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Abstract

We extend a geometric framework for the interpretation of search operators to encompass the
genotype-phenotype mapping derived from an equivalence relation defined by an isometry group.
We show that this mapping can be naturally interpreted using the concept of quotient space, in
which the original space corresponds to the genotype space and the quotient space corresponds
to the phenotype space. Using this characterization, it is possible to define induced geometric
crossovers on the phenotype space (called quotient geometric crossovers). These crossovers have
very appealing properties for non-synonymously redundant encodings, such as reducing the size of
the search space actually searched, removing the low locality from the encodings, and allowing a
more informed search by utilizing distances better tailored to the specific solution interpretation.
Interestingly, quotient geometric crossovers act on genotypes but have an effect equivalent to ge-
ometric crossovers acting directly on the phenotype space. This property allows us to actually
implement them even when phenotypes cannot be represented directly. We give four example ap-
plications of quotient geometric crossovers for non-synonymously redundant encodings and demon-
strate their superiority experimentally.
Keywords: Genotype-phenotype mapping, redundant representation, quotient metric space, geo-
metric crossover, quotient geometric crossover.

1 Introduction

For many interesting problems in evolutionary computation, it is difficult to design effective search
operators working directly on phenotypes, e.g., when phenotypes are rather complex structures. In
such cases, encodings are normally used to assign phenotypes to standard genotypes, such as binary
strings, upon which standard search operators can be used. For redundant representation, the same
phenotype is represented by more than one genotype. There are quite a few search, optimization,
and learning problems addressed with evolutionary algorithms for which it is difficult to represent one
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phenotype by a single genotype using traditional representation, such as binary string or permutation,
e.g., when phenotypes are graphs.

There have been some theoretical and empirical studies that analyze redundant encodings in terms
of synonymity and locality [32, 33, 34]. These are known to be good (qualitative) indicators of problem
hardness caused by the redundancy of the encoding for genetic algorithms. A representation is regarded
as (non-)synonymously redundant if the genotypes that are assigned to the same phenotype are (not)
similar to each other. Whereas synonymously redundant representations have a neutral effect on
performances, non-synonymously redundant representations may lead to severe loss of performance in
genetic algorithms, in particular, with respect to traditional crossovers1 [7]. To alleviate the problems
caused by non-synonymously redundant representations, some methods such as adaptive crossover
have been proposed [9, 23, 30, 42]. Among them, a technique called normalization2 is representative.
Normalization transforms the genotype of a parent into another genotype that represents the same
phenotype to be as similar as possible to the genotype of the other parent before performing traditional
crossover. There have been many successful studies using normalization. Recently Choi and Moon [8]
showed that normalization, which was designed heuristically according to the target problem, is useful
for non-synonymously redundant representations, through experimental analyses on various problems.
However, previous studies have explained its usefulness very informally and tackled the method in case-
by-case design. In this paper, we formally design normalization as a tool for computing a more natural
metric on search space, and show why normalization is important for non-synonymously redundant
representations by re-interpreting it with formal geometric framework.

Geometric crossovers [28] are search operators defined geometrically using the distance associated
with the search space. In this paper, we show how to derive formally geometric crossovers which are
completely unaffected by the redundancy of the encoding. This is achieved by showing that a large
class of genotype-phenotype mappings, each of which can be derived from an equivalence relation
defined by an isometry group, can be naturally interpreted geometrically using the concept of quotient
metric space. We then formally present the general relation between the notion of quotient metric
space and genotype-phenotype mapping, and we derive the relation between genotype and phenotype
spaces and their associated geometric crossovers. Finally, we show how to exploit the relation between
geometric crossovers to derive an operational and representation-independent procedure that allows
us to implement a geometric crossover on the phenotype space indirectly by appropriate manipulation
of genotypes.

As a preliminary work [21, 27], we presented a well-designed metric suitable for the multiway
graph partitioning problem, which presents a redundant encoding, and designed a geometric crossover
defined on the corresponding metric space successfully. However, the idea of the previous work is
applicable only to a specific problem (multiway graph partitioning) and does not apply to other
problems with redundant encoding. In this paper, we propose a formal framework that generalizes
the above mentioned work using the notion of quotient metric and makes it directly applicable to a
large class of problems with redundant encodings. We will show that a number of problems can be
easily tackled with our approach.

The remainder of the paper is organized as follows. In Section 2, we present some necessary math-

1Crossovers defined on binary and non-binary strings using crossover-masks.
2The term of normalization firstly appeared in [18]. However, it is based on the adaptive crossovers proposed in

[23, 30].
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ematical preliminaries and the geometric framework. In Section 3, the notion of quotient geometric
crossover is introduced in connection with the geometric interpretation of the genotype-phenotype
mapping derived from an equivalence relation defined by an isometry group. In Section 4, we present
several interesting examples of quotient geometric crossover for non-synonymously redundant encod-
ings, together with experimental evidence showing their superiority.

2 Preliminaries

Given a set X and an equivalence relation ∼ on X, the equivalence class of an element a in X is the
subset of all elements in X that are equivalent to a. The set of all equivalence classes in X given an
equivalence relation ∼ is usually denoted by X/∼ and called the quotient set of X by ∼. Topologically,
a point in the quotient space X/∼ identifies a set of all equivalent points in X.

A group is an algebraic structure consisting of a set together with a binary operator. To qualify
as a group, the set and operator must satisfy group axioms: associativity, identity, and invertibility.
In evolutionary computation, there have been some studies using group structure and group action to
analyze and characterize crossover and mutation [35, 36]. In this paper, differently from the previous
study, we use groups to construct equivalence relations which give rise to a well-behaved notion of
quotient on metric spaces (see Section 3.1 for details).

We assume genotype and phenotype spaces to be metric spaces. Formally, the metric d - or
distance d - denotes any real-valued function that conforms to the axioms of identity, symmetry, and
triangular inequality. On a metric space (X, d), the map f : X → X satisfying the condition of
d(f(x), f(y)) = d(x, y) for all x, y ∈ X is called an isometry of X [4]. The set of isometries on X is
denoted by Iso(X). Iso(X) forms a group under the function composition operator. In our study, an
isometry subgroup G ⊆ Iso(X) will be considered to generate an equivalence relation for the quotient
metric space [4] (see Section 3.1).

We recall some known geometric definitions. In a metric space (X, d), a closed ball is the set
of the form Bd(x, r) = {y ∈ X | d(x, y) ≤ r}, where x ∈ X is called the center of the ball and
r ∈ R

+ is called the radius of the ball. A line segment (or closed interval) is the set of the form
[x; y]d = {z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are called extremes of the segment.
Metric segment generalizes the familiar notion of segment in the Euclidean space to any metric space.

Geometric crossover [28] is an approach to generalize some standard search operators for the major
representations used in evolutionary algorithms [26], such as binary string, real vector, permutation,
permutation with repetitions, syntactic tree, sequence, and set. It is defined in geometric terms using
the notions of line segment.3 These notions and the corresponding genetic operators are well-defined
once a notion of distance in the search space is defined. Defining search operators as functions of
the search space is opposite to the standard way [17] in which the search space is seen as a function
of the search operators employed. This viewpoint greatly simplifies the relationship between search
operators and fitness landscape, and, as shown in this paper, also between search operators and
genotype-phenotype mapping.

The image Im[XO] of a crossover operator XO is defined as the function mapping parents x and
y to the set of all possible offspring produced by XO(x, y). The following definition is representation-
independent, in that it refers to the underlying representation only indirectly via a distance defined

3Geometric mutation, which is a generalization of mutation, is based on the notion of ball.
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on a search space such as genotype space or phenotype space.

Definition 1 (Geometric crossover). A binary operator GX is a geometric crossover under the metric
d if all offspring are in the segment between its parents x and y, i.e., Im[GX](x, y) ⊆ [x; y]d.

For example, traditional mask-based crossovers, e.g., uniform and n-point crossovers, are geometric
under the Hamming distance. A number of general properties for geometric crossover have been
derived in [28].

3 Quotient Geometric Crossover

Let X and Y be the genotype space and the phenotype space, respectively. Consider a genotype-
phenotype mapping φ: X → Y that is not injective (i.e., redundant representation). The mapping φ
induces a natural equivalence relation ∼ on the set of genotypes: genotypes that represent the same
phenotype belong to the same class. Hence Y comes to coincide (one-to-one mapping) to the quotient
space X/∼. Notice that under this interpretation a phenotype is both an element of Y and, at the
same time, the set of all genotypes corresponding to that phenotype, which is an element of X/∼.

We can formally define a geometric crossover on a space provided that a distance is defined on
the space. Interestingly, if the equivalence relation ∼ is derived from an isometry group, the quotient
space X/∼ has a natural distance dY induced by the distance dX of X (see Section 3.1). As we
will show in Section 4, this type of equivalence relation appears to occur naturally in a number of
non-synonymously redundant encodings. The geometric crossover under dY is a natural crossover on
Y to consider since it reflects the structure of X by involving the distance dX of X. By applying the
formal definition of geometric crossover to the spaces (X, dX ) and (Y, dY ), we obtain the geometric
crossovers GX and GY, respectively. GX searches the space of genotypes and GY searches that of
phenotypes.

The crossover GY for non-synonymously redundant encodings turns out to be very interesting
because, as we will show in Section 4, it presents many potential advantages: (i) it allows to search
directly Y which is much smaller than X, hence quicker to search4; (ii) the induced phenotypic distance
dY is better tailored to the underlying problem than the corresponding genotypic distance dX , hence
GY works better than GX; (iii) Y has different geometric characteristics from X. These differences
are reflected in different search biases of the corresponding geometric crossovers. In some cases, GY
can be used instead of GX to remove unwanted biases.

Unfortunately, the crossover GY cannot be directly implemented because it recombines phenotypes
that cannot be directly represented (or that are not convenient to represent directly). However, it
turns out to be possible to exploit the affinity between the distances dY and dX to search the space
of phenotypes with the crossover GY indirectly by manipulating the genotypes X with the crossover
GX after an appropriate formal transformation of GX.

3.1 Definition and Properties

The genotype-phenotype mapping φ naturally induces an equivalence relation ∼ on the genotype space
X. Under certain conditions, the quotient metric of genotype space (X, dX) with respect to ∼ returns

4It is true for non-synonymously redundant encodings. But, for synonymously redundant encodings, a reduction of
the search space does not improve the performance of genetic algorithms [34].
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a well-defined metric on the phenotype space (Y, dY ). However, not every equivalence relation gives
a metric on its quotient space. The class of equivalence relations defined using isometry subgroups
gives rise to a well-defined quotient metric space, as follows. Let (X, dX) be a metric space and
(G, ·) ⊆ Iso(X) be an isometry subgroup, where ‘·’ denotes the function composition operator. We
introduce a relation ∼: x and y in X are related if and only if x = g(y) for some g ∈ G. Then ∼ is an
equivalence relation on X [4]. Once an equivalence relation is defined using an isometry subgroup, we
can obtain a natural metric on its quotient space Y = X/ ∼, which is induced by the original metric
dX . For x ∈ X, x̄ denotes the equivalence class to which x belongs. That is, x̄ = {g(x) | g ∈ G}. In
[4], it is proven using the concept of group action that the metric dY on Y induced by the original
metric dX is as follows: the quotient metric dY (x̄, ȳ) = min{dX(x′, y′) | x′ ∈ x̄, y′ ∈ ȳ}.

The following proposition gives a characterization of the quotient metric dY that allows to compute
it more efficiently. It says that to compute the quotient metric dY (x̄, ȳ) given x, y ∈ X, we can fix any
representative element x of x̄ and have only to consider the distances to any element of ȳ, instead of
considering the distances between all possible pairs of elements of x̄ and ȳ as in the original definition
of quotient metric dY . This characterization is more practical than dY because the number of cases
to consider is much smaller.

Proposition 1. For any fixed x ∈ x̄, let d̃Y (x̄, ȳ) := min{dX(x, y′) | y′ ∈ ȳ}. Then d̃Y (x̄, ȳ) =
dY (x̄, ȳ).

Proof. Let x̄, ȳ ∈ Y . It is clear that d̃Y (x̄, ȳ) ≥ dY (x̄, ȳ) by definition. Now we will show that
d̃Y (x̄, ȳ) ≤ dY (x̄, ȳ). Suppose that dY (x̄, ȳ) = dX(x1, y1), where x1 ∈ x̄ and y1 ∈ ȳ. Since x and
x1 belong to the same equivalence class, there exists g ∈ G such that x = g(x1). Since g is an
isometry, dX(x1, y1) = dX(g(x1), g(y1)) = dX(x, g(y1)). y ∼ y1 and y1 ∼ g(y1). So y ∼ g(y1). Hence
d̃Y (x̄, ȳ) ≤ dX(x, g(y1)) = dX(x1, y1) = dY (x̄, ȳ).

Since a quotient metric space is a metric space, the line segment and the geometric crossover in
this space are well-defined. However, the geometric crossover associated with this space is an abstract
operator, in the sense that it cannot be directly implemented. This is a consequence of phenotypes, as a
norm, being abstract entities themselves, which require to be mapped to genotypes to be represented in
a computer. However, we can exploit the quotient relationship between the metric spaces of genotypes
(X, dX ) and of phenotypes (Y, dY ), to determine a general representation-independent procedure to
implement the geometric crossover on phenotypes indirectly acting on corresponding genotypes, which
are entities that can be directly manipulated. In the following, such a general procedure is derived
formally.

Given a genotype space (X, dX ) and its induced quotient phenotype space (Y, dY ), a quotient closed
ball is the set of the form BdY

(x, r) = {y ∈ X | dY (x̄, ȳ) ≤ r}, where r ∈ R
+. A quotient line segment

is the set of the form [x; y]dY
= {z ∈ X | dY (x̄, z̄) + dY (z̄, ȳ) = dY (x̄, ȳ)}. Notice that quotient closed

balls and quotient line segments are sets on the genotype space defined as functions of closed ball and
line segment in the phenotype space. Intuitively, they can be understood as the “shadow” of shapes in
the phenotype space projected to the genotype space via the inverse of genotype-phenotype mapping
(φ−1). The next proposition relates quotient closed balls and quotient line segments to closed balls
and line segments in the genotype space, respectively.

Proposition 2. (i) ∀r ∈ R
+, ∀x ∈ X, BdX

(x, r) ⊆ BdY
(x, r).

(ii) ∀x, y ∈ X and y∗ ∈ ȳ such that dY (x̄, ȳ) = dX(x, y∗) then [x; y∗]dX
⊆ [x; y]dY

.

5



Proof. (i) Let y ∈ BdX
(x, r). Then, dX(x, y) ≤ r, and so dY (x̄, ȳ) ≤ r by the definition of quotient

metric. Hence y ∈ BdY
(x, r).

(ii) Let z ∈ [x; y∗]dX
. Then, dY (x̄, z̄) + dY (z̄, ȳ) ≤ dX(x, z) + dX(z, y∗) = dX(x, y∗) = dY (x̄, ȳ).

Since dY (x̄, z̄) + dY (z̄, ȳ) ≥ dY (x̄, ȳ) by the triangular inequality, dY (x̄, z̄) + dY (z̄, ȳ) = dY (x̄, ȳ). So,
z ∈ [x; y]dY

.

Definition 2 (Quotient geometric crossover). A binary operator QGX on the genotype space X is a
quotient geometric crossover under the metric dX and the equivalence relation ∼ if all offspring are
in the quotient line segment between its parents x and y, i.e., Im[QGX](x, y) ⊆ [x; y]dY

.

This is an important definition that requires some attention. Notice that the quotient geometric
crossover QGX acts on genotypes and requires that the offspring (genotypes) lie in the “shadow” of the
line segment in the phenotype space whose endpoints are the phenotypes of its parents. This, in effect,
implements a geometric crossover GY in the phenotype space indirectly via acting on the genotype
space because the corresponding phenotypes of the offspring lie necessarily in the line segment between
its parents’ phenotypes (by projecting back the offspring in the “shadow” from the genotype space to
the phenotype space via the mapping φ).

The quotient geometric crossover, although being in principle implementable because of acting
on genotypes, has a non-operational definition that does not suggest how to actually construct the
crossover. In the following, we define the induced quotient crossover (IQX) and we show that it is a
quotient geometric crossover. Interestingly, this crossover can be derived by transforming the original
geometric crossover GX on the genotype space under the distance dX . The involved transformation
is a generalization of the normalization, which we mentioned in the introduction. This transforma-
tion can be defined very generally, in a representation-independent way, given a metric space and an
isometry subgroup on this space. The induced quotient crossover IQX turns out to be easily imple-
mented because, as a norm, both the original geometric crossover GX on the genotype space and the
normalization transformation are constructive.

Definition 3 (Induced quotient crossover). The operator IQX(x, y) with x, y ∈ X is as follows. First,
normalize y with respect to x by finding the y∗ equivalent to y (in ȳ) which is at a minimum genotypic
distance from x, i.e., dY (x̄, ȳ) = dX(x, y∗). Then, use the geometric crossover GX associated with X
to recombine the first parent x and the normalized second parent y∗.

Corollary 1. Induced quotient crossover IQX is a quotient geometric crossover.

Proof. Let y∗ ∈ ȳ be a normalized second parent, i.e., dY (x̄, ȳ) = dX(x, y∗). Then, [x; y∗]dX
⊆ [x; y]dY

by Proposition 2. This satisfies the definition of quotient geometric crossover.

In summary, the induced quotient crossover IQX can be seen as a bridge between the original geometric
crossover GX on the genotype space and the quotient geometric crossover QGX, since it is characterized
in operational terms. In turn, QGX becomes a bridge between phenotype space and genotype space,
as it characterizes on the genotype space a geometric crossover GY on the phenotype space.

6



4 Example Applications

In this section, we consider four example applications of genotype-phenotype encodings for different
representations and we show how to use the quotient framework to derive crossover operators which
are completely unaffected by the redundancy of the encoding.

In the first example about groupings in Section 4.1, a previously proposed crossover [27] is rein-
terpreted as a quotient geometric crossover. In the other examples, we derive new quotient geometric
crossovers consistent with the genotype-phenotype mapping of the given problems.

The purpose of this section goes beyond illustrating the application of the quotient geometric
crossover framework to specific examples. Importantly, it is to show that different types of represen-
tations, which are used for various problems, that have never been conceptually considered together
are naturally unified and explained in a rigorous manner within this framework.

4.1 Groupings

Grouping problems [13] are commonly concerned with partitioning a given set of items into mutually
disjoint subsets. Examples belonging to this class of problems are multiway graph partitioning, graph
coloring, bin packing, and so on. This class of problems has been approached successfully with
evolutionary algorithms [10, 12, 27].

Most normalization studies for grouping problems have focused on the k-way partitioning problem
[23], which is roughly the problem of partitioning a given node set into k indistinguishable subsets
(for the exact definition of the problem, see Section 4.5). In this problem, the k-ary representation
has been generally used. In this representation, one phenotype (a k-way partition) is represented by
k! different genotypes, which are all the possible ways of labeling the subsets. For this problem, a
normalization method was used in [7, 18]. In the sense that normalization pursues the minimization
of genotype inconsistency among parental chromosomes (position-wise mismatches), in [20], Kim and
Moon proposed an optimal, efficient normalization method for grouping problems based on a novel
distance measure, the labeling-independent distance, that eliminates dependency on the underlying
labeling completely. In the following, we show that, in effect, the recombination that includes the
normalization procedure followed by standard crossover on discrete vectors, is an instance of quotient
geometric crossover.

Let a, b ∈ X = {0, 1, . . . , k − 1}n be k-ary genotypes (fixed-length vectors on a k-ary alphabet),
where X is the genotype space. The phenotype space Y is the set of all possible ways of partitioning
the set of items into k subsets, irrespective of the labeling of the subsets. Let Σk be the set of all
permutations of length k. For each σ ∈ Σk, we can view σ as a function on X by defining σ(a) to be
a permuted encoding of a by a permutation σ. For example, in the case that a = (0, 1, 2, 2, 1, 3, 0, 3) is
a 4-ary genotype and σ =

(0 1 2 3
1 3 2 0

)

∈ Σ4, then σ(a) = (1, 3, 2, 2, 3, 0, 1, 0). The genotype σ(a) has the
same phenotype as a for each permutation σ ∈ Σk because applying the permutation to the genotype
a has only the effect of relabeling the groups and does not affect how the set of items is partitioned.
Therefore, in this case, the equivalence relation ∼ between genotypes sees genotypes as equivalent
when they represent the same partitioning of the set of items.

The crossover on genotypes GX considered is the standard crossover on discrete vectors. This
crossover is a geometric crossover on X under Hamming distance H [26], which is then the distance
dX on the genotype space to consider in this case.
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x = (0, 1, 2, 0), y = (1, 0, 1, 2) ∈ X = {0, 1, 2}4

1 2

3 4

1 2

3 4

〈 phenotype of x 〉 〈 phenotype of y 〉

G(= Σ3) ȳ H(x, σ(y))

σ1 = (0, 1, 2) σ1(y) = (1, 0, 1, 2) H(x, σ1(y)) = 4
σ2 = (0, 2, 1) σ2(y) = (2, 0, 2, 1) H(x, σ2(y)) = 3
σ3 = (1, 0, 2) σ3(y) = (0, 1, 0, 2) H(x, σ3(y)) = 2
σ4 = (1, 2, 0) σ4(y) = (2, 1, 2, 0) H(x, σ4(y)) = 1
σ5 = (2, 0, 1) σ5(y) = (0, 2, 0, 1) H(x, σ5(y)) = 3
σ6 = (2, 1, 0) σ6(y) = (1, 2, 1, 0) H(x, σ6(y)) = 3

y∗ = argminy′∈ȳ H(x, y′) = σ4(y) = (2, 1, 2, 0), and then dY (x̄, ȳ) = H(x, y∗) = 1

Figure 1: An example in 3-grouping of 4 items

It is well-known that permutations form a group [14, 35], which is known as symmetric group.
Hence, Σk is a group. Moreover, it is easy to check that each σ ∈ Σk is an isometry on X with respect
to the Hamming distance and that the equivalence relation ∼ is associated with this isometry subgroup
Σk. Since these pre-conditions hold, the phenotype space Y is associated with a well-defined quotient
metric dY . By Proposition 1, the quotient metric so obtained coincides to the labeling-independent
distance introduced in [20] and shown as follows: dY (ā, b̄) = minσ∈Σk

H(a, σ(b)). An example is
shown in Figure 1. In this example, the phenotype space Y consists of all 3-groupings of 4 items.
The figure shows that the phenotypic distance between two 3-groupings x̄ = {{1, 4}, {2}, {3}} and
ȳ = {{2}, {1, 3}, {4}} is 1 by using the quotient metric dY on X/ ∼.

The induced quotient crossover IQX can be obtained using the following: normalize the second
parent to the first under the Hamming distance, and then apply a geometric crossover using the first
parent and the normalized second parent. Corollary 1 then guarantees that this crossover can be
understood as a geometric crossover GY associated with the phenotype space (Y, dY ). As anticipated,
the presented IQX coincides to the labeling-independent crossover presented in [21].

In order to implement IQX, one needs a way to implement efficiently the normalization specifi-
cally for this class of genotypes and for the Hamming distance. A näıve method to implement the
normalization is to enumerate all k! permutations and find the optimal one among them. However,
for a large k, such a procedure is intractable. Fortunately, the normalization can be done in O(k3)
time using the Hungarian method proposed by Kuhn [22].5

4.2 Graphs

We consider any problem naturally defined over a graph in which the fitness of the solution does not
depend on the labels on the nodes but only on the structural relationship between them (determined
by how edges link nodes). Graphs are a very important representation with many applications as they
are ubiquitous. Encodings for graphs, e.g., adjacency matrix, are inherently redundant, hence the
application of the quotient framework is potentially very interesting as it allows us to design crossover
operators which are not affected by the redundancy.

Formally, let A ∈ Mn be the adjacency matrix of a labeled graph with n nodes (genotype) and

5We can also consider some fast heuristic algorithms for normalizing solutions approximately [2]. They can be
implemented in O(k2) and experimental studies indicated that these methods are, in practice, very close to the optimum
and much faster than the Hungarian method.
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let Pn be a set of all n× n permutation matrices, where a permutation matrix is a (0, 1)-matrix with
exactly one 1 in every row and column. Then, for each permutation matrix P ∈ Pn, the matrix
PAP T corresponds to the labeled graph obtained by relabeling the labeled graph A according to the
permutation represented by P . So, the graphs A and PAP T are isomorphic (graph isomorphism is
the equivalence relation on the genotype space in this case). The fitness w : Mn → R satisfies that
for every A ∈ Mn and every permutation matrix P , w(A) = w(PAP T ). This requirement captures
formally the idea that the fitness of a solution depends only on the underlying structure of the graph
(phenotype) and not on the way its nodes are labeled.

Let (Mn,H) be a metric space on the labeled graphs under the Hamming distance H on their
adjacency matrices6. Notice that this metric is labeling-dependent. In particular, the distance
H(A,PAP T ) between A and PAP T may not be zero although A and PAP T represent the same
structure. If B is equal to PAP T for some permutation matrix P , we define A and B to be in relation
∼, i.e., A ∼ B. Since a set of permutation matrices Pn forms an isometry subgroup, the relation ∼ is
an equivalence relation.

The equivalence class Ā is represented as follows: Ā = {PAP T | P ∈ Pn}. The equivalence class
so defined naturally corresponds to an unlabeled graph and consequently the quotient space Mn/ ∼
can be understood as the space of unlabeled graphs. To make the link with the quotient geometric
crossover explicit, we have that the space of adjacency matrices is the genotype space X, which we
can represent and manipulate directly in the search, and the space of the unlabeled graphs is the
phenotype space Y , which we actually would like to search but we cannot represent directly. The
space Mn/ ∼ is a quotient metric space endowed with the metric: dY (Ā, B̄) = minP∈Pn H(A,PBP T ).
An example for graph representation is shown in Figure 2. In this example, Y consists of all graphs
with 3 nodes. The figure illustrates that for two 3-node graphs the phenotype distance dY between
them is 2 through the normalization using permutation matrices.

The distance dY (Ā, B̄) between graphs coincides to the ins/del edge edit distance between (un-
labeled) graphs with the same number of nodes, which is defined as the minimum number of edges
to add to and delete from a graph to obtain the other graph. Similarly to the case of groupings, the
geometric crossover under this phenotypic distance, on unlabeled graphs in this case, is an abstract
operator that cannot be directly implemented because unlabeled graphs are abstract structures in the
sense that they cannot be directly represented in a computer.

In the following, we present a recombination operator, the quotient geometric crossover, that
implements the geometric crossover on the space of unlabeled graphs (phenotypes) indirectly by ma-
nipulating their adjacency matrices (genotypes). As for the case of groupings, this recombination
operator can be broken down in two separate phases using the notion of induced quotient crossover
(Definition 3) in a normalization phase followed by a crossover phase. The crossover phase consists
of a geometric crossover on adjacency matrices under the Hamming distance. Operationally, this
crossover can be shown to be a straightforward extension to matrices of the mask-based crossover
for binary strings, where the mask is a matrix. Applying the formal definition of normalization to
the specific case, the normalization phase consists of finding the adjacency matrix by relabeling the
nodes of the second parent graph such that the Hamming distance to the adjacency matrix of the
first parent graph is minimized. This coincides to the maximal graph matching problem [41]. Since

6Since the space of labeled graphs and the space of their corresponding adjacency matrices are isomorphic, we can
use them interchangeably.
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Figure 2: An example in 3-node graph

the subgraph isomorphism is NP-complete [25], one drawback for the use of graph matching is from
its time complexity and this is an inherent difficulty of the graph matching problem. However, a
research effort has been made to develop computationally tractable graph matching algorithms [31],
so such efficient heuristics can be employed to implement the normalization phase. In summary, the
induced quotient crossover for graphs is as follows: Do the graph matching of the second parent B to
the first A under the Hamming distance H, i.e., B∗ := argminB′∈B̄ H(A,B′), and then do a geometric
crossover using the first parent A and the graph-matched second parent B∗. The induced quotient
crossover implements indirectly, using adjacency matrices, a geometric crossover on unlabeled graphs
Mn/ ∼. Therefore the space actually searched by this geometric crossover is the phenotype space, not
the genotype space.

A reason to be confident in the stronger performance of the quotient geometric crossover on
graphs over its corresponding crossover on adjacency matrices, is that the edit distance upon which
the phenotypic geometric crossover is based is arguably a more natural choice of metric on graphs
than the Hamming distance on the adjacency matrix, in the sense that it is a better measure of
distance between what a graph is meant to represent. In this sense, the phenotypic distance embeds
more problem-knowledge in the search and the corresponding geometric crossover is better tailored
to graphs. Hence the locality of the problem gets higher and the quotient geometric crossover creates
more meaningful offspring.
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x = (1, 4, 5), y = (3, 0, 6) ∈ X = R
3

{1, 4, 5} {3, 0, 6}
〈 phenotype of x 〉 〈 phenotype of y 〉

G(= Σ3) ȳ E(x, σ(y))

σ1 = (1, 2, 3) σ1(y) = (3, 0, 6) E(x, σ1(y)) =
√

21

σ2 = (1, 3, 2) σ2(y) = (3, 6, 0) E(x, σ2(y)) =
√

33

σ3 = (2, 1, 3) σ3(y) = (0, 3, 6) E(x, σ3(y)) =
√

3
σ4 = (2, 3, 1) σ4(y) = (0, 6, 3) E(x, σ4(y)) = 3

σ5 = (3, 1, 2) σ5(y) = (6, 3, 0) E(x, σ5(y)) =
√

51

σ6 = (3, 2, 1) σ6(y) = (6, 0, 3) E(x, σ6(y)) = 3
√

5

y∗ = argminy′∈ȳ E(x, y′) = σ3(y) = (0, 3, 6), and then dY (x̄, ȳ) = E(x, y∗) =
√

3

Figure 3: An example in 3-variable symmetric function under the Euclidean distance

4.3 Symmetric Functions

A symmetric function on n variables x1, x2, . . . , xn is a function with the property that its returned val-
ues remain unchanged under any permutated order of its input variables. That is, if f(x1, x2, . . . , xn) =
f(xσ(1), xσ(2), . . . , xσ(n)) for any permutation σ, the function f is called symmetric function. For ex-
ample, the one-max problem [38], which is a simple problem consisting in maximizing the number of
ones of a bitstring, is a symmetric function. In this subsection, we consider problems whose fitness
function is symmetric. Some evolutionary studies have been made on such problems over sets [44] or
real vector space [39]. More properties about specific symmetric functions are introduced in [6, 40].

The form of solutions of problems defined using symmetric functions are n-dimensional vectors, i.e.,
length-n strings corresponding to the vector of input variables of the symmetric function. However, the
vectorial representation encodes the order of the input variables that, in effect, is irrelevant information
for the purpose of determining the fitness of a solution because any order of the input variables leaves
the fitness of the solution unchanged, as the fitness is a symmetric function. In this case, the quotient
geometric crossover can be applied to search the much smaller space of the “unordered” input vectors,
in effect, treating the input vectors as a (multi-)sets of fixed size, instead of the space of input vectors.
We illustrate this idea in the following.

Let X be the solution space (genotype space) corresponding to the domain of a given symmetric
function. Let Σn be the set of all permutations of length n. Similarly to the example of groupings
in Section 4.1, a permutation σ ∈ Σn can be understood as a function which reorders the elements
of an input vector x. For example, in the case that x = (x1, x2, x3, x4) and σ =

(

1 2 3 4
2 4 3 1

)

∈ Σ4,
σ(x) = (x2, x4, x3, x1). Σn is a well-known symmetric group [14, 35], and analogously as the example
of groupings, it can be shown that Σn is a group and each σ is an isometry. In the following, we
consider an example case of real input vectors.

In the case that the genotype space X is a real vector space, we can endow it with the Euclidean
distance E (or other Minkowski distances7 such as the Manhattan distance). The induced quotient
metric on X/ ∼ specified for the Euclidean distance is as follows: dY (x̄, ȳ) = minσ∈Σn E(x, σ(y)).
Figure 3 is helpful to understand the quotient metric space for this case. The figure shows an example
in symmetric functions over R

3. The phenotypic distance dY between two real vectors x = (1, 4, 5)
and y = (3, 0, 6) becomes

√
3.

The induced quotient crossover, that implements the geometric crossover that searches the quotient
space of “unordered” real vectors indirectly via manipulating the corresponding (ordered) real vectors,

7The underlying distance is a designer’s choice. Different distances are suited to different problems.

11



can be formally derived by plugging the specific distance and the specific equivalence relation for this
example in Definition 3. The derivation of an operational definition of this operator can be done
analogously to the case of groupings. The induced quotient crossover for the specific case comprises a
normalization phase that can be performed in O(n3) time using the Hungarian method, followed by
a geometric crossover on real vectors under the Euclidean distance, which operationally coincides to
the traditional blend crossover on real vectors. However, in the special case of Minkowski distances,
it is easy to see that there exists a more efficient way to do the normalization, as it can be done by
just sorting the two parents. This method returns an optimal arrangement of elements of the parent
genotypes which minimizes the distances as required and its time complexity is O(n log n). However
this method can only be applied to the case of real or integer vectors and it is not applicable to general
symmetric functions.

4.4 Circular Permutations

We consider the case in which the solutions of a problem are naturally represented as circular per-
mutations such as in the traveling salesman problem (TSP). By gluing the head and the tail of a
permutation we obtain a circular permutation. Circular permutations cannot be represented directly.
They are typically represented with simple permutations. Then each circular permutation is rep-
resented by more than one permutation. For example, permutations (1, 2, 3), (2, 3, 1), and (3, 1, 2)
represent the same phenotype, i.e., circular permutation. In such problems, the genotype space is the
set of permutations and the phenotype space is the set of circular permutations. We can consider this
problem in view of genotype-phenotype mapping using the concept of quotient space. More specifi-
cally, our aim is to use the quotient geometric crossover framework to derive formally a recombination
operator (the induced quotient crossover) acting on simple permutations to simulate a phenotypic
geometric crossover that searches the smaller space of circular permutations.

Let Σn be the set of all permutations of length n. Let us define a function sk : Σn → Σn that applies
to the input permutation k-step circular shift operations to right. For example, s2(1, 2, 3) = (2, 3, 1).
The set of all shift operations Sn = {sk | k = 0, 1, 2, . . . , n − 1} is a group. When we use position-
independent distances on X(= Σn) such as the Hamming distance or swap distance, it is easy to check
that each sk ∈ Sn is an isometry on Σn, i.e., dX(sk(σ1), sk(σ2)) = dX(σ1, σ2) for each σ1, σ2 ∈ Σn.
From the position-independent distance on Σn, Σn/ ∼ has an induced quotient metric.

In the following we consider several alternative distances on permutations and derive the corre-
sponding induced quotient crossovers. Let us start by considering the most typical distance for discrete
spaces, the Hamming distance H. It is known that the cycle crossover for permutations is geometric
under this distance [29]. The quotient metric for the Hamming distance relative to the equivalence
relation induced by the group Sn is: dY (x̄, ȳ) = mins∈Sn H(x, s(y)). An example case is shown in
Figure 4. The figure illustrates an example of circular permutation of length 6. We can see that the
phenotype distance dY between two circular permutations x = (2, 4, 5, 1, 6, 3) and y = (4, 6, 1, 5, 3, 2)
becomes 2.

Using the framework of quotient geometric crossover, we can formally derive the following induced
quotient crossover for this specific case: normalize the second parent to the first under the Hamming
distance H, and then do the cycle crossover using the first parent and the normalized second parent.
The normalization procedure in the crossover defined above is obtained by specifying the formal
definition of normalization for the equivalence relation induced by the isometry subgroup Sn and the
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x = (2, 4, 5, 1, 6, 3), y = (4, 6, 1, 5, 3, 2) ∈ X = Σ6

64

5
1

6

3

2

2
4

1
5

3

〈 phenotype of x 〉 〈 phenotype of y 〉

G(= S6) ȳ H(x, s(y))

s0 s0(y) = (4, 6, 1, 5, 3, 2) H(x, s0(y)) = 6
s1 s1(y) = (2, 4, 6, 1, 5, 3) H(x, s1(y)) = 2
s2 s2(y) = (3, 2, 4, 6, 1, 5) H(x, s2(y)) = 6
s3 s3(y) = (5, 3, 2, 4, 6, 1) H(x, s3(y)) = 5
s4 s4(y) = (1, 5, 3, 2, 4, 6) H(x, s4(y)) = 6
s5 s5(y) = (6, 1, 5, 3, 2, 4) H(x, s5(y)) = 5

y∗ = argminy′∈ȳ H(x, y′) = s1(y) = (2, 4, 6, 1, 5, 3), and then dY (x̄, ȳ) = H(x, y∗) = 2

Figure 4: An example in circular permutation under the Hamming distance

Hamming distance. This normalization can be easily implemented. It takes O(n) time to normalize
the second parent because the equivalence class of the second parent has exactly n elements by shift
operations.

Cycle crossover is also geometric under the swap distance [29]. The induced quotient crossover can
be defined in a similar way using the swap distance instead of the Hamming distance.

We can use another well-known distance on permutations, the reversal distance. Its neighborhood
structure is based on the 2-opt move (reversal). The reversal move selects any two points along the
permutation and then reverses the subsequence between these points. This move induces a graphic
distance between permutations, the reversal distance, defined as the minimum number of reversals
to transform one permutation into the other. There is a version of the reversal distance for circular
permutations defined in an analogous way. The geometric crossovers associated with these distances
belong to the family of sorting crossovers [29]: they pick offspring on the minimum sorting trajectory
between parent (circular) permutations sorted by reversals. Applying the framework of quotient
geometric crossover to the reversal distance on permutation with equivalence relation induced by the
isometry subgroup Sn, we obtain the following induced quotient crossover: normalize the second parent
to the first under the reversal distance, and then do the crossover based on sorting by reversals for
permutation using the first parent and the normalized second parent.

The framework shows that this recombination implements the geometric crossover under reversal
distance on circular permutations using the geometric crossover under reversal distance on simple
permutations preceded by normalization. Interestingly, this example of quotient geometric crossover
illustrates how to obtain a geometric crossover for a transformed representation (circular permutation)
starting from a geometric crossover for the original representation (permutation). So in this case
quotient geometric crossover is used as a tool to build a new crossover for a derivative representation
from a known geometric crossover for the original representation.

There is a problem in implementing the geometric crossover under the reversal distance. Sorting
linear or circular permutations by reversals is NP-hard [5]. So the geometric crossover under the
reversal distance cannot be implemented efficiently. However, a good approximation of this crossover
can be implemented in quadratic time [19]. From [29], we can know that the sorting-by-reversals
crossover for permutations is an excellent crossover for TSP.
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4.5 Experimental Support

We made experiments to compare the performance of geometric crossover and its induced quotient
geometric crossover. Among the presented example applications, we chose three cases: groupings, sym-
metric functions, and circular permutations. As a representative problem of each class, we adopted
a well-known NP-hard problem. Multiway graph partitioning (MGP) [37], the maximum k-coverage
problem (MKCP) [15], and the traveling salesman problem (TSP) [24] are selected for groupings, sym-
metric functions, and circular permutations, respectively. In the following, we give a brief description
of each problem.
– (Multiway graph partitioning). Let G = (V,E) be an unweighted undirected graph, where V is the
set of vertices and E is the set of edges. k-way partition is a partitioning of the vertex set V into k
disjoint subsets. A k-way partition is said to be balanced if the difference of cardinalities between the
largest and the smallest subsets is at most one. The cut size of a partition is defined to be the number
of edges with endpoints in different subsets of the partition. The k-way partitioning problem is the
problem of finding a k-way balanced partition with the minimum cut size.
– (Maximum k-coverage problem). MKCP is a generalized version of covering problem. Let A = (aij)
be an m× n zero-one matrix and weight wi be given to the i-th row of A for each i. The objective of
MKCP is to select k columns that cover the rows for their weight-sum to be maximized. Here cover
means that for each row the value of at least one column among selected k columns is 1. The weight
wi can be different according to i, however, we will deal with the case that each wi is set to be the
same value in our experiments. Then MKCP becomes the problem of finding a solution that covers
as many rows as possible using a fixed number of columns.
– (Traveling salesman problem). Given n cities and their pair-wise distances, TSP is the problem of
finding the shortest tour visiting all the cities.

To classify different types of redundant representations, Rothlauf proposes to measure the degree
of similarity of genotypes with the same phenotype [34]. Then he defines a representation to be
synonymously redundant if the genotypes that are assigned to the same phenotype are similar to each
other. Otherwise, the representation is said to be non-synonymously redundant. We measured the
synonymity of each representation to have an indication of the hardness of the genetic search based
on the traditional redundant encoding. Refining a previous measure of synonymity [33], we define the
synonymity as follows: 1

P

x̄∈Y |x̄|(|x̄|−1)

∑

x̄∈Y

∑

x1,x2∈x̄(x1 6=x2) dX(x1, x2).

The above formula has the following probabilistic interpretation: it is the expected distance be-
tween two (distinct) genotypes x1 and x2 sampled uniformly at random in the genotype space provided
that we know that they have the same phenotype. If this distance is significantly smaller than the
average distance between genotypes in the entire genotype space then the representation is synony-
mously redundant (otherwise it is non-synonymously redundant). This interpretation is sound in that
knowing that the genotypes correspond to the same phenotype implies that they are (expected to be)
closer to each other (more similar) than when not having such information, hence the representation
is synonymously redundant. Clearly, the smaller the measure of synonymity, the more synonymously
redundant the representation.

Table 1 gives the synonymity of the representation in each test problem. For this test, we gener-
ate just one random instance for each problem. The synonymity depends only on the problem size
because it is a function of only the metric on X and not of the specific fitness function. Hence, it is
enough to measure the synonymity of just one instance for each test problem. In all test problems,
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Table 1: Synonymity of Representations in Test Problems

Problem type Problem Instance size Distance dX in X Max distance Ave distance† Synonymity‡

Groupings MGP |V | = 500 Hamming 500 490.00 490.00
k = 50 distance (= |V |) (≈ |V | · (1 − 1

k
)) (≈ |V | · (1 − 1

k
))

Symmetric MKCP n = 1000 Hamming 20 19.98 19.00
functions k = 20 distance (= k) (≈ k) (= k − 1)

Hamming 500 499.00 500.00

Circular TSP n = 500 distance (= n) (= n − 1) (= n)
permutations swap 499 493.20 493.20

distance (= n − 1)

† Average from 107 random genotype pairs (x1, x2) ∈ X × X (x1 6= x2).
‡ Average from 107 random genotype pairs (x1, x2) ∈ x̄ × x̄ (x1 6= x2, x̄ ∈ Y ).

the synonymity value is the same as or very close to the average distance value, and so each repre-
sentation is non-synonymously redundant. When using non-synonymously redundant representation,
genetic operators like crossover or mutation can produce offspring that are phenotypically completely
different from its parents (by measuring phenotypic difference using the quotient metric). Hence, non-
synonymously redundant representations do not allow genetic operators to work properly and they
reduce the efficiency of evolutionary search by making problems more difficult[33]. Quotient geometric
crossover solves this problem as it removes redundancy in such encodings and it makes problems easier
to solve using genetic algorithms. Extensive experiments in the following support this fact.

First, we performed experiments on the multiway graph partitioning problem (as an example of
grouping problem). We used the steady-state genetic algorithms (GAs) of [27] on well-known bench-
mark data set from [16]. To see the effect of crossover, we did not use any local optimization. Following
the genetic framework of [27], we used swap mutation with rate 0.005. For fair comparison, all GAs
were stopped after 1,000 generations. We conducted tests on 32-way and 128-way partitioning. We
compared a geometric crossover (GX) based on the Hamming distance restricted to permutations with
repetitions and its corresponding induced quotient crossover (IQX) based on the labeling-independent
distance. The specific geometric crossover on the genotype space we use is the generalized cycle
crossover [27]. The other genetic parameters were the same as in [27]. Table 2 shows the average
results obtained from 100 runs. We also carried out one-tailed t-tests of the null hypothesis that IQX
is worse than or equal to GX. Under the same number of generations, we got clear improvements for
all the tested instances in terms of the quality of solutions achieved. Moreover, we obtained more
improvement on problem instances with larger number of groups (k = 128).

Next, we tested on the maximum k-coverage problem (as an example of problem with symmetric
fitness function). The basic evolutionary model we used is the genetic algorithm of [44], which is
quite similar to the CHC [11] that uses a restart technique without mutation. Our experiments were
conducted on 6 set covering test instances with various sizes and densities from OR-library [3]. All
GAs terminated after 1,000 generations and output the best solution found so far. We conducted tests
on k = 10 and k = 20. We compared a geometric crossover (GX) based on the Hamming distance
and its corresponding induced quotient crossover (IQX). As a geometric crossover on genotype space,
we use the uniform crossover [28]. Table 3 shows the average results obtained from 100 runs. It also
shows that the results of one-tailed t-tests of the null hypothesis that IQX is worse than or equal to
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Table 2: Results of Multiway Graph Partitioning

32-way partitioning (k = 32) 128-way partitioning (k = 128)
Instance Instance size GX IQX t-value Time GX IQX t-value Time

(|V |, |E|) Ave(SD) Ave(SD) (p-value) (ms)† Ave(SD) Ave(SD) (p-value) (ms)†

G500.2.5 |V | = 500 578.19 576.88 3.34 3.50 605.85 598.58 27.79 81.82
|E| = 625 (2.85) (2.70) (5.95E-04) (1.60) (2.07) (3.95E-49)

G500.20 |V | = 500 4901.10 4898.48 3.76 3.55 5056.70 5046.56 25.83 80.73
|E| = 5000 (5.39) (4.41) (1.42E-04) (2.70) (2.85) (2.43E-46)

U500.05 |V | = 500 1202.93 1200.49 3.72 3.44 1254.14 1244.85 27.03 81.28
|E| = 1250 (5.08) (4.14) (1.63E-04) (2.27) (2.58) (4.49E-48)

U500.40 |V | = 500 8434.28 8429.54 3.32 3.62 8697.89 8684.25 23.67 80.80
|E| = 10000 (10.43) (9.73) (6.22E-04) (3.71) (4.41) (4.48E-43)

GX is the generalized cycle crossover [27]. The smaller, the better.
† Average CPU time (ms) needed for normalization per each generation (on Intel Xeon CPU 2.40 GHz).

We used the Hungarian method for normalization.

Table 3: Results of Maximum k-Coverage Problem

k = 10 k = 20
Instance Instance size GX IQX t-value Time GX IQX t-value Time

Ave(SD) Ave(SD) (p-value) (s)† Ave(SD) Ave(SD) (p-value) (s)†

scp51 m = 200 84.14 87.31 19.10 0.14 137.22 142.38 16.46 0.95
n = 2000 (1.09) (1.26) (1.93E-35) (2.18) (2.26) (1.58E-30)

scp61 m = 200 137.83 139.75 8.81 0.17 187.97 190.90 10.44 1.14
n = 1000 (1.72) (1.34) (1.98E-14) (2.10) (1.86) (5.46E-18)

scpc1 m = 400 154.54 157.76 7.62 0.14 248.55 255.90 15.64 0.91
n = 4000 (3.08) (2.90) (7.33E-12) (3.26) (3.39) (6.34E-29)

scpd1 m = 400 252.24 256.63 8.20 0.19 352.36 358.42 12.42 1.36
n = 4000 (3.91) (3.65) (4.24E-13) (3.64) (3.25) (2.78E-22)

scpnrg1 m = 1000 312.61 319.49 10.40 0.15 520.48 532.94 13.33 1.00
n = 10000 (4.92) (4.42) (6.45E-18) (7.07) (6.12) (3.32E-24)

scpnrh1 m = 1000 542.09 549.20 9.06 0.21 800.86 812.71 14.75 1.61
n = 10000 (5.55) (5.55) (5.60E-15) (5.87) (5.48) (3.86E-27)

GX is the uniform crossover [28]. The larger, the better.
† Average CPU seconds needed for normalization per each generation (on Intel Xeon CPU 2.40 GHz).

We used the Hungarian method for normalization.

GX. IQX significantly improved GX for all the tested instances.
Finally, we did experiments for the traveling salesman problem, which is based on the circular

permutation representation. We used the genetic algorithm of GAlib [43]. Our experiments were
conducted on 6 test instances with various sizes from TSPLIB [1]. To see the effect of crossover, we
did not use any local optimization. Following the genetic framework of [43], we used swap mutation
with rate 0.05. For fair comparison, all GAs were stopped after 1,000 generations. We also compared
a geometric crossover (GX) under the Hamming distance on permutations (cycle crossover) and its
corresponding induced quotient crossover (IQX). Table 4 shows the average results obtained from 100
runs together with the results of one-tailed t-tests. We got improvements for all of the tested instances
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Table 4: Results of Traveling Salesman Problem

Hamming distance Swap distance
Instance # of cities GX IQX t-value Time IQX t-value Time

(n) Ave(SD) Ave(SD) (p-value) (s)† Ave(SD) (p-value) (s)†

eil101 101 1017.16 1013.12 0.72 0.03 1013.92 0.58 0.04
(39.77) (39.48) (2.36E-01) (39.36) (2.82E-01)

lin318 318 196089.48 194298.30 2.61 0.25 195891.46 0.26 0.41
(4813.64) (4900.46) (5.26E-03) (6044.17) (3.99E-01)

pcb442 442 292489.40 288970.58 3.57 0.49 290699.54 1.89 0.79
(6573.36) (7359.65) (2.79E-04) (6833.56) (3.10E-02)

att532 532 580522.66 576099.86 2.32 0.70 575308.16 2.70 1.15
(13897.82) (13079.59) (1.13E-02) (13388.88) (4.04E-03)

rat575 575 43323.40 42670.79 4.99 0.82 42701.23 5.18 1.36
(872.22) (973.35) (1.26E-06) (824.29) (5.66E-07)

u724 724 366244.38 361603.06 4.80 1.29 362136.44 4.33 2.15
(7146.64) (6506.50) (2.76E-06) (6234.07) (1.76E-05)

GX is the cycle crossover [29]. The smaller, the better.

† Average CPU seconds needed for normalization per each generation (on Intel Xeon CPU 2.40 GHz).

and both distances, and in 9 of the 12 cases the improvements were statistically significant at the 0.05
level.

In summary, from our tests on three different classes of problems, the proposed quotient geometric
crossovers were able to alleviate the difficulty of the genetic search arising from non-synonymously
redundant representation.

5 Concluding Remarks

We have analyzed mathematically the mapping between genotype and phenotype spaces in a general
setting and across representations. We showed that the phenotype space can be regarded as quotient
space induced by the genotype-phenotype mapping. Geometric crossovers can be formally defined
once a distance is defined. They have the advantage that they allow us to connect a solution space -
seen as a metric space - and crossovers in a simple way. Moreover, geometric crossover based on an
appropriate distance for the problem at hand can inform the search and improve performance. We
showed that the phenotype space naturally inherits a metric, the quotient metric, from the genotype
space through the genotype-phenotype mapping derived from an equivalence relation defined by an
isometry group. Since the quotient metric is a part of the phenotype space structure, the geometric
crossover on this metric reflects the properties of the phenotype space more effectively than the original
geometric crossover on the genotype space. Due to the abstract nature of phenotypes, the geometric
crossover on the phenotype space is well-defined but it is an abstract operator that cannot be directly
implemented. We developed a formal framework that allows us to derive search operators defined
on the genotype space that, in effect, implement geometric crossovers to search the phenotype space
indirectly.

As shown in application examples, quotient geometric crossovers for non-synonymously redundant
encodings are not only theoretically significant but have also a practical effect of making the search
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more effective by reducing the search space and removing the low locality from the encodings. In the
example of groupings, we newly reinterpreted geometric crossover [27] that was previously proposed
by the authors, under more general framework of the quotient geometric crossover. In the examples
of graphs, symmetric functions, and circular permutations, we induced quotient geometric crossovers
better tailored to phenotype space by performing normalization. We tested the proposed phenotypic
crossovers on well-known NP-hard optimization problems and were able to show their superiority
to their corresponding crossovers on the genotype space. More examples and applications for each
example case are left for future study.
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