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ABSTRACT
Geometric particle swarm optimization (GPSO) is a re-
cently introduced formal generalization of traditional parti-
cle swarm optimization (PSO) that applies naturally to both
continuous and combinatorial spaces. In previous work we
have developed the theory behind it. The aim of this paper
is to demonstrate the applicability of GPSO in practice. We
demonstrate this for the cases of Euclidean, Manhattan and
Hamming spaces and report extensive experimental results.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory

Keywords
Particle Swarm Optimisation, Metric Space, Geometric
Crossover

1. INTRODUCTION
Particle swarm optimisation [5] has traditionally been ap-

plied to continuous search spaces. Although a version of
PSO for binary search spaces has been defined [4], attempts
to extend PSO to richer spaces, such as, for example, com-
binatorial spaces, have had no real success [2].

There are two ways of extending PSO to richer spaces:
a) adapting the PSO for each new solution representation,
or b) making use of a rigorous mathematical generalisation
to a general class of spaces of the notion (and motion) of
particles. This second approach has the advantage that a
PSO can be derived in a principled way for any search space
belonging to the given class. In recent work [13] we have pur-
sued this approach. We have shown formally how a general
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form of PSO (without the momentum term), the Geomet-
ric PSO (GPSO), can be obtained by using theoretical tools
developed for a different form of search algorithms, namely
evolutionary algorithms using geometric crossover and geo-
metric mutation. These are representation-independent op-
erators that generalise many pre-existing search operators
for the major representations, such as binary strings [7],
real vectors [7], permutations [8], syntactic trees [8] and se-
quences [10]. We have then formally derived GPSOs for
Euclidean, Manhattan and Hamming spaces and discussed
how to derive GPSOs for virtually any representation in a
similar way. We did not, however, test these new PSOs.

In this paper we test GPSO theory experimentally: we
implement the specific GPSO for Euclidean, Manhattan and
Hamming spaces and report extensive experimental results
obtaining very good performances.

For completeness, in the first part of the paper we exten-
sively summarise the results of [13]. In particular: in sec-
tion 2, we introduce the geometric framework; in section 3,
we review the general GPSO algorithm for generic metric
spaces; in section 4 we review the theory for the specific
GPSOs for Euclidean, Manhattan and Hamming spaces; fi-
nally, in section 5, we discuss how to specialise the general
GPSO automatically to virtually any solution representa-
tion using geometric crossover. Then, in section 6, we report
new and extensive experimental results with the GPSOs for
Euclidean, Manhattan and Hamming spaces and we com-
pare them with a traditional PSO. Finally, in section 7, we
present conclusions and future work.

2. GEOMETRIC FRAMEWORK
Geometric operators are defined in geometric terms using

the notions of line segment and ball. These notions and
the corresponding genetic operators are well-defined once a
notion of distance in the search space is defined.

2.1 Geometric preliminaries
In the following we give necessary preliminary geometric

definitions and extend those introduced in [7]. For more
details on these definitions see [3].

The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symme-
try and triangular inequality. A simple connected graph is
naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length of
a shortest path between the nodes. Distances arising from
graphs via their path metric are called graphic distances.
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Similarly, a weighted graph with positive weights is natu-
rally associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is a set of the form
B(x; r) = {y ∈ S|d(x, y) ≤ r} where x ∈ S and r is a
positive real number. A line segment is a set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S
are called extremes of the segment. Metric ball and metric
segment generalise the familiar notions of ball and segment
in the Euclidean space to any metric space through distance
redefinition. In general, there may be more than one short-
est path (geodesic) connecting the extremes of a metric seg-
ment; the metric segment is the union of all geodesics.

We assign a structure to the solution set by endowing it
with a notion of distance d. M = (S, d) is then a solution
space and L = (M, g) is the corresponding fitness landscape.

2.2 Geometric crossover

Definition 1. (Geometric crossover) A binary operator
is a geometric crossover under the metric d if all offspring
are in the segment between its parents.

The definition is representation-independent and, there-
fore, crossover is well-defined for any representation. Being
based on the notion of metric segment, crossover is only
function of the metric d associated with the search space.

This class of operators is very broad. Blend and line
crossovers, box recombinations, and discrete recombinations
for real vectors are geometric crossovers [7]. For binary
and multary strings, all homologous crossovers are geomet-
ric [7, 11]. For permutations, PMX, Cycle crossover, merge
crossover and others are geometric crossovers [8]. For syn-
tactic trees, the family of homologous crossovers are geo-
metric [9]. Recombinations for several more complex repre-
sentations are also geometric [10, 7, 8, 12].

2.3 Extension to multi-parent geometric
crossover

To extend geometric crossover to the case of multiple par-
ents we need the following definitions.

A family X of subsets of a set X is called convexity on
X if: (C1) the empty set ∅ and the universal set X are in
X , (C2) if D ⊆ X is non-empty, then

T

D ∈ X , and (C3)
if D ⊆ X is non-empty and totally ordered by inclusion,
then

S

D ∈ X . The pair (X,X ) is called convex structure.
The members of X are called convex sets. By the axiom
(C1) a subset A of X of the convex structure is included
in at least one convex set, namely X. From axiom (C2), A
is included in a smallest convex set, the convex hull of A:
co(A) =

T

{C|A ⊆ C ∈ X}. The convex hull of a finite set is
called a polytope. The axiom (C3) requires domain finiteness
of the convex hull operator: a set C is convex iff it includes
co(F ) for each finite subset F of C. The convex hull operator
applied to set of cardinality two is called segment operator.
Given a metric space M = (X, d) the segment between a
and b is the set [a, b]d = {z ∈ X|d(x, z) + d(z, y) = d(x, y)}.
The abstract geodetic convexity C on X induced by M is
obtained as follow: a subset C of X is geodetically-convex
provided [x, y]d ⊆ C for all x, y in C. If co denotes the
convex hull operator of C, then ∀a, b ∈ X : [a, b]d ⊆ co{a, b}.
The two operators need not to be equal: there are metric
spaces in which metric segments are not all convex.

We can now provide the following extension:

Definition 2. (Multi-parent geometric crossover) In a
multi-parent geometric crossover, given n parents p1, . . . , pn

their offspring are contained in the metric convex hull of the
parents co({p1, p2, . . . , pn}) for some metric d.

Theorem 1. (Decomposable three-parent recombination)
Every multi-parent recombination RX(p1, p2, p3) that can be
decomposed as a sequence of 2-parent geometric crossovers
under the same metric GX and GX ′, so RX(p1, p2, p3) =
GX(GX ′(p1, p2), p3), is a three-parent geometric crossover.

(Proofs of this and other theorems can be found in [13].)

3. GEOMETRIC PSO

3.1 Basic, Canonical PSO Algorithm
Consider the canonical global topology PSO with inertia

weight, where velocities are updated using the rule

vi(t + 1) = ωvi(t) + φ1R1(xgi
(t) − xi(t))

+ φ2R2(xpi
(t) − xi(t)) (1)

The main feature that allows the motion of particles is the
ability to perform linear combinations of points in the search
space. To obtain a generalisation of PSO to generic search
spaces, we can achieve this same ability by using multiple
(geometric) crossover operations.

Consider a particle at position p that moves in the direc-
tion to a point o being in the next time step in position p′.
We could interpret the motion of this particle as the result
of the application of geometric crossover. That is, p and o
can be seen as two parents and p′ can be seen as the off-
spring. We can interpret the distance between parent p and
offspring p′ as the intensity of the velocity of the particle.
Notice that the particle moves from p to p′, so we see this
process as result of a geometric crossover, we must imagine
that parent p is replaced by the offspring p′ in the next time
step. Since all particles move at the same time, we must
also imagine that all are selected for mating.

Similarly we can interpret the motion produced by the
application of Equation (1) as the result of the application of
a weighted multi-recombination involving the best position
visited by the particle and the best position visited by its
neighbours. Weights are the propensity of a particle towards
memory, sociality, stability.

Naturally, particle motion based on geometric crossover
leads to a form of search that cannot extend beyond the
convex hull of the initial population. Mutation can be used
to allow non-convex search.

We explain these ideas in detail in the following sections.

3.2 Geometric interpretation of linear
combinations

If v1, ..., vn are vectors and a1, ..., an are scalars, then the
linear combination of those vectors with those scalars as
coefficients is:

Pn

i=1
aivi. A linear combination on n linearly

independent vectors spans completely a n-dimensional or
lower dimensional space but not a higher dimensional one.

An affine combination of vectors x1, ..., xn is a linear com-
bination

Pn

i=1
αi · xi in which

Pn

i=1
αi = 1. When a vector

represents a point in space, the affine combination of 2 points
spans completely the line passing through them; the affine
combination of 3 points spans the plane (a 2–D line) pass-
ing through them; increasing number of points spans higher
dimensional “lines”.
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A convex combination is a linear combination of vectors
where αi ≥ 0 and

Pn

i=1
αi = 1. When vectors represent

points in space, all possible convex combinations (given the
base vectors) form the convex hull. For n = 2 a new point
formed by the convex combination lies on a straight line
between x1 and x2, while for n = 3 the convex hull is the
triangle with vertices x1, x2 and x3.

3.3 Simplified PSO with implicit velocity

Theorem 2. In a PSO with no momentum (ω = 0) and
where learning rates are such that φ1 + φ2 < 1, the future
position of each particle x′ is within the triangle formed by
its current position x, its local best x̂ and the swarm best
ĝ. Furthermore, x′ can be expressed without involving the
particle’s velocity as x′ = (1 − w2 − w3)x + w2x̂ + w3ĝ.

In the next section, we generalize this simplified form of
PSO from real vectors to generic metric spaces. Mutation
will be required to extend the search beyond the convex hull.

3.4 Convex combinations in metric spaces
Linear combinations are well-defined for vector spaces, al-

gebraic structures endowed with scalar product and vecto-
rial sum. A metric space is a set endowed with a notion of
distance. The set underlying a metric space does not nor-
mally come with well-defined notions of scalar product and
sum among its elements. So a linear combination of its el-
ements is not defined. How can we then define a convex
combination in a metric space? Vectors in a vector space
can be easily understood as points in a metric space. How-
ever, what do the scalar weights in a convex combination
mean in a metric space?

As seen in section 3.2, a convex combination is an alge-
braic description of a convex hull. However, even if the no-
tion of convex combination is not defined for metric spaces,
convexity in metric spaces is still well-defined through the
notion of metric convex set that is a straightforward gener-
alization of traditional convex set. Then, we can generalize
the scalar weights of a convex combination making sense of
them in terms of distance.

The weight of a point in a convex combination can be seen
as a measure of relative linear attraction toward its corre-
sponding point versus attractions toward the other points of
the combination. The closer the weight to one, the stronger
the attraction to its corresponding point. The resulting
point of the convex combination can be seen as a weighted
spatial average and it is the equilibrium point of all the at-
traction forces. The distance between the equilibrium point
and a point of the convex combination is therefore a de-
creasing function of the level of attraction, weight, of the
point: the stronger the attraction, the smaller its distance
to the equilibrium point. This observation can be used to
reinterpret the weights of a convex combination in a metric
space as follows: y = w1x1 + w2x2 + w3x3 with w1, w2 and
w3 greater than zero and w1 +w2 +w3 = 1 is generalized to
d(x1, y) ∼ 1/w1, d(x2, y) ∼ 1/w2 and d(x3, y) ∼ 1/w3.

This definition is formal and valid for all metric spaces but
it is non-constructive. In contrast a convex combination, not
only defines a convex hull, but it tells also how to reach all its
points. So, how can we actually pick a point in the convex
hull respecting the above distance requirements? Geometric
crossover will help us with this.

The requirements for a convex combination in a metric
space are:

1. Convex Weights: the weights respect the form of a
convex combination: w1, w2, w3 > 0 and w1 + w2 +
w3 = 1

2. Convexity: the convex combination operator combines
x, x̂ and ĝ and returns a point in their metric convex
hull, or simply triangle, under the metric of the space
considered

3. Coherence between weights and distances: the dis-
tances to the equilibrium point are decreasing func-
tions of their weights

4. Symmetry: the same value assigned to w1, w2 or w3

has the same weight (so in a equilateral triangle, if the
coefficients have all the same value, the distance to the
equilibrium point are the same)

4. GEOMETRIC PSO FOR SPECIFIC
SPACES

4.1 Euclidean space
GPSO for the Euclidean space is not an extension of the

traditional PSO. We include it to show how the general no-
tions introduced in the previous section materialize in a fa-
miliar context. The convex combination operator for the
Euclidean space is the traditional convex combination that
produces points in the traditional convex hull. Notice that
when the definition of metric convex hull is specified for the
case of the Euclidean distance we obtain the traditional con-
vex hull.

In section 3.4, we have mentioned how to interpret the
weights in a convex combination in terms of distances. The
following result shows analytically how the weights of a con-
vex combination affect the relative distances to the equilib-
rium point:

Theorem 3. In a convex combination, the distances to
the equilibrium point are decreasing functions of the corre-
sponding weights.

The traditional convex combination in the Euclidean
space respects the four requirements for a convex combi-
nation presented in section 3.4.

4.2 Manhattan space
Let us first define a multi-parent geometric recombination

for the Manhattan space.

Definition 3. (Box recombination family) Given two
parents a and b in R

n, a box recombination operator returns
offspring o such as i = 1 . . . n : oi ∈ [min(ai, bi), max(ai, bi)]

Theorem 4. (Geometricity of box recombination) Any
box recombination is geometric crossover under Manhattan
distance

Definition 4. (Multi-parent Box recombination family)
Given three parents a, b and c in R

n, a box recombina-
tion operator returns offspring o such as i = 1 . . . n : oi ∈
[min(ai, bi, ci), max(ai, bi, ci)]
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Theorem 5. (Geometricity of multi-parent box recombi-
nation) Any multi-parent box recombination is geometric
crossover under Manhattan distance

Definition 5. (Weighted multi-parent Box recombina-
tion) Given three parents a, b and c in R

n and weights wa,
wb and wc, a weighted box recombination operator returns
offspring o such as i = 1 . . . n : oi = wai

ai + wbi
bi + wci

ci

where wai
, wbi

and wci
are a convex combination of ran-

domly perturbed weights with expected values wa, wb and
wc.

The difference between box recombination and linear re-
combination (Euclidean space) is that in the latter the
weights wa, wb and wc are randomly perturbed only once
and the same weights are used for all the dimensions,
whereas the former one has a different randomly perturbed
version of the weights for each dimension.

The weighted multi-parent box recombination belongs
to the family of multi-parent box recombination be-
cause i = 1 . . . n : oi = wai

ai + wbi
bi + wci

∈
[min(ai, bi, ci), max(ai, bi, ci)], hence it is geometric.

Theorem 6. (Coherence between weights and distances)
In weighted multi-parent box recombination, the distances of
the parents to the expected offspring are decreasing functions
of the corresponding weights.

So, the weighted multi-parent box recombination is a con-
vex combination operator satisfying the four requirements of
a metric convex combination for the Manhattan space (see
section 3.4).

4.3 Hamming space
Let us first define a multi-parent recombination for bi-

nary strings that is a straightforward generalization of mask-
based crossover with two parents.

Definition 6. (Multi-parent mask-based crossover fam-
ily) Given three parents a, b and c in 0, 1n, generate ran-
domly a crossover mask of length n with symbols from the
alphabet a, b, c. Build the offspring o filling it in each posi-
tion with the bit from the parent appearing in the crossover
mask at the position.

The weights wa, wb and wc of the convex combination in-
dicate for each position in the crossover mask the probability
of having the symbols a, b or c.

Theorem 7. (Geometricity of multi-parent mask-based
crossover) Any multi-parent mask-based crossover is geomet-
ric crossover under Hamming distance

Theorem 8. (Coherence between weights and distances)
In weighted multi-parent mask-based crossover, the distances
of the parents to the expected offspring are decreasing func-
tions of the corresponding weights.

So, the weighted multi-parent mask-based crossover is a
convex combination operator satisfying the four require-
ments of a metric convex combination for the Hamming
space (section 3.4).

5. GEOMETRIC PSO FOR OTHER
REPRESENTATIONS

Before introducing how to extend GPSO for other solu-
tion representations, we will discuss the relation between 3-
parent geometric crossover and the symmetry requirement
for a convex combination.

For each of the spaces in section 4, we have first consid-
ered, or defined, a three-parent recombination and then we
proved that it is a three-parent geometric crossover by show-
ing that it can be actually decomposed into two sequential
applications of a geometric crossover for the specific space.

However, we could have skipped altogether the explicit
definition of a three-parent recombination. In fact to ob-
tain the three-parent recombination we could have used
two sequential applications of a known two-parent geometric
crossover for the specific space. This composition is indeed a
three-parent recombination, it combines three parents, and
it is decomposable by construction, hence it is a three-parent
geometric crossover. This, indeed, would have been simpler
than the route we took.

The reason we preferred to define explicitly a three-parent
recombination is that the requirement of symmetry of the
convex combination is true by construction: if the roles of
any two parents are swapped exchanging in the three-parent
recombination both positions and respective recombination
weights, the resulting recombination operator is equivalent
to the original operator.

The symmetry requirement becomes harder to enforce and
prove for a three-parent geometric crossover obtained by two
sequential applications of a two-parent geometric crossover
(see [13]).

Let us now turn again to the extension of geometric PSO
to other representations. We have seen that there are two
alternative ways to produce a convex combination for a
new representation: (i) explicitly define a symmetric three-
parent recombination anew for the new representation and
then prove its geometricity by showing that it is decompos-
able into a sequence of two two-parent geometric crossovers
(ii) use twice the simple geometric crossover to produce a
symmetric or nearly symmetric three-parent recombination.
The second option is indeed very interesting because it al-
lows us to extended automatically to GPSO all representa-
tions we have geometric crossovers for, such as permuta-
tions, GP trees, variable-length sequences, to mention few,
and virtually any other complex solution representation.

The resulting generic GPSO algorithm is illustrated in Al-
gorithm 1. This differs from the standard PSO in that: there
is no velocity, the equation of position update is the convex
combination, there is mutation and the parameters ω, φ1,
and φ2 sum up to one. The specific PSO for the Euclidean,
Manhattan and Hamming spaces are instances of this gen-
eral algorithm where the randomized convex combination
operators and space-specific mutations are used.

6. EXPERIMENTAL RESULTS
We have run two groups of experiments: one for the con-

tinuous version of the GPSO (EuclideanPSO or EPSO for
short and ManhattanPSO or MPSO), and one for the bi-
nary version (HammingPSO, or HPSO). For the Euclidean
and Manhattan versions, we have compared the perfor-
mances with those of a standard continuous PSO (BasePSO,
or BPSO) with constriction. We have run the experiments
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Algorithm 1 GPSO

1: for all particle i do
2: initialise position xi at random in the search space
3: end for
4: while stop criteria not met do
5: for all particle i do
6: set personal best xpi

as best position found so far
by the particle

7: set global best xg as best position found so far by
the whole swarm

8: end for
9: for all particle i do

10: update position using a randomized convex combi-
nation

xi = CX((xi, ω), (xg, φ1), (xpi
, φ2)) (2)

11: mutate xi

12: end for
13: end while

Table 1: Parameters for continuous versions

κ 0.729
ω 1.0
Φ1 = Φ2 2.05
Vmax = Xmax MAX VALUE - MIN VALUE
Population Size 20, 50 particles
Stop Condition 200 iterations
Mutation uniform in [-0.5,0.5]

on the following five benchmark functions: F1C - Sphere,
F2C - Rosenbrock, F3C - Ackley, F4C - Griewangk and F5C
- Rastrigin for dimensions 2, 10 and 30. The Hamming ver-
sion has been tested on the De Jong’s test suite: F1 - Sphere
(30), F2 - Rosenbrock (24), F3 - Step (50), F4 - Quartic
(240) and F5 - Shekel (34).

For the continuous versions, we have used the standard
PSO parameter set (Table 1), where κ is used only in BPSO
and mutation only in EPSO and MPSO. For these two PSOs,
ω, Φ1 and Φ2 are normalized to sum up to one.

The parameters of population size, number of iterations
and ω, Φ1 and Φ2 for the binary version have been tuned on
the sphere function (see Table 9) and are as in Table 2. From
the parameters tuning, it appears that there is a preference
for values for ω close to zero. This means that there is a bias
towards the swarm and particle bests, and less attraction
towards the current particle position.

For each set up we performed 20 independent runs. Ta-
ble 3 shows the best and the mean fitness value (i.e., the fit-
ness value at the position where the population converges)
found by the swarm when exploring continuous spaces. This
table summaries the results for the three algorithm pre-
sented, over the five test functions, for the two choices of

Table 2: Selected parameters for binary version

Population size 100 particles
Iterations 400
Bitwise mutation rate 1/N
ω 0, 1/12
Φ1 = Φ2 1/2, 5/12

population size, giving an immediate comparison of the per-
formances. Further information is provided in Tables 4–
8 where the iteration at which both the best (IBest) and
the mean (IMean) values are found are also presented. In
all cases the GPSOs, EPSO and MPSO, compare very
favourably with BPSO, outperforming it in many cases.
This is particularly interesting, since it suggests that the
momentum term (not present in GPSO) is not necessary for
good performance.

Table 10 shows the mean of the best fitness value, the iter-
ation when this value is found, the best fitness value over the
whole population and the iteration when this value is found
for the binary version of the algorithm, HPSO. The algo-
rithm compares well with results reported in the literature,
with HPSO obtaining near optimal results on all functions.
Interestingly, the algorithm works at its best when ω, the
weight for xi (the particle position), is zero. This corre-
sponds to a degenerated PSO that makes decisions without
considering the current position of the particle.

7. CONCLUSIONS AND FUTURE WORK
In [13] we extended the geometric framework by introduc-

ing the notion of multi-parent geometric crossover. This is
a form of crossover where offspring are in the convex hull
of the parents. Then, using the geometric framework, we
showed an intimate relation between a simplified form of
PSO, without the momentum term, and evolutionary al-
gorithms, which enabled us to generalize in a natural and
rigorous way PSO for any type of search space. We special-
ized the general PSO to Euclidean, Manhattan and Ham-
ming spaces, obtaining three instances of the general PSO
for these spaces: EPSO, MPSO and HPSO, respectively.
In [13], however, we did not test experimentally the result-
ing PSOs.

The aim of this paper was to extensively experiment with
these new GPSOs. In particular, we applied EPSO, MPSO
and HPSO to standard sets of benchmark functions and ob-
tained two surprising results. Firstly, the GPSOs have per-
formed really well, beating the canonical PSO most of the
time. Secondly, they have done so right out of the box. That
is, unlike the early versions of PSO which required consider-
able effort before a good general set of parameters could be
found, with GPSO we have done very limited preliminary
testing and parameter tuning, and yet the new PSOs have
worked well. This suggests that they may be quite robust
optimisers. This will need to be verified in future research.

An important feature of the GPSO algorithm is that it
allows one to automatically define PSOs for all spaces for
which a geometric crossover is known [13]. Since geometric
crossovers are defined for all of the most frequently used
representations and many variations and combinations of
those, our geometric framework makes it possible to derive
PSOs for all such representations. In future work we will
consider other GPSOs, like, for example, for permutation
spaces and program spaces.
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Mean -0.0 -0.0 -0.0

IMean 157 158 158
50 Best -0.0 -0.0 -0.0

IBest 141 142 142
Mean -0.0 -0.0 -0.0

IMean 159 160 161
MPSO 20 Best -0.0 -0.0 -0.0

IBest 152 168 174
Mean -0.0 -0.0 -0.0

IMean 160 170 175
50 Best -0.0 -0.0 -0.0

IBest 148 165 173
Mean -0.0 -0.0 -0.0

IMean 162 169 174

Table 5: Test results for continuous versions for
function F2C - Rosenbrock.

2 10 30
BPSO 20 Best -0.00 -36.18 -1912.05

IBest 199 199 199
Mean -97.91 -979.56 -8847.44

IMean 199 199 199
50 Best 0.00 -19.46 -1639.46

IBest 199 199 192
Mean -56.04 -791.88 -9425.92

IMean 199 199 199
EPSO 20 Best -0.71 -8.98 -28.97

IBest 3 5 4
Mean -1.0 -9.0 -29.0

IMean 53 44 47
50 Best -0.57 -8.96 -28.96

IBest 1 3 4
Mean -1.0 -9.0 -29.0

IMean 55 52 46
MPSO 20 Best -0.66 -8.96 -28.97

IBest 2 3 4
Mean -1.0 -9.0 -29.0

IMean 48 43 45
50 Best -0.53 -8.95 -28.95

IBest 1 3 3
Mean -1.0 -9.0 -29.0

IMean 51 49 46
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Table 3: Test results for continuous version: best and mean fitness values found by the swarm over 20 runs
at last iteration (iteration 200).

Popsize=20

BPSO EPSO MPSO
Dim. 2 10 30 2 10 30 2 10 30
F1C Best -5.35e-14 -1.04 -59.45 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

Mean -6.54e-09 -20.75 -168.19 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
F2C Best -0.00 -36.18 -1912.05 -0.71 -8.98 -28.97 -0.66 -8.96 -28.97

Mean -97.91 -979.56 -8847.44 -1.0 -9.0 -29.0 -1.0 -9.0 -29.0
F3C Best -3.06e-05 -8.05 -18.09 0.0 0.0 0.0 0.0 0.0 0.0

Mean -0.00 -14.86 -20.49 0.0 0.0 0.0 0.0 0.0 0.0
F4C Best -0.31 -1.10 -6.67 -0.29 -1.0 -1.0 -0.29 -1.0 -1.0

Mean -1.52 -2.98 -17.04 -0.29 -1.0 -1.0 -0.29 -1.0 -1.0
F5C Best -0.33 -58.78 -305.11 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

Mean -10.41 -160.98 -504.62 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

Popsize=50

BPSO EPSO MPSO
Dim. 2 10 30 2 10 30 2 10 30
F1C Best -3.67e-13 -0.60 -53.93 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

Mean -1.11e-08 -19.09 -176.07 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
F2C Best 0.00 -19.46 -1639.46 -0.57 -8.96 -28.96 -0.53 -8.95 -29.0

Mean -56.04 -791.88 -9425.92 -1.0 -9.0 -29.0 -1.0 -9.0 -29.0
F3C Best -1.81e-06 -6.78 -17.62 0.0 0.0 0.0 0.0 0.0 0.0

Mean -0.00 -15.55 -20.43 0.0 0.0 0.0 0.0 0.0 0.0
F4C Best -0.30 -1.05 -6.14 -0.29 -1.0 -1.0 -0.29 -1.0 -1.0

Mean -1.63 -2.79 -17.79 -0.29 -1.0 -1.0 -0.29 -1.0 -1.0
F5C Best -0.10 -53.67 -302.29 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

Mean -3.56 -159.76 -503.48 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0

Table 10: Test results for HPSO with selected parameters for the De Jong’s test suite.
F1 F2 F3 F4 F5

ω = 0.0 Best -0.00015 -0.00034 -0.0 3.45170 -1.13183
IBest 17 360 49 396 299
Mean -5.51540 -54.14453 -2.594 -5.38233 -142.67853

IMean 399 399 399 399 399
ω = 1

6
Best -0.000125 -0.000297 -0.0 3.273980 -1.111220

IBest 17 360 49 398 179
Mean -5.375902 -85.170099 -2.949 -6.919343 -167.283327

IMean 399 399 399 399 199
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Table 6: Test results for continuous versions for
function F3C - Ackley.

2 10 30
BPSO 20 Best -3.06e-05 -8.05 -18.09

IBest 199 198 197
Mean -0.00 -14.86 -20.49

IMean 199 199 199
50 Best -1.81e-06 -6.78 -17.62

IBest 199 197 197
Mean -0.00 -15.55 -20.43

IMean 199 199 199
EPSO 20 MeanFit 0.0 0.0 0.0

IBest 15 15 19
PopBest 0.0 0.0 0.0

IMean 20 20 20
50 MeanFit 0.0 0.0 0.0

IBest 14 14 14
PopBest 0.0 0.0 0.0

IMean 20 21 21
MPSO 20 Best 0.0 0.0 0.0

IBest 16 18 19
Mean 0.0 0.0 0.0

IMean 20 21 20
50 Best 0.0 0.0 0.0

IBest 15 18 19
Mean 0.0 0.0 0.0

IMean 21 21 21

Table 7: Test results for continuous versions for
function F4C - Griewangk.

2 10 30
BPSO 20 Best -0.31 -1.10 -6.67

IBest 187 199 199
Mean -1.52 -2.98 -17.04

IMean 199 199 199
50 Best -0.30 -1.05 -6.14

IBest 162 196 193
Mean -1.63 -2.79 -17.79

IMean 199 199 199
EPSO 20 Best -0.29 -1.0 -1.0

IBest 7 6 8
Mean -0.29 -1.0 -1.0

IMean 12 11 11
50 Best -0.29 -1.0 -1.0

IBest 7 5 6
Mean -0.29 -1.0 -1.0

IMean 13 8 12
MPSO 20 Best -0.29 -1.0 -1.0

IBest 8 8 11
Mean -0.29 -1.0 -1.0

IMean 12 11 12
50 Best -0.29 -1.0 -1.0

IBest 8 7 11
Mean -0.29 -1.0 -1.0

IMean 13 8 12

Table 8: Test results for continuous versions for
function F5C - Rastrigin.

2 10 30
BPSO 20 Best -0.33 -58.78 -305.11

IBest 199 199 182
Mean -10.41 -160.98 -504.62

IMean 199 199 199
50 Best -0.10 -53.67 -302.29

IBest 199 195 189
Mean -3.56 -159.76 -503.48

IMean 199 199 199
EPSO 20 Best -0.0 -0.0 -0.0

IBest 8 9 9
Mean -0.0 -0.0 -0.0

IMean 13 12 12
50 Best -0.0 -0.0 -0.0

IBest 8 8 8
Mean -0.0 -0.0 -0.0

IMean 13 12 12
MPSO 20 Best -0.0 -0.0 -0.0

IBest 9 11 11
Mean -0.0 -0.0 -0.0

IMean 13 13 13
50 Best -0.0 -0.0 -0.0

IterFit 8 10 11
Mean -0.0 -0.0 -0.0

IMean 13 13 13

Table 9: Test results for HPSO with population size
50 for function F1 - Sphere.

1/N 2/N 3/N
ω = 0.0 Best -0.000145 -0.000145 -0.00106

IBest 23 104 193
Mean -6.3108868 -8.773445 -14.8852122

IMean 199 199 199
ω = 1

6
Best -0.000145 -0.00015 -0.00179

IBest 34 129 160
Mean -5.9018456 -11.3324751 -14.6928217

IMean 199 199 199
ω = 1

3
Best -0.00011 -0.00023 -0.003535

IBest 54 190 187
Mean -7.553765 -12.3362539 -17.9307488

IMean 199 199 199
ω = 2

3
Best -0.000225 -0.0089 -0.037845

IBest 181 199 198
Mean -12.4479868 -18.4946397 -22.228285

IMean 199 199 199
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