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Abstract. Topological crossovers are a class of representation-independent 
operators that are well-defined once a notion of distance over the solution space 
is defined. In this paper we explore how the topological framework applies to 
the permutation representation and in particular analyse the consequences of 
having more than one notion of distance available. Also, we study the 
interactions among distances and build a rational picture in which pre-existing 
recombination/crossover operators for permutation fit naturally. Lastly, we also 
analyse the application of topological crossover to TSP. 

1   Introduction 

   The permutation representation (see [Goldberg, 1989] for an introduction to the 
topic) is one of the most-frequently used representations in evolutionary algorithms. 
Many combinatorial optimisation problems, including TSP and scheduling problems, 
are naturally cast using permutations. The success of the permutation representation is 
largely due to its flexibility.  
   When applied to permutations, the traditional crossover operators used for binary 
strings can produce invalid offspring. So, researchers have come up with a variety of 
operators specifically designed for permutations. They range from general-purpose 
operators working reasonably well on a wide spectrum of problems, such as the 
partially matched crossover (PMX), to specialised operators that work best on a 
specific class of problems, such as edge recombination crossover (ERX), which works 
really well on TSP. 
   Topological crossovers [Moraglio & Poli, 2004] are a class of representation-
independent operators that are well-defined once a notion of distance over the 
solution set is defined. Simply stated, they produce offspring to be between their 
parents. This simple definition has surprising implications, including a powerful way 
to do crossover design for any representation and the potential for the development of 
a general theory of evolutionary algorithms encompassing all representations. 
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   In previous work [Moraglio & Poli, 2004] we have shown how topological 
crossover generalises the notion of crossover for binary strings. Differently from the 
binary string case, for which a single natural distance (the Hamming distance) is 
defined, permutations allow for various notions of distance all equally natural. In this 
paper, we explore how our topological framework applies to the permutation 
representation and in particular analyse the consequences of having more than one 
notion of distance available. We study the interactions among distances and we build 
a rational picture in which pre-existing recombination/crossover operators fit 
naturally. As an important example, we also analyse in detail the application of 
topological crossover to TSP.   

2   Topological framework 

    A configuration space C is a pair (G, Nhd) where G is a set of syntactic 
configurations (syntactic objects or genotypes) and GGNhd 2: →  is a syntactic 
neighbourhood function which maps every configuration in C to the set of all its 
neighbour configurations in C which can be obtained by applying any unitary edit 
move of a pre-specified set. The neighbourhood function must be symmetric 
( )()( yNhdxxNhdy ∈⇔∈ , which is to say edit moves are reversible) and 
connected (any configuration can be transformed into any other in a finite number of 
moves). A configuration set may lead to more than one configuration space if 
multiple syntactic neighbourhood functions are available. 

A configuration space C=(G, Nhd) is said to be a space endowed with a 
neighborhood structure. This is induced by the syntax of the configurations and the 
particular syntactic neighborhood function adopted. Such a neighborhood structure 
can be associated with an undirected neighborhood graph W= (V, E), where V is the 
set of vertices representing configurations and E is the set of edges representing the 
relationship of neighbourhood between configurations.  

Since the neighborhood structure is symmetric and connected, this space is also a 
metric space provided with a distance function d induced by the neighborhood 
function. Both Nhd and d identify univocally the structure of the space, so we can 
equivalently write C=(G, Nhd) or C=(G, d). Distances arising from graphs are known 
as graphic distances. 

A fitness landscape F is a pair (C, f) where C=(G, d) is a configuration space and 
RGf →:  is a fitness function mapping a syntactic configuration to its fitness value.  

    In [Moraglio & Poli, 2004] we have defined two classes of representation-
independent operators using the notion of distance associated to the landscape: 
topological mutation and topological crossover. We give the main definitions and 
properties for topological crossover below since these are the starting point for the 
work on permutations reported in this paper.  

In a metric space ),( dS  a line segment is the set of the form 

)},(),(),(|{];[ yxdyzdzxdSzyx =+∈= where Syx ∈, are called extremes 
of the segment.  
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A g-ary genetic operator OP takes g parents gppp ,..., 21  and produces one offspring 

c according to a given conditional probability distribution: 
),...,|(}...,,|Pr{}),...,(Pr{ 21,221121 gOPggg pppcfpPpPpPcOPcpppOP =======  

Definition: The image set of a genetic operator OP is the set of all possible offspring 
produced by OP when the parents are gppp ,..., 21  with non-zero probability: 

}0),...,|(|{)],...,(Im[ 2121 >∈= gOPg pppcfScpppOP  

Definition: A binary operator CX is a topological crossover if 

];[)],(Im[ 2121 ppppCX ⊆ . 

This simply means that in a topological crossover offspring lay between parents. 
Definition: Topological uniform crossover UX is a topological crossover where all z 
laying between parents x and y have the same probability of being the offspring: 

|],[|
]),[(

}2,1|Pr{),|(
yx

yxz
yPxPzUXyxzfUX

∈===== δ  

],[}0),|(|{)],(Im[ yxyxzfSzyxUX UX =>∈=  

where δ is a function which returns 1 if the argument is true , 0 otherwise.  
Theorem: The structure over the configuration space C can equivalently be defined 
by the set G of the syntactic configurations and one of the following objects: 1. the 
neighbourhood function Nhd, 2. the neighbourhood graph W= (V, E), 3. the graphic 
distance function d, 4. uniform topological crossover UX, 5. the set of all segments H. 
Corollary: Given a structure of the configuration search space in terms of 
neighbourhood function or graphic distance function, UX is unique.  
Corollary: Given a representation, there are as many UX operators as notions of 
graphic/syntactic distance for the representation. 

The following two properties apply to binary strings. 
Theorem: All mask-based crossover operators for binary strings are topological 
crossovers. 
Theorem: The topological uniform crossover for the configuration space of binary 
strings endowed with Hamming distance is the traditional uniform crossover. 

3   Distances between permutations 

Differently from binary strings where a single, natural definition of distance, the 
Hamming distance, is universally accepted, for permutations many notions of distance 
are equally natural. This situation is further complicated by the fact that such 
distances relate to each others in various ways with subtle dependencies. Further 
complication arises from the fact that permutations and circular permutations (and 
also permutations with repetitions to a lesser extent) are treated as if they were the 
same representation, which is incorrect. Indeed, although they are connected, they are 
different representations and they allow for different notions of distance. For a survey 
on metrics on permutations see [Deza & Huang, 1998]. 

We classify distances for permutations based on their origin into: 



4        

• Notions of distance arising from the interpretation of permutations: these 
measure the distance between the objects represented by two permutations.  

• Notions of distance directly connected with the syntax: these distances measure 
by how two permutations differ in their syntax. 

• Notions of distance connected with the notion of mutation or edit distance: these 
distances measure the minimum number of moves necessary to transform a 
permutation into another by the application of a syntax modification operator. 

These three classes of distances are interdependent. For example, an edit distance is 
also a graphic distance, but a graphic distance is not necessarily an edit distance. Also, 
an edit distance is also a syntactic distance but a syntactic distance is not necessarily 
an edit distance. In the following we first analyse each class independently, then we 
draw their connections. 

In principle, given any notion of distance over the solution set, the corresponding 
topological crossover and topological mutation operators are well-defined. What is a 
good distance then? A good distance is one that (i) makes a given landscape (i.e. a 
solution set with its fitness function plus a notion of distance) easy to search for the 
specific search operator employed and that (ii) allows such operator to be 
implemented efficiently. The first point connects with landscape design, the second 
with distance duality. Here we concentrate on the latter. 
Topological crossover and mutation are well-defined for any notion of distance 
(whether graphic or non-graphic, and whether edit or non-edit). So, operators are 
well-defined independently from the underlying representation. In practice, however, 
the genetic operators have to be implemented. If they are not based on a notion of edit 
distance that links them tightly to the solution representation, they become difficult or 
even impossible to implement efficiently. To understand the reasons for this we need 
to stress the geometric nature of these operators and of the geometric interpretation of 
the landscape coming with them, and we need to introduce the notion of distance 
duality. The notion of edit distance arising from the syntax of configurations has a 
natural dual interpretation: 
1. seen in the configuration space, it is a measure of similarity (or dissimilarity) 

between  two syntactic objects 
2. seen in the neighbourhood graph, it is the length of the shortest path connecting 

two vertices and, therefore, it is a measure of spatial remoteness between points 
when interpreting such a structure in a geometric sense 

 For each representation and edit move definitions, this duality manifests itself in a 
different way. In the case of permutations the duality implies that picking elements in 
the segment (shortest path) is equivalent to picking elements on a minimal sorting 
trajectory from one parent permutation to the other. This connection between the 
geometric notion of “belonging to a segment” and its syntactic dual of “being on a 
minimal sorting trajectory” is ultimately what allows topological crossover to be 
actually implemented in an efficient way. So, even if a topological crossover is 
representation-independent, when dealing with the actual implementation the specific 
representation makes indeed the difference between an efficient operator and an 
inefficient one. 

                                                
1
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4 Permutation interpretations and related distances 

Permutations can be used to represent solutions to different types of problems for 
which different relations among the elements in the permutation are relevant. There 
are three major interpretations of a permutation [Back et al, 2000]. For example, in 
TSP permutations represent tours and the relevant information is the adjacency 
relation among the elements of a permutation. In resource scheduling problems 
permutations represent priority lists and the relevant information in this case is the 
relative order of the elements of a permutation. In other problems, the important 
characteristic is the absolute position of the elements in the permutation.  

Let us consider the permutation (C D E B F A). If the adjacency is important then 
the fact that the elements D and E are adjacent is relevant as well as the fact that the 
elements C and B are not adjacent. If the important aspect is the relative order then 
what is relevant is the fact that D precedes E and that C precedes B. If the absolute 
order is important then the relevant point is that C is in position 1, D in position 2, etc. 
For each interpretation of permutation, it is possible to write a binary matrix that 
represents the actual relation among elements in the permutation. So, we can have a 
relative order matrix, an absolute position matrix and an adjacency matrix.  

It is possible to define three distance functions for permutations based in the 
corresponding relative order matrices, absolute position matrices and adjacency 
matrices. The distance between two permutations is then the Hamming distance 
between their corresponding matrices in the three interpretations. We refer to these 
distances as relative order distance (ROD), absolute position distance (APD) and 
adjacency distance (AD). 

For example, the segments between two permutations under ROD include all the 
feasible permutations where the relative order relation of the parent permutations is 
transmitted perfectly. 

In principle, topological operators can be defined using these notions of distance. 
So we can define rigorously relative order topological crossover (ROX) and mutation 
(ROM), absolute position topological crossover (APX) and mutation (APM), and 
adjacency topological crossover (AX) and mutation (MX). ROX would simply 
superimpose a probability distribution over these. However, ROD, APD and AD are 
not straightforwardly connected with edit distances for permutations (they are not 
even graphic distances) and therefore ROX, APX and AX may result difficult, if not 
impossible, to implement exactly in an efficient way. 

Each interpretation distance is also connected with a notion of syntactic distance 
between permutations that is not necessarily an edit distance. ROD is connected with 
the offset distance that sums for each element the number of positions away is in the 
two permutations. APD is connected with the Hamming distance for permutations. 
AD is connected with the breakpoint distance that counts the occurrences of two 
elements being consecutive in a permutation and non-consecutive in the other. 
Topological operators in principle can be defined using these notions of syntactic 
distance but then and again, since these are non-edit distances, the corresponding 
genetic operators are hard to implement. 
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5 Classical mutations, edit distances and topological crossover  

A number of mutation operators are defined for permutations. The most common are 
[Back et al, 2000]: 

Inversion or 2-opt (block-reversal): The inversion or 2-opt operator selects two 
points along the string then reverses the segment between the points. This operator is 
particularly well-suited for the TSP and for all the problems that naturally admit a 
permutation representation in which adjacency among elements plays an important 
role.   

Insert and block-transposition: This operator selects one element and inserts it at 
some other position in the permutation. There is a non-reversible variant: one selects 
two elements and then moves the second element before the first. These operators 
have been used for scheduling problems in which relative order of elements is 
important.  

 Swap and adjacent swap (two-element swap): The swap operator selects two 
elements and swaps their positions. The adjacent swap operator swaps two contiguous 
elements.  

Scramble: This operator selects a sub-list and randomly reorders the elements while 
leaving the other elements in the permutation in the same absolute position.  
   Each notion of mutation is connected with a notion of edit distance for 
permutations. Therefore, we can talk of reversal distance, transposition distance, 
swap distance, adjacent swap distance, scramble distance and so on. Notice that there 
are a number of variations for each of these distances which result from imposing 
constraints on the edit move.  

For each notion of edit distance there is a corresponding notion of topological 
crossover. So we can define many possible crossovers for permutations, each induced 
from a corresponding mutation. Since these are crossovers based on similar, but not 
identical, neighbourhood structures, they will tend to have similar behaviours. So, 
what are the important topological crossovers then? We propose an initial answer to 
this question in the next section. However, not all topological crossovers based on edit 
distances have efficient implementations. Indeed, constraints on edit moves transform 
the complexity of crossover from polynomial to NP-hard [Vergara, 1997].   

Because of the distance duality, a point on a segment between two permutations, 
under a given edit distance, is on a minimal sorting trajectory connecting the two 
permutations. This allows to actually implementing such crossovers by sorting 
algorithms. Some edit distances give rise to a crossover that can be implemented 
exactly and efficiently. Other edit distances give rise to crossovers that are possible to 
implement efficiently (in polynomial time) only in an approximated way. Quite 
amusingly, bubble sort and insertion sort fit the definition of topological crossover 
for, respectively, the adjacent swap distance and the swap distance. So, ordinary 
sorting algorithms can actually be used as crossovers!   
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7 Relationship between edit distances and interpretation distances 

Depending on the interpretation of the permutation, the same mutation operator can 
be seen as a small change or a major change. For example, the inversion operator does 
a minimal change when one thinks of a permutation in terms of adjacency, but a 
major change when the same permutation is seen as a priority list (relative order).  

   A single mutation should represent a minimal change [Radcliffe, 1992; Radcliffe, 
1994]. According to this principle, there are three mutation operators that do a 
different minimal change in a permutation, one for each interpretation. When the 
permutation is thought as an adjacency relation then the minimal mutation operator is 
the inversion operator: while reversing the order of a sub-list, only two adjacency 
links (edges) are changed. When the permutation represents a relative order the 
minimal mutation operator is the adjacent swap operator that affects only the relative 
order of a pair of elements. Finally, when the absolute position of elements in the 
permutation is relevant, the minimal mutation operator is the swap operator that 
changes the absolute positions of only two elements.  

A neighbourhood function (see section 2) induced by the syntax must be symmetric  
and connected. The inversion operator is symmetric (re-reversing the same sub-list 
produces the original permutation) and connected (by repeated reversions it is 
possible to reach any permutation from any other permutation). Also the adjacent 
swap operator is symmetric and connected (bubble sort based on adjacent swap is able 
to sort any permutation of elements). The same holds for the swap operator. 

The adjacent swap operator can be seen as a special case of swap as well as a two-
element sub-list inversion operator. Its neighbourhood is the intersection of the other 
two operators’ neighbourhoods. 
 

8 Existing crossovers and permutation interpretations 

There are a number of crossover operators defined for permutation (for a good 
overview, see [Back et al, 2000]). Most of them were devised with a specific 
interpretation of the permutation in mind. This is reflected in their names. So, for 
example, Davis’s order crossover emphasizes the fact that a permutation is seen as a 
relative order, cycle crossover preserves absolute positions, and edge recombination 
crossover focuses on the adjacency relation of the elements in the permutation.  

Some crossovers achieve their goals of transmitting a specific relationship among 
elements from the parents to the children perfectly (perfect crossovers), others 
achieve their goals only approximately (imperfect crossovers). For example cycle 
crossover transmits perfectly the common positional information of parents to 
children and so is a perfect crossover; both Davis’s order crossover and edge 
recombination are imperfect crossovers in that they are not able to transmit perfectly, 
respectively, the common relative order of the parents and the adjacency relation. 
However, the common relative order is much easier to transmit perfectly than the 
adjacency relation. Indeed, another crossover, the merge crossover, perfectly 
transmits the relative order of parents to children.  
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Some crossover operator is deliberately designed to be a trade-off, transmitting part 
of the relative order, part of the absolute position and part of the adjacency relation 
present in the parent permutations to the offspring permutations (hybrid crossovers). 
This is indeed possible since the three relations have subtle interdependencies. One of 
such crossover operators is the partially matched crossover. Hybrid crossovers have 
the advantage to work reasonably well independently from the specific interpretation 
of the permutation. However when hybrid crossovers are compared with perfect 
crossovers for a specific interpretation of the permutation on a problem in which this 
interpretation is relevant, the hybrid ones perform much worse than the perfect ones.  

9. Topological crossover for TSP 
Edge recombination is an operator expressly designed for TSP. It considers a solution 
as a tour of cities and, therefore, rather than being defined for permutations is defined 
over circular permutations. In its various improvements its stated objective is to 
greedily recombine parent tours in order to transmit as much as possible the adjacency 
relation, introducing in the offspring tours the minimum number of “foreign” edges 
not present in either parent [Back, 2000].  

As in the linear case, also for circular permutations it is possible to write an 
adjacency matrix. Again, the segment between the parent circular permutations (under 
hamming distance for the adjacency relation matrix) contains all the feasible offspring 
circular permutations that perfectly respect the adjacency relation of their parents. The 
topological crossover for circular permutations under this notion of distance is well-
defined and actually achieves what edge recombination can only aspire to. 

However, the notion of distance based on adjacency matrix is not an edit distance 
and, therefore, the corresponding crossover operator is hard or impossible to 
implement efficiently. In the case of circular permutations, the block-reversal move is 
the notion of edit distance closest to the adjacency matrix distance. In a single 
application to a tour, this does the minimal change to the adjacency relation among 
elements in the permutation. This move is the well-known 2-opt move, and it is the 
basis for successful local search algorithms for TSP [Glover, 2002]. Figure 1 shows 
the possible offspring (the segment) between two circular (parent) permutations under 
topological crossover. 

Analogously to the linear case, the circular permutations in the segment under 
reversal distance are those laying in a minimal sorting trajectory from a parent 
circular permutation to the other. Sorting circular permutations by reversals is NP-
hard [Solomon et al, 2003]. So, the topological crossover under this notion of 
distance cannot be implemented efficiently. 
   Sorting circular permutations by reversals is tightly connected with the problem of 
sorting linear permutations by reversals. So all the algorithms developed for the latter 
task can be used with minor modifications also for the former [Solomon et al, 2003]. 
Sorting linear permutations by reversals is NP-hard too [Caprara, 1997]. However a 
number of approximation algorithms exist to solve this problem within a bounded 
error from the optimum [Kececioglu & Sankoff , 1995]. This allows implementing 
approximate crossovers whose image set is a super-set of that of the exact crossover.  
 
 
 



      9 

 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Fig. 1. Example of topological crossover between two circular permutations 

10. Conclusions 

Topological crossover and mutation are well-defined once one has a notion of 
distance over the solution set. The permutation representation allows for three notions 
of non-edit distances connected with the permutation interpretations. Three 
topological crossovers based on the permutation interpretations are therefore well-
defined. However, such topological crossovers are hard or even impossible to 
implement efficiently, in that they are based on non-edit distances.  
   Most of the pre-existing crossover operators for permutations are designed around 
interpretations. We have shown that they fit, some exactly and some imperfectly, the 
topological crossover definitions connected with permutations interpretations. The 
permutation representation also allows for a number of edit distances connected with 
various notions of mutation. Each notion of edit distance induces a notion of 
topological crossover. Because of the distance duality, under a given edit distance a 
point on a segment between two permutations is on a minimal sorting trajectory 
connecting the two permutations. This allows implementing such crossovers using 
sorting algorithms. Some edit distances give rise to crossovers that can be 
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implemented exactly and efficiently. Other edit distances give rise to crossovers can 
be implemented efficiently (in polynomial time) only in an approximated way.  
   The three topological crossovers induced by permutation interpretations are tightly 
connected with three topological crossovers based on edit distances. The connection 
relies on the principle of “minimal change”. In future research we will investigate this 
connection in greater depth.   
   Circular permutations are tightly connected to traditional permutations but they do 
not coincide. We have shown how to apply topological crossover to TSP that is 
naturally defined over circular permutations.      
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