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ABSTRACT
In continuous optimisation, surrogate models (SMs) are used
when tackling real-world problems whose candidate solu-
tions are expensive to evaluate. In previous work, we showed
that a type of SMs – radial basis function networks (RBFNs)
– can be rigorously generalised to encompass combinato-
rial spaces based in principle on any arbitrarily complex un-

derlying solution representation by extending their natural
geometric interpretation from continuous to general metric
spaces. This direct approach to representations does not re-
quire a vector encoding of solutions, and allows us to use
SMs with the most natural representation for the problem
at hand. In this work, we apply this framework to com-
binatorial problems using the permutation representation
and report experimental results on the quadratic assignment
problem.
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1. MODEL-BASED OPTIMIZATION
The traditional procedure of surrogate model based opti-

misation (SMBO) [2] is outlined in Algorithm 1.
SMBOs are naturally suited to continuous optimization or

to discrete problems when solutions are vectors of integers,
as there are many statistical techniques that can be used to
build a surrogate model of the fitness landscape from data-
points based on these representations.

In many optimization problems, natural solution represen-
tations are not real or integer vectors, but they can be per-
mutations, variable-length sequences, trees, graphs or any
arbitrarily complex structures. The choice of an adequate
representation for the problem at hand is often critical to the
success of the search algorithm, whichever particular search
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Algorithm 1 Surrogate Model Based Optimisation

1: Sample uniformly at random a small set of candidate solutions
and evaluate them using the expensive objective function (initial
set of data-points)

2: while limit number of expensive evaluations not reached do

3: Construct a new surrogate model using all data-points available

4: Determine the optimum of the surrogate model by search, e.g.,
using an evolutionary algorithm (this is feasible as the model
is cheap to evaluate)

5: Evaluate the solution which optimises the surrogate model in
the problem with the expensive objective function (additional
data-point available)

6: end while

7: Return the best solution found (the best in the set of data-points)

algorithm is to be used. In particular, although, permu-
tations can be regarded as a special type of vectors, they
generally cannot be effectively treated as vectors as the rel-
evant information they encode about the problem at hand
is in the order of the elements, rather than in the absolute
values at each location in the vector.

2. GENERALIZED RBFNS
Is there a systematic and rigorous way to adapt a sur-

rogate model to the target representation which does not
require us to rethink the surrogate model, or make ad-hoc
adaptation to the model, for any target representation con-
sidered however complex it is? In [3], the authors proposed
a generalization of radial basis function networks [1] which
answers in the affirmative the question above.

A radial basis function (RBF) is a real-valued function
whose value depends only on the distance from some given
points ci . The distance considered is usually the Euclidean
distance. The most frequently used are Gaussian functions
of the form φ(x) = exp(−‖x − c‖2). Radial basis functions
are used to build function approximations of the form (i.e.,

RBFNs): y(x) = w0 +
P

N

i=1
wi φ(‖x − ci‖). RBFNs can be

trained to approximate the unknown fitness landscape by
choosing the centers ci to coincide with the known points xi

and finding the weights wi such that the unknown function
interpolates exactly the known data-points. They can be
found by using simple linear algebra, which involves a matrix
inversion, to solve a system of linear equations. The trained
model can be queried with unseen points to forecast their
function values.

All aspects of RBFNs that allow us to use them as surro-
gate models, i.e., model definition and representation, train-



ing, querying and searching of RBFNs can be naturally
generalized from Euclidean spaces to general metric spaces,
by replacing the Euclidean distance with a generic metric.
Therefore, the generalized model applies to any underlying
solution representation once a distance function rooted on
that representation is provided (e.g., Swap distance on per-
mutations). In particular, this method can be used as it is

to learn in principle any function mapping directly complex
structured representations to reals without introducing any
arbitrary ad-hoc adaptation to the RBFNs. There is no spe-
cial requirement of pre-processing the target representation
and shoehorn it in a vector of features.

3. EXPERIMENTS
Experiments were carried out on three standard quadratic

assignment problem (QAP) instances (kra32, tho30 and nug30,
where the number in the name indicates the instance size),
and on two unimodal problems on permutations of size 30
based on the Hamming distance (unih30) and the Swap dis-
tance (unis30). As distance functions between permutations
as base for the instantiation of the SMBO, we used the Ham-
ming distance (SMBOH) and the Swap distance (SMBOS).
The number of total available expensive function evaluations
was set to n = 100, 10 of which are initial data-points. To
search the surrogate model we used a memetic algorithm on
permutations with cycle crossover, swap mutation and local
search based on the 2-opt neighborhood. We compared the
SMBOs with a standard genetic algorithm (GA) and with
random search (RS) applied directly on the problem with
the expensive objective function. We gave all algorithms in
the comparison exactly the same number of expensive ob-
jective functions, and we did 50 independent runs of each
experiment.

Table 1 reports the results of the comparison. These re-
sults consistently rank the SMBOH as the most effective
algorithm, followed by the GA, then by the SMBOS and
finally followed by the RS. An initial conclusion that can
be drawn is that the surrogate based on the Hamming dis-
tance really helps in locating better solutions given the same
amount of expensive fitness evaluations, both on the QAP
instances and on the unimodal ones. A rather surprising
result is that the surrogate model based on the Swap dis-
tance does not seem to be very effective, as it is better than
the RS but worse than the GA. This is surprising because
the Hamming distance and the Swap distance are related
distances. It is also noteworthy that the SMBOH is bet-
ter than the SMBOS on the unimodal landscape under the
Swap distance (unis30), which we introduced in the test-bed
of problems because intuitively this can be thought as the
easiest landscape to optimize for the SMBOS .

To have a better picture of the working mechanism of the
SMBO algorithms we did a number of analyses. Firstly,
to make sure that the distances chosen as the basis for the
SMBO are suited to the problem at hand, we did a static
analysis of the predictive power of the surrogate models
when they are used in isolation from the SMBO. We found
that on all instances the Hamming model produces better
prediction than the Swap model. Furthermore, a fitness-
distance correlation analysis showed that the Swap distance
is more suited than the Hamming distance to the QAP in-
stances, as it obtains higher correlation. However, this is
not reflected in the performance. So, the static prediction
power of a model is a better indicator of which distance to

Table 1: Results for Random Search (RS), Genetic
Algorithm (GA), SMBOH and SMBOS on QAP in-
stances (kra32, tho30, nug30) and unimodal ones
(unih30, unis30). Best, mean and standard devi-
ation over 50 independent runs of the best fitness
found by each algorithm are reported.

Algorithm Best Mean SD

kra32
RS 24156 25008.036 434.752
GA 23440 24625.032 586.598
SMBOH 22590 24094.320 616.714
SMBOS 23848 24833.920 452.219

tho30
RS 190256 196662.822 3211.198
GA 180274 194389.912 4414.218
SMBOH 180860 193415.440 4629.032
SMBOS 186172 195231.920 3534.208

nug30
RS 7350 7618.000 84.598
GA 7296 7558.360 126.650
SMBOH 7276 7500.240 97.363
SMBOS 7328 7563.880 94.384

unih30
RS 24 25.796 0.784
GA 22 25.044 1.263
SMBOH 17 20.840 1.554
SMBOS 21 25.180 0.953

unis30
RS 19 21.657 0.871
GA 17 20.906 1.294
SMBOH 15 18.480 1.825
SMBOS 19 21.040 0.937

use with the SMBO. We performed other analyses not re-
ported here to understand how the hardness of the surrogate
models and the special topological features of the spaces un-
der the two distances affect the overall SMBO performance.
However, after these analyses, it is still eluding us exactly
what particular property is which the Hamming distance has
and that the Swap distance has not that makes the former
distance more suitable to be used effectively with an SMBO.

4. CONCLUSIONS AND FUTURE WORK
We tested for the first time the new SMBO framework

on the permutation representation. The SMBO based on
the Hamming distance performed best, whereas the SMBO
based on the Swap distance did less well even on problems
which we would have expected it to do well. We will investi-
gate the causes of this further in future work. Furthermore,
we will test the permutation-based SMBO framework on
real-world scheduling problems, and experiment with more
complex representations.
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