which is taken proportional to the maximum
distance between the chosen centers (global model). The bias w0 can be set to
the mean of the function values bi at the known data-points (i.e., function values
of the points in the training set), or set to 0. Under these conditions, the weights
wi can be determined by solving the system of N simultaneous linear equations
in wi obtained by requiring that the unknown function interpolates exactly the
known data-points:

y(xi) = bi, i = 1 . . . N.

Setting gij = φ(||xj−xi||), the system can be written in matrix form as Gw = b.
The matrix G is non-singular, if the points xi are distinct and the family of
functions φ is positive definite (which is the case for Gaussian functions), and
thus the weights w can be solved by simple linear algebra:

w = G−1b

2.2 Generalisation of RBFNs to Arbitrary Representations

To generalise RBFNs we need to generalise: (i) the class of functions used as
approximants of the unknown function; (ii) the training procedure to determine
the function within that class that best fits the data-points; (iii) the model
query procedure that given a query point whose value is unknown it returns its
predicted value.

Following the geometric methodology for the generalisation, we first need
to rewrite any of the above three elements only as a function of the Euclidean
distance, then substitute the Euclidean distance with a generic metric obtaining
a formal generalisation of the original algorithm, and finally specify the formal
algorithm to a distance rooted in the target representation to obtain the spe-
cific instance of the algorithm for the target representation. If all these points
are possible, then the generalisation of the algorithm has been successful. In
the following, we show that indeed the geometric methodology can be applied
successfully to generalise RBFNs.

Let M be a metric space endowed with a distance function d. A radial basis
function φ : Rn → R whose value depends only on the distance from some point
c ∈ Rn so that φ(x) = φ(‖x − c‖) can be naturally generalised to a function
φ : M → R whose value depends only on the distance from some point c ∈ M
in the metric space so that φ(x) = φ(d(x, c)). For example, the generalised

Gaussian functions are obtained by replacing the Euclidean distance with the
generic metric d in the original definition: φ(x) = exp(−βd(x, c)2).

A set of configurations endowed with a notion of edit distance is a met-
ric space, as all edit distances meet the metric axioms. Consequently, a gen-
eralised radial basis function is well-defined on any set of configurations, or in
other words, is a representation-independent function. For example, the set of
binary strings H endowed with the Hamming distance hd form a metric space.
Therefore, the generalised Gaussian functions, when the Hamming distance hd
is specified as metric d, become well-defined functions φ : H → R, which map
binary strings to real (note that both c and x are binary strings). The same
generalised Gaussian functions are well-defined functions mapping permutations
to real when the swap distance on permutations is specified as metric d.

The approximating model y(x) which is a linear combination of radial basis
functions can be generalised by considering a linear combination of generalised
radial basis functions: y(x) = w0 +

∑N
i=1 wi φ(d(x, ci)). As its components, the

generalised approximating model is also representation-independent and it can
be specified to any underlying solution representation by specifying as underlying
metric d a distance function rooted in the target representation. Interestingly, a
generalised approximating model is a way of representing a very large family of
functions on general metric spaces parameterised on the center locations ci, the
weights wi, the widths βi, and by the specific underlying metric d. When the
underlying metric space is finite (as it is in combinatorial optimisation problems),
any function can in principle be approximated with arbitrary accuracy by a sum
of this form, if a sufficiently large number N of radial basis functions is used 2.

The method to fit the model to the known data-points does not refer explicitly
to their underlying representation but it depends solely on the distances between
the known data-points, taking gij = φ(d(xj ,xi)), and on the known objective
values bi. Therefore, in effect, model-fitting is also representation-independent. In
particular, the simplified model-fitting procedure which fixes the centers and the
widths and determine the weights wi by least squares minimisation can be done
by solving the system Gw = b, regardless of the underlying representation.
Notice however that when the distance function d is not embeddable in the
Euclidean space, the radial basis functions which are positive definite on the
Euclidean space are not necessarily positive definite with regard to the distance
function d. In turns, the matrix G is not necessarily a positive definite matrix,
hence the existence of the inverse matrix G−1 needed to determine the weights
wi is not guaranteed. This difficulty can be overcome by considering the pseudo-
inverse of the matrix G which always exist, it is unique, and it corresponds
to the traditional inverse when it exists. It can be shown that the weights wi

determined by solving the system Gw = b using the pseudo-inverse are exactly
those obtained by least squares minimisation.

As for querying the model with a point to obtain the predicted value, clearly
the query point is represented using the underlying representation (e.g., the
query point is a binary string when the model is specified to the Hamming

2 To see this, consider the extreme case in which every point in space is associated
with a radial basis function. In this case, it is always possible to choose the weights
of the bases to fit the function values at each location.

distance on binary strings). However, importantly, the way of calculating the
predicted value is representation-independent as it does not depend on the un-
derlying representation but only on the distance between the query point and
the center points.

In summary, the definition, learning and querying of RBFNs naturally gen-
eralise from Euclidean spaces to general metric spaces. The generalised model
applies to any underlying representation once a distance function rooted on that
representation is provided. In particular, this method can be used as it is to learn
in principle any function mapping complex structured representations to reals.
It is important to note that it is the generalised RBFNs learning that adapts
to the target representation, rather than the other way around. In particular,
there is no special requirement of the target representation of being shoehorn
in a vector of features. This allows us to choose the most natural representa-
tion and distance for the task at hand which, as discussed earlier, is likely to
make the learning easier. A further point to note is that the adaptation of the
general model to the specific representation is done by formal instantiation of a
generic metric to a distance function associated with the target representation,
in particular the model adapts naturally to the target representation without in-
troducing any arbitrary ad-hoc element, for example, to deal with more complex
representations. Finally, this way of looking at learning algorithms is both formal
and general and naturally bridges continuous and combinatorial spaces. Natu-
rally, the fact that this generalised model is well-defined on any representation is
logically independent from that it may work well on all representations and for
problems occurring in practice. Therefore, it is important to test the framework
experimentally for different representations and types of problems. In the follow-
ing section, we present initial experiments for when the framework is applied to
binary strings3 on a standard test-bed. In future work, we will investigate how
the framework performs when specified to more complex representations and to
problems with expensive evaluation functions arising in practice.

3 Experiments

Experiments have been carried out using the well-known NK-Landscape prob-
lem [7], which provides a tunable set of rugged, epistatic landscapes over a space
of binary strings, which we will consider having costly objective function. In our
experiments, in order to evaluate the performance of the SMBO algorithm under
different conditions of problem size and ruggedness, we use landscapes of size
n = 10, 15, 20, 25 for k = 2, 3, 4, 5, for a total of 16 combinations.

We use a standard surrogate model based optimisation algorithm (see Al-
gorithm 1). The surrogate model used is a RBFN model which is fitted to the
available data-points using the simplified learning procedure presented in the
previous section. The centers ci of the radial basis functions are chosen to coin-
cide with all available data-points. The widths of the radial basis functions are

3 Binary strings are of course a special type of vectors. However, they are a valid
representation to use as an illustrative example of application of the generalised
SMBO to combinatorial spaces because their property of being vectors is not utilised.

assigned to the same value β = 1
2D2 where D is the maximum distance between

all centers. With this setting of β, each radial basis function is “spread on the
space” to cover all other centers so that each known function value at a center
can potentially contribute significantly to the prediction of the function value
of any point in space, and not only locally to function values of points near the
given center (i.e., we force the surrogate model to be a global approximating
function). The value of the bias term w0 is set to the average function value of
the known data-points, i.e., the average of vector bi. In this way, the predicted
function value of a point which is out of reach of the influence of all centers
is by default set to the average of their function values. The coefficients wi of
the radial basis functions in the linear model are determined by least squares
minimisation as described in the previous section.

The other settings of surrogate model based optimisation are as follows. We
set the parameters as a function of the problem size n. The number of total
available expensive function evaluations is set to n2. So, essentially our aim is
to find the best solution to the problem the algorithm can produce in quadratic
time out of an exponential number of candidate solutions (i.e., 2n). This setting
is just a term of reference, as for different problems one may have a different
number of solutions available with regard to the problem size. We set the size
of the initial sample of data-points to two, and the number of sample points
suggested by the surrogate model to n2 − 2. This setting is consistent with the
working hypothesis that the surrogate model is better than random sampling at
suggesting promising solutions which are better than the known data-points as
it uses as much as possible the surrogate model to make predictions. To search
the surrogate model we use a standard generational evolutionary algorithm with
tournament selection with tournament size two, uniform crossover with crossover
rate 0.5 and bitwise mutation with mutation rate 1/n. The population size and
the number of generations are both set to 10n, which provide the evolutionary
algorithm with an abundant lot of trials to locate the optimal or a near-optimal
solution of the surrogate model. If the predicted objective value of the best
solution of the surrogate model is better than the best known objective value
of the known data-points, then the model could extrapolate from the data, and
that solution is evaluated in the expensive objective function. Otherwise, the
surrogate model has failed at suggesting a promising solution which improves
over the known best, and a solution sampled uniformly at random is evaluated
with the expensive objective function in the attempt to gather more data about
under-sampled regions of the problem and improve the accuracy of the surrogate
model to help subsequent searches on the model.

To have a reference for the performance of the SMBO algorithm, we compared
it with Random Search (RS), a standard (1+1) Evolutionary Algorithm ((1+1)
EA), and with a generational Evolutionary Algorithm (EA) applied directly
on the problem with the expensive objective function. The reason we included
random search in the set of algorithms is because, whereas it is safe to assume
that in practice evolutionary algorithms are better than random search in normal
circumstances, with small samples random search can do relatively well. We gave
all algorithms in the comparison exactly the same number of expensive objective
functions, which is n2 trials, and report the best solution found. The (1+1) EA

has a population of a single individual and uses bitwise mutation with bit-flip
probability of 1/n. The EA has a population of n individuals, it runs for n
generations, it uses tournament selection with size two, bitwise mutation with
bit-flip probability of 1/n, and uniform crossover with crossover rate 0.5. For
each considered combination of the parameters n and k, we generated a single
fitness landscape and did 10 independent runs of the above algorithms on it. For
each problem, we also estimated the global optimum by running an evolutionary
algorithm with a very large population (1000 individuals) and very large number
of generations (1000 generations).

Table 1. Results on the NK landscape benchmark. Mean and max over 10 independent
runs of the best solution found by each algorithm, for all combinations of k = 2, 3, 4, 5
and n = 10, 15, 20, 25.

SMBO EA (1+1)EA RS
K (opt) mean max mean max mean max mean max

N=10

2 (0.704) 0.702 0.704 0.686 0.704 0.675 0.698 0.649 0.704
3 (0.794) 0.775 0.794 0.724 0.794 0.705 0.745 0.724 0.794
4 (0.787) 0.755 0.787 0.725 0.787 0.714 0.787 0.727 0.787
5 (0.810) 0.762 0.810 0.706 0.727 0.729 0.810 0.718 0.810

N=15

2 (0.743) 0.742 0.743 0.693 0.714 0.628 0.681 0.674 0.714
3 (0.738) 0.718 0.738 0.678 0.706 0.622 0.706 0.677 0.717
4 (0.747) 0.721 0.747 0.685 0.711 0.646 0.705 0.680 0.710
5 (0.760) 0.737 0.758 0.711 0.749 0.672 0.728 0.700 0.757

N=20

2 (0.729) 0.726 0.729 0.689 0.718 0.613 0.668 0.673 0.711
3 (0.777) 0.767 0.777 0.718 0.761 0.606 0.639 0.706 0.777
4 (0.775) 0.747 0.775 0.708 0.731 0.640 0.676 0.684 0.707
5 (0.766) 0.744 0.761 0.710 0.745 0.637 0.709 0.684 0.721

N=25

2 (0.753) 0.747 0.753 0.698 0.727 0.590 0.679 0.673 0.701
3 (0.798) 0.781 0.798 0.727 0.742 0.607 0.666 0.698 0.749
4 (0.775) 0.743 0.762 0.714 0.750 0.595 0.639 0.679 0.695
5 (0.774) 0.736 0.756 0.713 0.751 0.622 0.705 0.676 0.722

*Bold numbers are highest max and underlined numbers are
second highest max.

Table 1 reports the results of the comparison. SMBO is consistently the best
both in terms of average best solution and max best solution for all combinations
of n and k considered. Furthermore, in 12 out of 16 cases, SMBO was able to
find the (estimated) real optimum. As the problem size (n) increases, SMBO
becomes better in the comparison in terms of difference in performance. As
expected, as the ruggedness (k) of the problem increases, the performance of
SMBO and the other search algorithms decreases with regard to the difference
in performance to the estimated optimum. As for the other algorithms in the

comparison, the population-based EA generally does better than (1+1) EA and
RS. In particular, the population seems to help with larger instances of the
problem. Perhaps surprisingly, random search often does better than (1+1) EA.
This is because (1+1) EA can get easily trapped in local optima, whereas the
solution found by random search exhibits a large variance in quality so the max
best solution found can be competitive “by a stroke of luck”, especially with
small sample size and in small problems.

In summary, analogously to the case of continuous space, the surrogate model
on the Hamming space really helps at finding better solutions than using stan-
dard search algorithms. This makes very promising the application of this frame-
work to more complex solution representations associated with combinatorial
spaces.

4 Conclusions and Future Work

There are many potentially interesting applications of a surrogate model based
optimisation framework that can naturally encompass more complex represen-
tations beyond the traditional vector-based representation. We advocate that
allowing a natural representation for the problem at hand makes the task of
learning the underlying surrogate model easier, hence more efficient, as no extra
non-linearity due to shoe-horning the solutions in vectors is introduced. Also, a
direct approach to representations greatly enlarges the scope of SMBO to com-
plex representations (e.g., Genetic Programming trees) which cannot be natu-
rally mapped to vectors of features.

In this paper, we have outlined a conceptually simple, formal, general and
systematic approach to adapt a SMBO algorithm to any target representation.
This approach has been derived using a geometric methodology to generalise
search algorithms from continuous to combinatorial spaces that has been suc-
cessfully applied in the past to generalise other types of search algorithms. This
methodology requires to write the original continuous algorithm only in terms of
Euclidean distances between candidate solutions, which then can be generalised
by replacing the Euclidean distance function with a generic metric. Then the
formal algorithm obtained can be formally specified to any target representation
by employing as underlying metric a distance rooted on the target representa-
tion (e.g., edit distance). Multivariate interpolation and regression methods to
build surrogate models are well-suited to this methodology as they are inherently
based on spatial notions. We showed how radial basis function networks can be
naturally generalised to encompass any representation. This is possible because
both the approximating model and the learning of the parameter of the model
can be cast completely in a representation-independent way, and rely only on
distance relations between training instances and query instances.

As a preliminary experimental validation of the framework, we have consid-
ered the binary strings representation endowed with the hamming distance and
tested the SMBO on the NK-landscapes, obtaining consistently that with the
same budget of expensive function evaluations, the SMBO performs best in a
comparison with other search algorithms. This shows that this framework has

potential to work well on other more complex representation associated with
combinatorial spaces.

Much work remains to be done. Firstly, we will test the framework on stan-
dard problems for more complex representations, such as permutations, variable-
length sequences, and trees. Then, we will test how the system performs on a
number of challenging real-world problems. We will also experiment with differ-
ent types of radial basis functions, beside the Gaussian, and in a more complex
learning settings (i.e., learning the centers and the widths of the radial basis
functions). Lastly, we will attempt the generalisation of more sophisticated in-
terpolation and regression methods, including gaussian process regression, which
is state of the art in machine learning.

References

1. L. Bajer and M. Holena. Surrogate model for continuous and discrete genetic
optimization based on rbf networks. In Intelligent Data Engineering and Automated
Learning IDEAL 2010, 2010.

2. P. Castillo, A. Mora, J. Merelo, J. Laredo, M. Moreto, F. Cazorla, M. Valero, and
S. McKee. Architecture performance prediction using evolutionary artificial neural
networks. In Applications of Evolutionary Computing, pages 175–183, 2008.

3. N. A. C. Cressie. Statistics for Spatial Data (revised edition). Wiley, 1993.
4. L. C. Jain. Radial Basis Function Networks. Springer, 2001.
5. Y. Jin. A comprehensive survey of fitness approximation in evolutionary compu-

tation. Soft Computing Journal, 9(1):3–12, 2005.
6. D. R. Jones. A taxonomy of global optimization methods based on response sur-

faces. Journal of Global Optimization, 21:4:345–383, 2001.
7. S. Kauffman. Origins of order: self-organization and selection in evolution. Oxford

University Press, 1993.
8. T. L. Lew, A. B. Spencer, F. Scarpa, K. Worden, A. Rutherford, and F. Hemez.

Identification of response surface models using genetic programming. Mechanical
Systems and Signal Processing, 20:1819–1831, 2006.

9. T. Mitchell. Machine Learning. McGraw Hill, 1997.
10. A. Moraglio. Towards a geometric unification of evolutionary algorithms. PhD

thesis, University of Essex, 2007.
11. C. E. Rasmusen and C. Williams. Gaussian Processes for Machine Learning. the

MIT Press, 2006.
12. S. Tong and B. Gregory. Turbine preliminary design using artificial intelligence and

numerical optimization techniques. Journal of Turbomachinery, 114:1–10, 1992.
13. I. Voutchkov, A. Keane, A. Bhaskar, and T. M. Olsen. Weld sequence optimiza-

tion: the use of surrogate models for solving sequential combinatorial problems.
Computer Methods in Applied Mechanics and Engineering, 194:3535–3551, 2005.

