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Abstract. Geometric crossover is a representation-independent defini-
tion of crossover based on the distance of the search space interpreted as
a metric space. It generalizes the traditional crossover for binary strings
and other important recombination operators for the most frequently
used representations. Using a distance tailored to the problem at hand,
the abstract definition of crossover can be used to design new problem
specific crossovers that embed problem knowledge in the search. In this
paper, we introduce the important notion of product geometric crossover
that allows to build new geometric crossovers combining pre-existing ge-
ometric crossovers in a simple way.

1 Introduction

Geometric crossover and geometric mutation are representation-independent
search operators that generalize many pre-existing search operators for the ma-
jor representations used in evolutionary algorithms, such as binary strings [4],
real vectors [4], permutations [6], syntactic trees [5] and sequences [7]. They are
defined in geometric terms using the notions of line segment and ball. These
notions and the corresponding genetic operators are well-defined once a notion
of distance in the search space is defined. Defining search operators as functions
of the search space is opposite to the standard way [3] in which the search space
is seen as a function of the search operators employed. This viewpoint greatly
simplifies the relationship between search operators and fitness landscape and
has allowed us to give simple rules-of-thumb to build crossover operators that
are likely to perform well.

Theoretical results of metric spaces can naturally lead to interesting results
for geometric crossover. In particular, in this paper we focus on the notion of
metric transformation. A metric transformation is an operator that constructs
new metric spaces from pre-existing metric spaces: it takes one or more metric
spaces as input and outputs a new metric space. The notion of metric transfor-
mation becomes extremely interesting when considered together with distances
firmly rooted in the syntactic structure of the underlaying solution representa-
tion (e.g., edit distances). In these cases it gives rise to a simple and natural
interpretation in terms of syntactic transformations.

In this paper we extend the geometric framework introducing the important
notion of cartesian product of geometric crossover, that allows to build new



geometric crossovers combining preexisting geometric crossovers in a very simple
way. The metric transformation considered is a simple product of metric spaces
and the corresponding induced crossover transformation is the product geometric
crossover. This may sound very abstract and impractical. However, it actually
is not. Indeed, we put the ideas reported in this paper to the test in [8].

The paper is organised as follows. In section 2 we present the geometric
framework. In section 3, we extend it with the notion of geometricity-preserving
transformation and focus on the notion of product geometric crossover. In section
4, we outline future investigations. In section 5, we draw some conclusions.

2 Geometric framework

2.1 Geometric preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [4] and [5]. The following definitions are taken from [2].

The terms distance and metric denote any real valued function that con-
forms to the axioms of identity, symmetry and triangular inequality. A simple
connected graph is naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length of a shortest path
between the nodes.

In a metric space (S, d) a line segment (or closed interval) is the set of the
form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called
extremes of the segment. Metric segment generalises the familiar notions of seg-
ment in the Euclidean space to any metric space through distance redefinition.
Notice that a metric segment does not coincide to a shortest path connecting
its extremes (geodesic) as in an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is the union of
all geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape.

2.2 Geometric crossover definition

The following definitions are representation-independent therefore applicable to
any representation.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.



Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
is a geometric crossover where all z laying between parents x and y have the same
probability of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])
|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been
derived in [4] where we also showed that traditional crossover is geometric under
Hamming distance.

In previous work we have also studied various crossovers for permutations,
revealing that PMX, a well-known crossover for permutations, is geometric under
swap distance. Also, we found that Cycle crossover, another traditional crossover
for permutations, is geometric under swap distance and under Hamming dis-
tance.

2.3 Formal evolutionary algorithm and problem knowledge

Geometric operators are defined as functions of the distance associated to the
search space. However, the search space does not come with the problem itself.
The problem consists only of a fitness function to optimize, that defines what
a solution is and how to evaluate it, but it does not give any structure on the
solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice.

A fitness landscape is the fitness function plus a structure over the solution
space. So, for each problem, there is one fitness function but as many fitness
landscapes as the number of possible different structures over the solution set.
In principle, the designer could choose the structure to assign to the solution
set completely independently from the problem at hand. However, because the
search operators are defined over such a structure, doing so would make them
decoupled from the problem at hand, hence turning the search into something
very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. For example, one can study the objective function of the problem
and select a neighborhood structure that couples the distance between solutions
and their fitness values. Once this is done problem knowledge can be exploited
by search operators to perform better than random search, even if the search
operators are problem-independent (as is the case of geometric crossover and
mutation). Indeed, the fitness landscape is a knowledge interface between the
problem at hand and a formal, problem-independent search algorithm.

Under which conditions is a landscape well-searchable by geometric oper-
ators? As a rule of thumb, geometric mutation and geometric crossover work
well on landscapes where the closer pairs of solutions, the more correlated their



fitness values. Of course this is no surprise: the importance of landscape smooth-
ness has been advocated in many different context and has been confirmed in
uncountable empirical studies with many neighborhood search meta-heuristics
[9]. We operate according to the following rule-of-thumbs:
Rule-of-thumb 1 : if we have a good distance for the problem at hand than we
have good geometric mutation and good geometric crossover
Rule-of-thumb 2 : a good distance for the problem at hand is a distance that
makes the landscape “smooth”

3 Product geometric crossover

We first introduce the general notion of geometricity-preserving transformations.
Then we consider a specific geometricity-preserving transformation associated
with the product metric. We introduce product metrics for vector spaces, that
are metric preserving transformations, and stress how they can be seen as natural
generalization of simple metrics for vector spaces. We then introduce the notion
of interval space that naturally bridges the metric and representation aspects of
geometric crossover, and recall a few results form interval spaces theory. We use
these results to prove our main result of this paper on the product of geometric
crossovers. We then give a number of examples of applications. In section 4,
we will discuss how to further generalize this theorem to a general structural
composition of geometric crossovers.

3.1 Geometricity-preserving transformations

In previous work we have proven that a number of important pre-existing re-
combination operators for the most frequently used representations are geometric
crossovers. We have also applied the abstract definition of geometric crossover to
distances firmly rooted in a specific solution representation and designed brand-
new crossovers. An appealing way to build new geometric crossovers is starting
from recombination operators that are known to be geometric and derive new
geometric crossovers by geometricity-preserving transformations/combinations
that when applied to geometric crossovers, return geometric crossovers.

The definition of geometric crossover is based on the notion of metric. There-
fore, a natural starting point to seek geometricity-preserving transformations is
to consider transformations of the underlying metrics that are known to return
metric spaces and study how the geometric crossover associated to the trans-
formed metric space relates with the geometric crossover associated with the
original metric space.

There are a number of metric space transformations [2] [10] that are po-
tentially of interest for geometric crossover: sub-metric spaces, product spaces,
quotient metric space, gluing metric space, combinatorial transformation, non-
negative combinations of metric spaces, Hausdorf transformation, Concave trans-
formation, and Biotope transform.



Geometric crossover is well-defined once a metric space is defined. Let us
consider the geometric crossover X associated to the original metric space M ,
and the geometric crossover X ′ associated to the transformed metric space
M ′ = mt(M) where mt is the metric transformation. The functional relationship
among metric spaces and geometric crossovers can be nicely expressed through
a commutative diagram (Fig. 1). gx means application of the formal definition
of geometric crossover and gt means induced geometricity-preserving crossover
transformation associated to the metric transformation mt. This diagram be-
comes remarkably interesting when the metric transformation mt is associated
to an induced geometricity-preserving crossover transformation gt that has a
simple interpretation in terms of syntactic manipulation. This indeed allows one
to get new geometric crossovers starting from recombination operators that are
known to be geometric by simple geometricity-preserving syntax manipulation.

Fig. 1. Commutative diagram linking metric and crossover transformations.

We study those metric-preserving transformations which induced
geometricity-preserving transformations have a simple and natural inter-
pretation on the solution representation.

3.2 N-dimensional real spaces and product metric spaces

Metric spaces on R2. Let S = R2, and x = (x′, x′′), y = (y′, y′′). The following
are metric spaces on S:

d1(x, y) = |x′ − y′|+ |x′′ − y′′| (Manhattan space)

d2(x, y) =
√
|x′ − y′|2 + |x′′ − y′′|2 (Euclidean space)

d∞(x, y) = Max{|x′ − y′|+ |x′′ − y′′|} (Chessboard space)
These may be proved to be metrics [10]. These definitions may be extended

to n-dimensional real spaces.
Product metric spaces. Given two metric spaces M ′ = (S′, d′) and M ′′ = (S′′, d′′),
we may define several metrics on S′ × S′′. For example, if x = (x′, x′′) and
y = (y′, y′′) are in S′ × S′′, let

d1(x, y) = d′(x′, y′) + d′′(x′′, y′′) (Manhattan product)

d2(x, y) =
√

d′(x′, y′)2 + d′′(x′′, y′′)2 (Euclidean product)
d∞(x, y) = Max{d′(x′, y′) + d′′(x′′, y′′)} (Chessboard product)



These may be proved to be metrics [10]. These definitions may be extended
to the product of any finite number of metric spaces.

It is interesting to notice that product spaces can be considered as gener-
alization of n-dimensional real spaces, where the absolute value metric at each
dimension is replaced by a generic metric. This is important because the gener-
alization involves two different types of objects: a simple metric for a structured
space and a structural metric transformation of generic metric spaces. More on
this in the section 4.

3.3 Product interval spaces

Metric spaces can be associated to geometric interval spaces. The latter are a
more natural setting for geometric crossover than the former. We review the
notion of interval space and present results that draw a parallel between met-
ric spaces and interval spaces. Then we use them to prove specific results for
geometric crossover.

Interval space and Geometric interval space. Let X be a set and let I : X×X →
2X be a function with the following properties:

– Extensive Law : a, b ∈ I(a, b)
– Symmetry Law : I(a, b) = I(b, a)

Then I is called an interval operator on X, and I(a, b) is the interval between a
and b. The resulting pair (X, I) is called an interval space.
An interval operator I on a set X is geometric provided the following hold.

– Idempotent Law : ∀b ∈ X : I(b, b) = {b}
– Monotone Law : if a, b, c ∈ X and c ∈ I(a, b), then I(a, c) ⊆ I(a, b)
– Inversion Law : if a, b ∈ X and c, d ∈ I(a, b), then c ∈ I(a, d) implies d ∈

I(c, b)

A set with a geometric interval operator is called a geometric interval space.

Interval space associated to a metric space. The geodesic operator [•, •]d that
associates extremes of a metric segment to all the points that constitute it is a
geometric interval operator [1].

Product segment. Let us define the product segment as [a, b]d×d′ = {(x1, x2)|x1 ∈
[a1, b1]d, x2 ∈ [a2, b2]d′} where a = (a1, a2), b = (b1, b2)
Product segment theorem: The product segment corresponds to the segment of
the Manhattan product space: [(a1, a2), (b1, b2)]d×d′ = [(a1, a2), (b1, b2)]ρ where
ρ((a1, a2), (b1, b2)) = d(a1, b1) + d′(a2, b2) [1]
This result may be extended to the product segment of any finite number of
metric spaces.

Interval spaces connect very naturally with the notion of geometric crossover.
There is a wealth of results for geometric interval spaces that can easily be
transferred to geometric crossover.



3.4 Product geometric crossover

A product geometric crossover of the geometric crossovers Xi based on the metric
spaces (Si, di) is a recombination operator defined over the cartesian product set∏

i Si that applies the geometric crossover Xi to the projection Si.
Example. Let us consider two geometric crossovers X1 : S1 × S1 → S1 and X2 :
S2 × S2 → S2. A product geometric crossover of X1 and X2 is a recombination
operator X3 : (S1, S2)× (S1, S2) → (S1, S2) that applies the geometric crossover
X1 to elements in the first position and crossover X2 to elements in the second
position.

From the results in the previous section we have the following

Theorem 1. Any product geometric crossover is a geometric crossover under
the distance given by the sum of the distances of the compounding crossovers

Proof. This follows immediately from the definition of geometric crossover and
the product segment theorem.

The geometric crossovers in each projection of the product geometric
crossover do not need to be independent for the product crossover to be ge-
ometric. This is because casting any form of dependency between geometric
crossovers in different projections results in a reduction of the pool of offspring
allowed to be created by the product geometric crossover. From the definition
of geometric crossover, such a restriction does not affect its geometricity.

The theorem above is useful because it allows one to build new geometric
crossovers combining crossovers that are known to be geometric. In particular,
this applies to crossovers for mixed representations. Examples of application of
product geometric crossovers include:

– Multi-crossover: same representation same crossover n times
– Hybrid crossover: same representation different crossover for each projection
– Hybrid representation crossover: different representation for each projection

(and different crossover)
– Dependent crossover: different projections represent a single entity and they

are mutually constrained. This occurs very often in real-world problems. E.g.
for neural networks one projection could be a variable-size graph representing
the structural part, while a second projection could be a variable-length
sequence of reals representing the weights. Clearly recombination of the first
projection imposes constraints on the recombination of the second projection
to obtain a feasible offspring.

3.5 Simplification and generalization of geometricity of traditional
crossover

Definition 4. (Discrete metric space) Let A be any non-empty set and

d(x, y) =
{

1, x 6= y
0, x = y

∀x, y ∈ A

This is a metric and is called the discrete metric of A.



The discrete metric space is the path metric of a fully-connected graph with
A as node set. The interval operator associated with the discrete metric space
is: ∀a, b ∈ A : [a, b] = {a, b} (all segments are edges).

We call the geometric crossover associated to the discrete metric, the discrete
metric geometric crossover (DM-GX). Clearly, the only possible offspring of DM-
GX are the parents.

Definition 5. (Hamming metric space) Let us consider a set An whose elements
are all vectors of length n over some alphabet A of size |A|. The Hamming
distance between two vectors is the number of coordinates where they differ. The
Hamming space is denoted by H(n, |A|).

Discrete metrics and Hamming space are linked as follows: the product metric
of n discrete metric spaces of the alphabet A is the Hamming space H(n, |A|).
Theorem 2. Any traditional mask-based crossover for discrete vectors taking
values on the alphabet A is geometric under Hamming distance.

Proof. This follows from the fact that any traditional mask-based crossover is
the product crossover of n DM-GX, one for each projection.

When the alphabet A is a set of integers, beside the discrete metric we can
consider also the absolute value of their difference (ABD) for each projection as
a metric to be used as a basis for a product crossover. It is easy to see that the
geometric crossover associated to ABD produces integers between the parents
integers as extremes. The product geometric crossover is in this case a blend-
type crossover (in contrast with the discrete metric that gives rise to a discrete
recombination-type crossover).

3.6 Product geometric crossover and the Sudoku puzzle

In [8] we have designed new geometric crossovers for the Sudoku puzzle that
deal in a natural way with its constraints. We have demonstrated the usage of
the notion of product geometric crossover to straightforwardly derive (i) new
geometric crossovers for the entire grid obtained by employing simple geometric
crossovers for each row and (ii) the distance functions associated with them.
This has allowed us to analyze the geometric fitness landscape associated to the
new geometric crossovers and tell a priori, by the way the fitness landscape is
constructed, that the new crossovers are very well-suited to the Sudoku puzzle
hence likely to perform well. Crossover operators associated with the row-swap
distance are the best and produce consistently (near) optimal Sudoku grids, as
predicted.

4 Future investigations

Structural composition of geometric crossovers: the previous results could
be generalized in a very interesting way, extending the geometric framework to
complex representations. In the following we discuss this.



Basic representations such as vectors, permutations, sequences, trees, graphs
and sets, to mention only the most common, can all be seen as structures con-
taining generic objects. These objects do not need to be necessarily numbers or
atomic symbols from a given alphabet. Such objects can well be structures them-
selves, so we can consider derived structures obtained by structural composition,
such for example sets of trees. The composition can be repeated recursively with
different types of representations thus obtaining a wealth of derived representa-
tions, potentially suited to any problem conceivable.

Given geometric crossovers XA and XB for the structure A and B associated
to the metric spaces MA and MB , what is the derived geometric crossover for
the derived structure A ◦B? What is the derived metric space associated to the
derived geometric crossover and the derived structure?

With the product geometric crossover, we have seen that when the structure
is a vector, the structural composition with any other representations is con-
nected to a natural derived geometric crossover consisting of a simple geometric
crossover for each position in the vector, and associated to a derived metric that
is simply the sum of the metric for each position.

In the case of vectors, we have a number of possible structural compositions
(a number of metric product operators) but only one notion of metric product
that has a natural interpretation on the representation, making it the only one
actually useful. In the case of other structures, there could be more than one
(or even no) structural composition that has a natural interpretation on the
representation. Furthermore, in the case of structures other than vectors, we
do not have standard metric transformations such as the metric product that
naturally suit them. So, where can we start our generalization from?

There seems to be a way suggested by the case of vectors: we have seen that
simple metrics on the vector space (structured objects) can be easily general-
ized to structural metric transformations of generic metric spaces retaining the
overall structure of the original object (vector of metric spaces). We could do
the same to generalize metrics for other type of structures to structural metric
transformations. The starting point is noticing that distances for structured rep-
resentations are naturally expressed as some aggregating function of marginal
contributions due to the difference in the structural subcomponents. The way
of measuring the difference between two components is normally a very simple
notion of metric, discrete metric for difference between symbols, or just absolute
value for numeric components. In the case of vectors, the aggregating function
is a simple sum, and the distance between components is the absolute value. So,
the way to pass from metric distance to metric transformation is to replace the
simple component-metric with generic metrics, exactly how it was done for the
case of vectors.

This seems to be a general and very promising starting point to extend
simple metrics on any type of structured object to structural metric transforma-
tions naturally associated with its shape. In future work, we will explore these
metric transformations and study their induced geometricity-preserving trans-



formations to reveal the effect on the representation of the derived geometric
crossovers.
Other metric transformations: Most of the metric transformations listed
in the introduction have corresponding syntactic crossover transformations,
that can be used for other purposes than actually constructing new geomet-
ric crossovers. Indeed, we are currently using some of these transformations to
attack the following important open issue regarding geometric crossover. Given
a geometric crossover, there is in general more than one distance for which the
crossover is geometric (for example, cycle crossover is geometric under Ham-
ming distance and swap distance). The question is: is there a distance that can
be said to be the best distance to consider for a specific geometric crossover?
If so, what is this distance? The answer relies heavily on the notion of metric
transformation.

5 Conclusions

In this paper we have extended the geometric framework introducing the no-
tion of product crossover. This is a very general result that allows one to build
new geometric crossovers customized to problems with mixed representations by
combining pre-existing geometric crossovers in a straightforward way. We have
presented this notion in the more general setting of metric transformations and
discussed promising future investigations. Using the product geometric crossover
theorem, we have also shown that traditional crossovers for symbolic vectors and
blend crossovers for integer and real vectors are geometric crossover.
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