
Geometric Crossover for Permutations with

Repetitions: Application to Graph Partitioning

Alberto Moraglio1, Yong-Hyuk Kim2, Yourim Yoon3,
Byung-Ro Moon3, and Riccardo Poli1

1 Department of Computer Science, University of Essex
Wivenhoe Park, Colchester, CO4 3SQ, UK

{amoragn, rpoli}@essex.ac.uk
2 Department of Mathematical Sciences, Seoul National University

Sillim-dong, Gwanak-gu, Seoul, 151-747 Korea
yhdfly@soar.snu.ac.kr

3 School of Computer Science & Engineering, Seoul National University
Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea

{yryoon, moon}@soar.snu.ac.kr

Abstract. Geometric crossover is a representation-independent gener-
alization of the traditional crossover defined using the distance of the
solution space. By choosing a distance firmly rooted in the syntax of the
solution representation as basis for geometric crossover, one can design
new crossovers for any representation. In previous work we have applied
geometric crossover to simple permutations. In this paper we design a
new geometric crossover for permutations with repetitions that naturally
suits partition problems and test it on the graph partitioning problem.
Our new crossover outperforms all previous ones.
Keywords: Geometric crossover, cycle crossover, permutations with rep-
etitions, graph partitioning.

1 Introduction

Geometric crossover [20] is a representation-independent operator defined over
the distance of the search space. Informally, geometric crossover requires the
offspring to lie between parents.

The formal definition of geometric crossover enables us to build a
representation-independent theory of evolutionary algorithms: it can be shown
that an evolutionary algorithm endowed with geometric crossover and selection
does a form of convex search regardless of the underlying solution representa-
tion, fitness landscape, specific distance, probability distribution of the offspring
and selection mechanism. Knowing how geometric crossover searches the search
space is very important because this allows us to identify a general class of fitness
landscapes for which it works well.

Despite its simple geometric definition, geometric crossover captures the no-
tion of “real-world” crossover: geometric crossover generalizes many pre-existing

search operators for the major representations used in evolutionary algorithms,
such as binary strings and real vectors [20], permutations [22], syntactic trees
[21] and sequences [23].

The formal definition of geometric crossover can also be used to guide the
design of new specific crossover operators for non-standard representations using
as base for geometric crossover distances rooted on the specific representation
(e.g., edit distances) [22].

Traditional crossovers for binary strings are geometric crossovers under Ham-
ming distance: they all produce offspring on the shortest path between parent
binary strings in the Hamming space. Differently from binary strings where a
single, natural definition of distance is normally used, for permutations many
notions of edit distance are equally natural (based on swaps, adjacent swaps, in-
sertions, reversals, transpositions and other edit moves). This leads to a number
of natural notions of geometric crossover for permutations. Geometric crossovers
for permutations are intimately connected with the notion of sorting algorithm:
offspring are on the shortest path between parents, hence they are on the minimal
sorting trajectory between parents using a specific edit move. Interestingly, this
allows to implement geometric crossovers for permutations by using traditional
sorting algorithms such as bubble sort, selection sort and insertion sort. Many
pre-existing recombination operators for permutations are geometric crossovers.
For example, PMX (partially matched crossover) and cycle crossover are geo-
metric under swap distance. Interestingly, cycle crossover is geometric also under
Hamming distance restricted to permutations.

Permutations with repetitions are a natural generalization of simple permu-
tations in which each element is allowed to occur more than once. In this paper
we start studying the application of geometric crossover to permutations with
repetitions. In particular, we propose a new geometric crossover for permutations
with repetitions that is a natural generalization of cycle crossover.

Grouping problems are interesting and NP-hard [6]. When applying evo-
lutionary algorithms to grouping problems, the standard solution encoding is
highly redundant. This affects badly the performance of traditional crossover. In
previous work [16], we developed a geometric crossover for the graph partition-
ing problem based on a labeling-independent distance that filters the inherent
redundancy of the solution encoding that performed very well.

A second difficulty with grouping problems is that traditional recombination
does not preserve feasibility of offspring: recombining parents with the same
grouping structures does not lead in general to offspring with the same struc-
ture, requiring a repairing mechanism to be applied to the offspring. Per se, the
repairing mechanism is not necessarily negative as it can be interpreted as a form
of mutation. However, when the extent of change in the offspring is not small, the
repairing mechanism degenerates into macro-mutation with deleterious effect on
performance.

In general, a much preferred way to deal with this problem is to design a
recombination operator that naturally transmits parent feasibility to offspring. In
this paper we show that the new cycle crossover for permutation with repetitions

naturally applies to grouping problems allowing to search only the space of
feasible solutions without the need of any repairing mechanism. We then combine
cycle crossover and labeling-independent crossover obtaining a new geometric
crossover with both advantages that suits very well grouping problems with
redundant encoding. We tested experimentally the new geometric crossovers on
graph partitioning and report remarkable performance improvement.

The reminder of this paper is organized as follows. In Section 2, we intro-
duce the geometric framework and review previous work on permutations. In
Section 3, we introduce a new geometric crossover, extending the cycle crossover
to permutations with repetitions, that preserves the sizes of repetition classes. In
Section 4, we introduce the multiway graph partitioning problem and a previous
geometric crossover based on the labeling-independent distance. In Section 5, we
recast the graph partitioning problem in terms of permutations with repetitions
and motivate the use of cycle crossover. We then combine cycle crossover and
labeling-independent crossover into a new geometric crossover with both charac-
teristics. In Section 6, we present experimental setting and results, and we draw
conclusions in Section 7.

2 Geometric Framework

In this section, we report the essential concepts behind a theoretical framework
of recent introduction that allows to analyze and design new crossover operators
for any solution representation tailored to the problem at hand [20].

2.1 Geometric Preliminaries

The term distance or metric denotes any real valued function that conforms to
the axioms of identity, symmetry and triangular inequality. A simple connected
graph is naturally associated to a metric space via its path metric: the distance
between two vertices in the graph is the length of a shortest path between the
vertices. Given a set of editing operations (edit moves) well-defined over a set of
syntactic objects, the edit distance between two syntactic objects is the minimum
number of edit moves needed to transform one into the other. When the edit
moves are reversible and every object can be transformed into any other using
the edit moves available, the edit distance is a metric.

In a metric space (S, d), a closed ball is the set of the form B(x; δ) = {y ∈
S | d(x, y) ≤ δ} where x ∈ S and δ is a positive real number called the ra-
dius of the ball. A line segment (or closed interval) is the set of the form
[x, y]d = {z ∈ S | d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called ex-
tremes of the segment. Metric ball and metric segment generalize the familiar
notions of ball and segment in the Euclidean space to any metric space through
distance redefinition. These generalized objects look quite different under differ-
ent metrics. Notice that a metric segment does not coincide to a shortest path
connecting its extremes (geodesic) as in an Euclidean space. In general, there

may be more than one geodesic connecting two extremes; the metric segment is
the union of all geodesics.

We assign a structure to the solution set by endowing it with a notion of
distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape, where g is the fitness function over S.

2.2 Definition of Geometric Crossover

The following definition is representation-independent whereby crossover is well-
defined for any representation. It is only function of the metric d associated with
the search space being based on the notion of metric segment.

Definition 1 (Geometric crossover) A binary operator GX is a geometric
crossover under the metric d if all offspring are in the segment between their
parents, i.e., ∀x, y : GX(x, y) ∈ [x, y]d.

A number of general properties for geometric crossover and mutation have
been derived in [20]. The traditional crossover for K-ary vectors with n crossover
points is geometric under the Hamming distance [20].

2.3 Geometric Crossover for Permutations

In previous work we have studied various crossovers for permutations, revealing
that PMX [7], a well-known crossover for permutations, is geometric under swap
distance. Also, we found that cycle crossover [24], another traditional crossover
for permutations, is geometric under swap distance and under Hamming distance
(geometricity under Hamming distance for permutations implies geometricity
under swap distance but not vice versa). Finally, we showed that geometric
crossovers for permutations based on edit moves are naturally associated with
sorting algorithms: picking offspring on a minimum path between two parents
corresponds to picking partially sorted permutations on the minimal sorting
trajectory between the parents.

3 Cycle Crossover for Permutations with Repetitions

In Section 3.1 we introduce the notions of repetition class of a permutation
with repetitions and class-preserving geometric crossover. In Section 3.2 we de-
scribe a generalization of cycle crossover for permutations with repetitions that
is a class-preserving geometric crossover under Hamming distance and in Sec-
tion 3.3 we point out its properties. Cycle crossover for simple permutations is
geometric under swap distance. In Section 3.4 we show that the extension of
cycle crossover to permutations with repetitions is not geometric under swap
distance. This comes as a surprise because when the extended cycle crossover is
applied to simple permutations it behaves exactly as the simple cycle crossover,
hence it becomes geometric under swap distance. We elicit the origin of this
counterintuitive result.

3.1 Geometric Crossover for Permutations with Repetitions

Permutations with Repetitions: In a permutation every elements occurs
exactly once, e.g., (21453). In a permutation with repetitions the same value
may occur more than once, e.g., (214154232), where 1 occurs twice, 2 occurs 3
times, 3 occurs once, 4 twice and 5 once. The numbers of repetitions of each
element define the repetition class of the permutation. Two permutations with
repetitions in which elements have the same number of repetitions belong to the
same repetition class. All simple permutations (without repetitions) belong to
the same repetition class.
Class-preserving Neighborhood Structure: Let us consider the set P of all
the permutations with repetitions such as the element 1 is repeated n1 times,
element 2 is repeated n2 times, and so on. So ni is the size of group i. In P , any
permutation has a fix number of repetitions for each group. So, all permutations
with repetitions in P belong to the same repetition class.

We can define a neighborhood structure on P as follows: the neighbor is
generated by swapping the positions of any two different element in the permu-
tation. For example, swapping positions of the elements at positions 2 and 5 in
123231 gives 133221, so they are neighbors.

This operation transforms a permutation in P into another permutation in
P : it does not change the sizes of the groups. In other words, the swap operation
is a class-preserving transformation.

It is also easy to see that this neighborhood is symmetric (if p1 is in the
neighborhood of p2, then p2 is in the neighborhood of p1) and connected (it
exists a finite number of swaps that transform any permutation in P into any
other permutation in P).

Notice that many other edit operations for simple permutations can be nat-
urally extended to the case of permutations with repetitions and are indeed
class-preserving transformations. For example, the block-reversal move that re-
verses a block of consecutive elements in the permutation does not change the
class of permutation either. In this paper we focus on the case of the swap move.
Class-preserving Swap Distance: Passing from the neighborhood structure
(symmetric and connected) to the corresponding notion of distance is straight-
forward: the distance between two solutions is simply the length of a shortest
path connecting them in the neighborhood structure. This means that the dis-
tance between two permutations with repetitions (of the same repetition class)
is the minimum number of swap operations required to transform one into the
other. This is an edit distance hence it is a metric.
Class-preserving Geometric Crossover: By definition of geometric
crossover, once we have a distance over a space we can define a crossover for
that space. The geometric crossover has to pick offspring on a shortest path
connecting two solutions. From previous work on geometric crossover for permu-
tations, the extension to permutations with repetitions seems straightforward.
It is immediate to implement geometric crossover for simple permutations by
noticing that picking offspring on a shortest path means picking offspring on
a minimal sorting trajectory to sort one permutation to the order of the other

by using (in our case) the swap move. This can be easily implemented by us-
ing a classical sort algorithm (selection sort in this case), applying a number of
sorting moves and interrupting the sorting at a random point (before the sort
is complete) and return the permutation partially sorted as offspring. The sort
algorithm can also be used to measure the distance between two permutations.
Selection sort can be used as a base for geometric crossover because it provably
sorts simple permutations within the minimum number of swaps.

However, when applied to permutations with repetitions, selection sort is not
guaranteed to sort using the minimum number of swaps. This is very counterintu-
itive; we explain why this happens in Section 3.4. Therefore, partially sorted per-
mutations are not necessarily on the minimal sorting trajectory (shortest path)
between parent permutations and selection sort cannot be used to implement
exactly a geometric crossover under swap distance. However a recombination
based on selection sort is class-preserving and it produces a very good approxi-
mation4 of geometric crossover under swap distance, hence it can be thought to
be a geometric crossover plus a small mutation.

An alternative way to build geometric crossovers for permutations with rep-
etitions under swap distance is to generalize PMX and cycle crossover that are
geometric under swap distance for simple permutations. Despite their looking,
these operators are in fact sorting crossovers: they pick offspring on a minimal
sorting trajectory between parents under swap move. The difference is that in-
stead of doing this move by move (like sorting algorithms), they do it in one shot
using a syntactic transformation equivalent to the sequential composition of a
number of simple swaps. So, the above discussion about the non-geometricity
of sorting crossover for permutations with repetitions applies to PMX and cycle
crossover too. However cycle crossover is geometric also under Hamming dis-
tance. This allows us to generalize it to the case of permutations with repetitions
and preserve geometricity under Hamming distance.

3.2 Generalization of Cycle Crossover

The extension of the cycle crossover we propose produces offspring of the same
repetition class of the parents. This crossover has two phases: (i) finding cycles
and (ii) mixing cycles. We explain these below by means of an example.

PHASE I (FINDING CYCLES):
Let us consider two parents of the same repetition class (1× 2, 2× 2 and 3× 2)
in Fig 1.a. In order to identify cycles, we proceed as follows.
(1) Pick a random position in parent A, e.g., position 5. In this position in parent
A, we have the element 1 corresponding in parent B (at the same position) to
the element 3: 1 → 3. Mark position 5 as taken.

4 It is possible to formalize the notion of approximated geometric crossover rigorously.
The approximation is the largest ratio between the length of the shortest path con-
necting parents and passing through the offspring over the length of the shortest
path connecting parents. In a (perfect) geometric crossover, this ratio is 1. In an
approximated geometric crossover this ratio is greater than 1. The larger the ratio,
the worse the approximation.

2 2 3 1 31

1 2 1 3 32

parent A

parent B

2 2 3 1 31

1 2 1 3 32

3 2 1 13

parent A

parent B

cycle

(a) (d)

2 2 3 1 31

1 2 1 3 32

1 1

parent A

parent B

cycle

2 2 3 1 31

1 2 1 3 32

3 2 1 1 43

parent A

parent B

cycle

(b) (e)

2 2 3 1 31

1 2 1 3 32

2 1 1

parent A

parent B

cycle 2 2 3 1 31

3 2 1 1 43

B B A A AB

1 2 1 3 32

1 2 3 1 32

parent A

parent B

offspring

cycle

mask’

(c) (f)

Fig. 1. Cycle crossover step by step

(2) Consider the corresponding element in parent B and pick at random any of
its occurrence in parent A (among non-taken positions). In our example, pick
any 3 in parent A, let us pick the one at position 4. The corresponding element
in parent B is 1: 3 → 1. Mark position 4 as taken.

(3) Continue this procedure until you get an element of parent B that is the first
element you considered in parent A. When this happens, we have found a cycle.
In our example, the last element we got in parent B is 1 that is the same as the
first element we considered in parent A. So we found the cycle: 1 → 3, 3 → 1.
This is shown in Fig. 1.b. Notice that the cycle involves the same number of
repetitions in both parents. In our example, 1 × 1 and 3 × 1. Excluding the
elements of cycle 1 from the two parents leave the remaining elements with the
same number of repetitions in the two parents. So the “leftover” permutations
are still of the same repetition class. In our example, the leftover repetition class
is: 1 × 1, 2 × 2 and 3 × 1.

(4) Repeat loop (1)–(3) to find more cycles until all position have been marked
with a cycle tag.

Continuing our example: (1′) Pick one free position in parent A at random.
Say position 3. We have a 2. (2′) Corresponding element in parent B: 2 → 2.
(3′) We already found a cycle: 2 → 2 (Fig. 1.c).

We then start searching for a third cycle: (1′′) Pick one free position in parent
A at random. Say position 1. We have a 1. (2′′) Corresponding element in parent
B: 1 → 2. Pick a 2 in parent A: the only one available is the one at position 2.
Its corresponding element in parent B is: 2 → 1. (3′′) We have found another
cycle: 1 → 2, 2 → 1 (Fig. 1.d).

We run the process one further time: (1′′′) The only free position in parent
A is position 6. We have 3. (2′′′) The corresponding element in parent B is 3.
(3′′′) We have found a cycle: 3 → 3 (Fig. 1.e).

All the positions have been assigned to a cycle, so Phase I is over. Notice
that the last iteration is always guaranteed to terminate with a cycle (and not
with a simple sequence). The last position marked must be the end of the cycle.

PHASE II (MIXING CYCLES):
(1) Create a crossover mask with one entry for each cycle by randomly flipping
a coin as many times as the number of cycles detected in the previous phase.
In our example, we have 4 cycles and, say, the crossover mask we generate is
mask = (ABBA). The entries in the mask indicate from which parent each cycle
is inherited. In this example, the offspring will inherit the cycles 1 and 4 from
parent A and the cycles 2 and 3 from parent B.
(2) We convert this “cycle” mask into a standard recombination mask by rela-
beling all the entries ci in cycle as follows: ci → mask(ci) obtaining a new mask
mask’.
(3) We perform standard mask-based crossover on the two parents using mask’,
obtaining the offspring as shown in Fig. 1.f.

Notice that by construction every offspring has the same number of repeti-
tions of the parents. This is because exchanging any cycle between parents is
repetition-preserving.

3.3 Properties of Cycle Crossover

The new crossover has the following properties:

1. It is repetition class preserving.
2. It is a proper generalization of cycle crossover: when applied to simple per-

mutations it behaves exactly like cycle crossover.
3. It is geometric under Hamming distance because at any position the element

in the offspring equals the element at the same position of one of the parents.
4. This geometric crossover is defined over the induced sub-metric space ob-

tained by restricting the original vector space endowed with Hamming dis-
tance to the space of permutations with repetition of the same repetition
class. The latter space is much smaller than the former and it is, hence,
quicker to search.

5. Applying this crossover to permutations with repetitions of different repeti-
tion class (with minor modifications), one obtains offspring with intermediate
repetition class with respect to the repetition classes of the parents.

3.4 Non-geometricity under Swap Distance

Theorem 1. Cycle crossover is not geometric under swap distance.

Proof. We prove it by giving a counter-example. Let us consider two parents A =
(122313) and B = (213132). We can have (at least) two cycles decompositions
after Phase I:

2 2 3 1 31

1 3 1 3 22

1 2 3 3 21

parent A

parent B

cycle

and

2 2 3 1 31

2 1 1 2 21

1 3 1 3 22

parent A

parent B

cycle

By combining cycles of the first decomposition, one obtains offspring that
are always in the segment between parents under swap distance. However, by
combining cycles of the second decomposition, one obtains an offspring that is
not in the segment between parents under swap distance:

2 2 3 1 31

B A A B BA

2 1 1 2 21

1 3 1 3 22

1 2 3 3 21

parent A

parent B

offspring

cycle

mask’

dsw(A, B) = 3: This can be seen from the first decomposition in cycles (minimal):
3 cycles of length 2 is equivalent to 3 swaps away.
dsw(A, offspring) = 2: By construction, the minimal decomposition the offspring
and parent A in cycles is the cycle of length 3 taken from parent B. This means
they are 2 swaps away.
dsw(offspring, B) = 2: By construction, the minimal decomposition the offspring
and parent B in cycles is the cycle of length 3 taken from parent A. This means
they are 2 swaps away.

Since the swap distance between parents is smaller then the sum of the swap
distances between parents and offspring, cycle crossover is non-geometric under
swap distance. This ends the proof. �

It can be shown in general that the decomposition with the most cycles
produces always offspring in the segment between parents under swap distance.

All the other decompositions lead to at least one offspring not in the segment
between parents. So, the cycle crossover restricted to the decomposition with the
most cycles is geometric crossover under swap distance.

Cycle crossover for simple permutations produces always offspring within
the segment between parents under swap distance. Simple permutations can be
thought as permutations with one repetition for each element. How then the
result of geometricity under swap distance for simple permutations and non-
geometricity under swap distance for permutations with repetitions connect?
We know from abstract algebra that there is a unique decomposition in cycles
for simple permutations. A unique decomposition is also the one with the most
cycles. Hence in the special case of simple permutations, all the offspring are
within the segment between parents.

For simple permutations, cycle crossover is geometric under swap distance
and Hamming distance. More generally it can be shown that any geometric
crossover for permutations that is geometric under Hamming distance is neces-
sarily geometric under swap distance, but not vice versa5 This is because the
segment under Hamming distance is a subset of the segment under swap distance
for any choice of extremes. When considering the more general case of permu-
tations with repetitions, cycle crossover is geometric under Hamming distance
but it is not geometric under swap distance. As a consequence, the implication
geometricity under Hamming distance implies geometricity under swap distance
ceases to hold true when stretched to permutations with repetitions.

With similar arguments as for cycle crossover, it can be shown that PMX and
all sorting crossovers under swap move are in general non-geometric crossovers.

4 Graph Partitioning and Labeling-Independent

Crossover

4.1 Multiway Graph Partitioning

Graph partitioning is an important problem that arises in various fields of com-
puter science, such as sparse matrix factorization, VLSI circuit placement, net-
work partitioning, and so on. Good partitioning of a system not only significantly
reduces the complexity involved in the design process, but can also improve the
timing performance as well as its reliability [8].

Let G = (V, E) be an unweighted undirected graph, where V is the set of
vertices and E is the set of edges. K-way partition is a partitioning of the vertex
set V into K disjoint subsets {C1, C2, . . . , CK}. A K-way partition is said to be
balanced if the difference of cardinalities between the largest and the smallest
subsets is at most one. The cut size of a partition is defined to be the number of
edges with endpoints in different subsets of the partition. The K-way partitioning
problem is the problem of finding K-way balanced partition with minimum cut
size.

5 For example, PMX is geometric under swap distance but is not geometric under
Hamming distance.

Since the K-way partitioning problem is NP-hard [6], attempts to solve par-
titioning problems have focused on finding heuristics which yield approximate
solutions in polynomial time. Among such methods, the Kernighan-Lin algo-
rithm [12] and the Fiduccia-Mattheyses algorithm (FM) [5] are representative.
They are local search heuristics for 2-way partitioning. There have been a num-
ber of algorithms for K-way partitioning [3] [4] [11] [25]. There have been also
several methods using genetic algorithms [10] [13] [18].

4.2 Geometric Crossover for Unlabeled Partitions

The standard representation of a solution for K-way graph partitioning is a vec-
tor r of size |V | such as ri = j ⇒ vi ∈ Cj . Since the specific mapping of indices
to partitions does not change how the graph is partitioned, each solution has
K! representations. Traditional crossover, that is geometric under Hamming dis-
tance, does not perform well on redundant encodings. In fact, for this encoding,
the Hamming distance between two solutions is unnatural because it depends
on the specific mapping between indices and partitions that is completely arbi-
trary. We proposed a distance measure, the labeling-independent distance, that
eliminates this dependency completely [15]. In [16], we proposed a new geomet-
ric crossover (LI-GX) for graph partitioning based on a labeling-independent
distance associated to the Hamming distance that filters the redundancy of the
encoding. We showed that LI-GX can be implemented efficiently by using the
Hungarian method [17] to normalize the labeling on the second parent to that of
the first parent and then applying traditional crossover. LI-GX can be thought
as restricting the search to the space of unlabelled-partitions only. It outper-
forms by far the traditional crossover (H-GX) that searches the whole space of
labelled-partitions.

5 Cycle Crossovers for Graph Partitioning

5.1 Searching Balanced Partitions

In the multiway graph partitioning problem, one needs to keep the sizes of the
partitions balanced. So this is a constrained optimization problem, where the
constraint is the balancedness. Among all solutions (balanced or not), the feasible
ones are only those that are balanced. The way we have dealt with it in previous
work [16] is searching using a crossover that searches the space of all solutions
and then applying a repairing mechanism, that can be thought as a mutation,
that repairs offspring and makes them feasible (balanced). There are other ways
to deal with constraints. An alternative method that does not need to use any
repairing mechanism is to have a geometric crossover that searches only the
space of balanced solutions. This is the approach we take here. This reduces the
size of the search space considerably (the set of balanced solutions is a fraction
of the whole search space).
Representation: The starting point for restricting the search to balanced-
partitions only is to see the object representing the solution not as a vector

of integer but as a permutation with repetitions. Every position in the permu-
tation still represents a vertex of the graph and every integer still represents the
label of the group the vertex at that position is assigned to.

A solution is balanced when all the partitions have approximatively the same
number of vertices. This means that in the representation, there will be a sim-
ilar number of repetitions of each element (integer). Notice that two balanced
solutions do not necessarily belong to the same repetition class.
Equally Balanced Initial Population: In order to restrict the search only to
the space of equally balanced partitions, we need to seed the initial population
with solutions having for the same partition exactly the same size for all solutions
(belonging to the same repetition class). Seeding the population with balanced
solutions is not sufficient.
Balanced Crossover = Cycle Crossover: Cycle crossover preserves repeti-
tion class. Hence given two balanced parents belonging to the same repetition
class, it returns offspring of the same repetition class, hence balanced. So there
is no need for repairing mutations.
Balanced Mutation = Swap Mutation: We need to use a mutation that
keeps a permutation with repetition within the same repetition class. So that, if
a solution is balanced, the mutated solution is still balanced. A simple mutation
with this characteristic is the simple swap mutation based on the swap move.
Notice that the swap move is a good one for the graph partitioning problem
because it produces a landscape with a smooth trend (solutions one swap away
have very similar fitness). The swap move is also a good base for local search to
search the space of balanced grouping only. This move can be used as a base of
a more sophisticated mutation that decreases its probability exponentially with
the distance from the parent solution.

The cycle crossover suggested is (almost) geometric under swap distance.
Hence, our swap mutation and cycle crossover are defined over and search the
same metric space. This can also be extended to the local search. Having different
operators searching the same space is interesting because it is then possible to
interpret their interactions in a simple geometric way.

5.2 Combining Labeling-Independent Crossover and
Cycle Crossover

Combination of Relabeling and Balanced Solutions: Cycle crossover (Cy-
cle H-GX) searches the space of balanced partitions. LI-GX (see Section 4)
searches the space of labeling-independent partitions. We combine these two
geometric crossovers obtaining a new geometric crossover with both advantages:
it operates fully within the space of labeling-independent balanced partition
space, which is a fraction of the original space and could produce highly com-
petitive performance. The new crossover (Cycle LI-GX) consists of a labeling-
normalization phase before applying cycle crossover. The normalization is done
using the Hungarian method as for LI-GX [16].
Geometricity of Compound Crossover: Cycle LI-GX is still geometric on
the phenotypic space restricted to balanced phenotypes. It is in fact the tradi-

tional mask-based crossover restricted to the subspace of vectors that take the
form of fixed-size class permutations with repetitions.
Equally Balanced Solutions: Relabeling a solution does not affect its bal-
ancedness but it may change its repetition class. Cycle crossover without nor-
malization is able to deal with different partition sizes. Cycle crossover plus
normalization requires all partitions to have exactly the same size. In this spe-
cial case, the relabeling does not change the repetition class of the solution and
the cycle crossover is therefore applied to solutions of the same repetition class.
Inexact Balance and Cycle Crossover: However we would like to apply
the cycle crossover with normalization not only to the restricted class of prob-
lems with partitions of exactly the same size but to all balanced partitions. We
therefore have to further extend cycle crossover to the recombination of solu-
tions belonging to different repetition classes. When attempting to use the cycle
crossover on permutations of different repetition classes, we may not obtain a
proper decomposition in cycles. We solved this problem heuristically and con-
sidered some non-cycles (paths) as cycles.

6 Experiments

6.1 Genetic Framework

We used the general structure of hybrid steady-state genetic algorithms. In the
following, we describe the framework of genetic algorithm used in our experi-
ments. Under this framework, we will change only the crossover operator.

– Encoding: We use a K-ary string for each chromosome to represent a K-way
partition. For example, if vertex vi belongs to partition Cj , the value of the
ith gene is j.

– Initialization: We randomly create p chromosomes. Each chromosome satis-
fies a balance criterion. We set the population size p to be 50.

– Selection: We use the roulette-wheel-based proportional selection scheme.
The probability that the best chromosome is chosen was set to four times
higher than the probability that the worst chromosome is chosen.

– Mutation: After cycle crossover (Cycle H-GX) or normalized cycle crossover
(Cycle LI-GX), we run the following swap mutation.

function: offspring mutate(offspring) {

for i = 1 to N {

if(p_mut > rnd_real_range(0,1))

offspring = do_rnd_swap(offspring, i);

}

return offspring;

}

where N = |V |, rnd real range(0,1) returns random real numbers in the
range [0,1] and do rnd swap(offspring, i) chooses a random point j (j 6=
i) and swaps positions i and j.

The mutation parameter p mut is set to be 0.005. Then, the expected Ham-
ming distance between chromosomes before and after mutation is approxi-
mately 1 percent of the problem size |V |.

– Local optimization: Sanchis [25] extended the FM algorithm for K-way par-
titioning. The algorithm considers all possible moves of each vertex from its
home set to any of the others. He showed that this direct multiway partition-
ing approach obtained better solutions compared to the recursive approach
for random networks. As local optimization engine in our genetic algorithm,
we use its variation proposed in [13]. Its time complexity is O(K|E|).

– Replacement: If it is superior to the closer parent, the offspring replaces the
closer parent, and if not, the other parent is replaced if the offspring is better.
Otherwise the worst in the population is replaced.

– Stopping criterion: For stopping, we use the number of consecutive fails to
replace one of the parents. We set the number to be 50.

6.2 Test Environment

Before showing the experimental results, we first introduce the benchmarks used
in this experiment and test environment. We tested on a total of eight graphs
which consist of two groups of graphs. They are composed of eight graphs with
500 vertices from [9] (four random graphs G*.* and four random geometric
graphs U*.*). The two classes were used in a number of other graph-partitioning
studies [1] [2] [14] [19]. More detailed description of them is given in [14].

We conducted tests on 32-way and 128-way partitioning. A C language pro-
gram was used on a Pentium III 1GHz computer with Linux operating system.
It was compiled using gcc compiler.

Although the instances of the test-bed are from standard library, most re-
search have focused on 2-way partitioning (bi-partitioning). Moreover, many re-
search about multiway partitioning dealt with circuit partitioning (hyper-graph
partitioning). However we know the lower bounds for 32-way partitioning in-
stances from previous literature [10] [13] [16].

6.3 Results

We compare the geometric crossover based on the Hamming distance (5pt H-
GX), the geometric crossover based on the corresponding labeling-independent
distance (5pt LI-GX), the geometric crossover based on the Hamming distance
restricted to permutation with repetitions (Cycle H-GX), and the geometric
crossover based on the corresponding labeling-independent distance (Cycle LI-
GX). Notice that these crossovers search different search spaces:

crossover search space

5pt H-GX the space of all labeled partitions
5pt LI-GX the space of all unlabeled partitions
Cycle H-GX the space of all labeled

well-balanced partitions
Cycle LI-GX the space of all unlabeled

well-balanced partitions

Table 1. The Results of 32-way Partitioning

Graph Best 5pt H-GX 5pt LI-GX

Known Best Ave† Gen(CPU‡) Best Ave† Gen(CPU‡)

G500.2.5 178 182 185.18 1091(173.33) 178 181.77 1529(180.30)
G500.05 624 626 637.25 1424(330.64) 624 630.07 2367(334.80)
G500.10 1574 1576 1587.23 1984(713.07) 1573 1581.40 2422(571.50)
G500.20 4037 4040 4049.44 2247(1502.26) 4034 4044.89 2522(1245.96)

U500.05 113 112 120.65 1327(319.04) 112 116.75 1599(331.95)
U500.10 529 534 542.75 1163(449.76) 531 537.04 1494(483.50)
U500.20 1825 1837 1846.30 1123(814.94) 1832 1841.02 1353(747.04)
U500.40 5328 5363 5389.93 1043(1399.31) 5353 5380.30 1374(1398.19)

† Average over 100 runs.
‡ CPU seconds on Pentium III 1GHz.

Table 2. The Results of 32-way Partitioning

Graph Best Cycle H-GX Cycle LI-GX

Known Best Ave† Gen(CPU‡) Best Ave† Gen(CPU‡)

G500.2.5 178 177 185.59 1269(154.60) 177 180.50 1582(204.50)
G500.05 624 627 637.58 1660(282.69) 623 628.63 2232(378.46)
G500.10 1574 1575 1587.38 1987(537.10) 1573 1580.53 2381(641.58)
G500.20 4037 4039 4049.65 2198(1270.58) 4035 4043.29 2538(1354.42)

U500.05 113 113 120.41 1245(300.42) 109 112.60 2056(371.45)
U500.10 529 524 539.67 1263(472.37) 523 528.50 2086(583.02)
U500.20 1825 1834 1843.80 1170(790.02) 1825 1831.55 1646(844.36)
U500.40 5328 5372 5391.77 999(1314.44) 5348 5365.00 1691(1515.15)

† Average over 100 runs.
‡ CPU seconds on Pentium III 1GHz.

Table 1 and Table 2 show the results of 32-way partitioning. On random
graphs, Cycle H-GX could not dominate 5pt H-GX on averages, but it performed
better on the best. On random geometric graphs, Cycle H-GX performed better
than 5pt H-GX both on averages and the best. Cycle LI-GX and 5pt LI-GX

Table 3. The Results of 128-way Partitioning

Graph 5pt H-GX 5pt LI-GX

Best Ave† Gen(CPU‡) Best Ave† Gen(CPU‡)

G500.2.5 316 320.14 844(535.13) 310 314.08 950(759.72)
G500.05 850 853.09 869(688.03) 839 843.61 1020(947.68)
G500.10 1904 1907.78 932(1300.94) 1894 1898.03 1168(1316.21)
G500.20 4568 4571.93 965(2333.56) 4560 4566.40 1116(2261.33)

U500.05 697 704.06 935(910.83) 695 702.90 978(1227.62)
U500.10 1679 1684.13 913(1302.62) 1676 1683.47 921(1618.17)
U500.20 3836 3841.45 890(1437.07) 3836 3841.44 874(1790.69)
U500.40 8066 8068.54 853(1971.41) 8065 8068.77 831(2250.17)

† Average over 100 runs.
‡ CPU seconds on Pentium III 1GHz.

Table 4. The Results of 128-way Partitioning

Graph Cycle H-GX Cycle LI-GX

Best Ave† Gen(CPU‡) Best Ave† Gen(CPU‡)

G500.2.5 311 314.54 911(319.23) 310 313.05 964(694.41)
G500.05 839 844.13 977(463.58) 840 843.19 1058(876.97)
G500.10 1896 1899.32 1033(766.90) 1893 1896.71 1191(1200.03)
G500.20 4564 4567.94 1004(1774.22) 4560 4565.06 1164(2149.44)

U500.05 695 701.40 941(684.25) 692 698.96 1219(1480.44)
U500.10 1673 1682.74 923(1095.62) 1675 1681.55 988(1656.25)
U500.20 3838 3840.37 864(1186.80) 3835 3841.15 887(1799.27)
U500.40 8065 8067.74 845(1493.73) 8065 8068.42 832(2115.29)

† Average over 100 runs.
‡ CPU seconds on Pentium III 1GHz.

always outperformed Cycle H-GX and 5pt H-GX. Cycle LI-GX showed more
improved performance compared with 5pt LI-GX. Except on U500.40, it found
lower bounds better than or equal to the best known.

Table 3 and Table 4 show the results of 128-way partitioning. Cycle LI-GX
also performed best. Except on G500.05 and U500.10, it found the best solution
among them. The performance of Cycle H-GX was better than in the case of
32-way partitioning. On random geometric graphs, it outperformed 5pt LI-GX.
But on random graphs, 5pt LI-GX performed better. 5pt H-GX was always
dominated by others.

In summary, we got visible improvement for all the tested instances. In par-
ticular, for 32-way partitioning on random geometric graphs, there was large
improvement.

Now we explain the computing time. For small number K, normalization by
the Hungarian method affects computational time little. In 32-way partitioning,
Cycle LI-GX was about 1.2 times slower than Cycle H-GX. But, normalization
time increases as K increases. In fact, Cycle LI-GX was about 1.7 times slower

than Cycle H-GX in 128-way partitioning. Cycle crossovers were faster than
5-point crossovers. In results, Cycle H-GX and Cycle LI-GX were faster than
5pt H-GX and 5pt LI-GX, respectively. Consequently, Cycle H-GX was fastest
among them.

7 Conclusions

Geometric crossover is a representation-independent generalization of the tradi-
tional crossover defined using the distance of the solution space. By choosing a
distance firmly rooted in the syntax of the solution representation and tailored
to the problem at hand as basis for geometric crossover, one can design good
new crossovers for any representation and any problem.

Using this framework, in this paper, we have designed a new crossover for
permutations with repetitions that naturally suits partition problems. We have
then combined this crossover with another geometric crossover that we had de-
veloped in previous work on the graph partitioning problem obtaining a new,
much superior geometric crossover that suits partition problems with redun-
dant encodings. In extensive experimentation, we had demonstrated that this
crossover outperforms previously known methods, either providing new lower
bounds or equalling known best lower bounds in a variety of graph partitioning
benchmark problems.

References

1. R. Battiti and A. Bertossi. Greedy, prohibition, and reactive heuristics for graph
partitioning. IEEE Transactions on Computers, 48(4):361–385, 1999.

2. T. N. Bui and B. R. Moon. Genetic algorithm and graph partitioning. IEEE
Transactions on Computers, 45(7):841–855, 1996.

3. J. Cong and S. K. Lim. Multiway partitioning with pairwise movement. In Proceed-
ings of the International Conference on Computer-Aided Design, pages 512–516,
1998.

4. J. Cong, S. K. Lim, and C. Wu. Performance driven multi-level and multiway
partitioning with retiming. In Proceedings of the ACM/IEEE-CAS/EDAC Design
Automation Conference, pages 274–279, 2000.

5. C. Fiduccia and R. Mattheyses. A linear time heuristics for improving network
partitions. In Proceedings of the 19th ACM/IEEE Design Automation Conference,
pages 175–181, 1982.

6. M. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, 1979.

7. D. E. Goldberg and R. Lingle. Alleles, loci, and the travelling salesman problem. In
Proceedings of the First International Reference on Genetic Algorithms and their
Applications, pages 154–159, 1985.

8. T. C. Hu and E. S. Kuh. VLSI Curcuit Layout Theory and Design. IEEE Press,
New York, 1985.

9. D. S. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation, Part 1, graph partitioning. Operations
Research, 37:865–892, 1989.

10. S. J. Kang and B. R. Moon. A hybrid genetic algorithm for multiway graph parti-
tioning. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 159–166, 2000.

11. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48(1):96–129, 1998.

12. B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
Bell Systems Technical Journal, 49:291–307, Feb. 1970.

13. J. P. Kim and B. R. Moon. A hybrid genetic search for multi-way graph partition-
ing based on direct partitioning. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 408–415, 2001.

14. Y. H. Kim and B. R. Moon. Lock-gain based graph partitioning. Journal of
Heuristics, 10(1):37–57, January 2004.

15. Y. H. Kim and B. R. Moon. New topologies for genetic search space. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1393–1399, 2005.

16. Y. H. Kim, Y. Yoon, A. Moraglio, and B. R. Moon. Geometric crossover for mul-
tiway graph partitioning. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 1217–1224, 2006.

17. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res.
Logist. Quart., 2:83–97, 1955.

18. G. Laszewski. Intelligent structural operators for the k-way graph partitioning
problem. In Proceedings of the Fourth International Conference on Genetic Algo-
rithms, pages 45–52, July 1991.

19. P. Merz and B. Freisleben. Fitness landscapes, memetic algorithms, and greedy
operators for graph bipartitioning. Evolutionary Computation, 8(1):61–91, 2000.

20. A. Moraglio and R. Poli. Topological interpretation of crossover. In Proceedings
of the Genetic and Evolutionary Computation Conference, pages 1377–1388, 2004.

21. A. Moraglio and R. Poli. Geometric crossover for the permutation representation.
Technical Report CSM-429, 2005.

22. A. Moraglio and R. Poli. Topological crossover for the permutation representation.
In GECCO 2005 Workshop on Theory of Representations, 2005.

23. A. Moraglio, R. Poli, and R. Seehuus. Geometric crossover for biological sequences.
In Proceedings of European Conference on Genetic Programming, pages 121–132,
2006.

24. I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of permutation crossover
operators on the travelling salesman problem. In Proceedings of the Second Inter-
national Conference on Genetic Algorithms, pages 224–230, 1987.

25. L. A. Sanchis. Multiple-way network partitioning. IEEE Transactions on Com-
puters, 38(1):62–81, 1989.

