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Abstract. Uniform crossover for binary strings has a natural geometric
interpretation that allows us to generalize it rigorously to any search
space endowed with a notion of distance and any representation [6].
In this paper, we present an analogous characterization for one-point
crossover and explicitly derive formally specific one-point crossovers for
a number of well-known representations.

1 Introduction

Geometric crossover [6] is a representation-independent formalization of crossover
which requires the offspring to be in the metric segment between parents for
some distance. This formalization encompasses many recombination operators
across representations [5]. The geometric framework sees recombination opera-
tors acting on representations as dual and equivalent to suitably formalized ver-
sions of combination operators acting on the neighborhood structure (e.g., path-
relinking). Early studies on the relation between crossover and path-relinking
in the space of permutations linked with a notion of distance were pioneered
by Reeves [7]. The geometric interpretation of crossover operators is interesting
as it clarifies what distance/search space is associated with them and how the
search operator can be seen as navigating the search space (i.e., sampling off-
spring in the space-specific segment between parents). This, in turns, clarifies
what the fitness landscape induced by a certain crossover operator is, and how
the search of this operator relates to the “geographic” structure of the fitness
landscape. Ultimately, this characterization may form the basis for a unified,
representation-independent theory of evolutionary algorithms [5].

The definition of geometric crossover is rather coarse as it does not consider
the actual probability of a particular offspring of being sampled. More finely
grained subclasses of geometric crossover can be defined by specifying a proba-
bility distribution of the offspring over the segment. Perhaps, the most natural
among such subclasses is the uniform geometric crossover, in which offspring are
drawn from a uniform distribution over the metric segment between parents.
In previous work [6], we have shown that all mask-based crossovers for binary
strings are geometric crossovers and that, in particular, uniform crossover [8] is
a uniform geometric crossover, as the offspring strings are drawn from a uniform
distribution over the metric segment between parent strings under Hamming
distance. This equivalence allows us to generalize naturally uniform crossover



for binary strings to any representation by making use of the definition of uni-
form geometric crossover and replacing the Hamming distance with another
distance defined on the target representation. For example, the uniform geo-
metric crossover for the swap distance between permutations (i.e., the minimum
number of swaps needed to transform a permutation in the other) requires the
offspring permutations to be drawn uniformly from the metric segment between
parent permutations. This is a formal specification of a recombination opera-
tor on permutations rather than the actual operator. To turn this specification
into a procedural definition that tells how to manipulate parent permutations
to obtain offspring permutations, one can rely on the observation that picking
offspring in the segment between two parent permutations is equivalent to gen-
erating partially sorted permutations on a minimal sorting trajectories obtained
while sorting one parent permutation into the other parent permutation using
swaps. Therefore, this operator can be implemented by adapting a traditional
sorting algorithm [5]. Importantly, the uniform crossover for binary strings and
the recombination for permutations above are fundamentally the same recom-
bination operator instantiated to two different spaces as both share exactly the
same geometric definition, that of uniform geometric crossover.

One-point crossover for binary strings [2] selects a common crossover point
uniformly at random on the length of the parent strings and produces two off-
spring by swapping the tails of the parent strings after the crossover point.
Whereas it was possible to generalize uniform crossover across representations
due essentially to its highly symmetric definition, the situation seems different
for one-point crossover as cutting and swapping tails is an operation which relies
much on the special characteristic of binary strings of being a vector. In this
paper, we show that also one-point crossover has a simple characterization in
geometric terms which allows us to generalize it rigorously to any representation.
We then specify it for a number of well-known representations.

2 Generalization of One-Point Crossover

In the following, we generalize a version of one-point crossover for binary strings
that returns only one offspring, in which the head comes from the first parent
and the tail comes from the second parent. To do this, we first show how shortest
paths between two binary strings in the Hamming space can be constructed (see
figure 2). The sequence s of binary strings s0, s1, ..., s5 is generated from parent a
and b using the bit ordering p which specifies when to exchange the bits between
parents. Note that, in the sequence s, the strings s1, s2 and s3 coincide. The
bottom part of the figure reports the sequence s′ obtained form s after removing
repetitions.

Theorem 1. Every bit ordering generates a shortest path between a and b in
the Hamming space. All shortest paths can be generated by using all possible bit
orderings and there are HD(a, b)! distinct shortest paths between a and b.

Proof. We have a few remarks that will lead to prove this theorem. First, the sequence s′ forms a
path in the Hamming space as two consecutive strings in the sequence differ in exactly one bit. This is



p: 1 3 5 2 4
a: 1 1 1 1 1
b: 0 1 0 1 0

s0: 1 1 1 1 1
s1: 0 1 1 1 1
s2: 0 1 1 1 1
s3: 0 1 1 1 1
s4: 0 1 1 1 0
s5: 0 1 0 1 0

sequence without repetitions:

1 1 1 1 1
0 1 1 1 1
0 1 1 1 0
0 1 0 1 0

Fig. 1. Example of shortest path generation.

a shortest path as its length equals the Hamming distance between a and b. This holds for any choice
of the parent strings and bit ordering. Second, the fact that in the sequence s there are subsequences
of repeated elements has its origin in the fact that at some positions the strings a and b do not differ.
When the contents at those positions are exchanged the newly generated string equals the previous
string in the sequence. So, if we restrict the bit ordering that generates the sequence to those positions
in which a and b differ, we can generate the sequence s′ directly without repetitions. By definition,
the number of positions in which a and b differ is HD(a, b), so the reduced bit ordering p′ needs to
be an order of HD(a, b) elements. Third, distinct reduced bit orderings produce distinct sequences.
Forth, all bit orderings defines all ways of how to apply sequentially all the differences between a
and b to a to be turned into b. Hence, all reduced bit orderings, that is, all orders of application
of these differences, account for all shortest paths between a and b. So we have HD(a, b)! distinct
shortest paths between a and b, that is the number of possible reduced orders on a and b.

Corollary 1. All possible offspring of one-point crossover for binary strings are
on a single geodesic (shortest path) in the Hamming space between parents.

Proof. All the offspring generated by one-point crossover can be generated from the left to the
right by exchanging one by one the contents of the two parents at each position. This is the same
sequence obtained by applying the bit ordering (1 . . . n) to the two parents where n is the length of
the parents.

The corollary makes precise and proves an idea of Whitley [9] who noticed
earlier that the offspring of one-point crossover forms paths in the Hamming
space between parents. Since the notion of geodesic is well-defined in every metric
space, the previous theorem allows us to generalize one-point crossover to any
metric space, as follows.

Definition 1. (One-point geometric crossover) In one-point geometric crossover
all offspring are on a single geodesic between parents under some distance.

Notice that in general there may be more than one geodesic between two
points (parents). The definition leaves deliberately the geodesic unspecified, but
it requires that all offspring are on it. The reason we do not specify a specific
geodesic is that since they are all indistinguishable from a distance viewpoint,



we cannot specify anyone in particular using only the distance. Only using extra-
information based on the underlying representation, we can refer to one geodesic
in particular.

This necessary indetermination in the definition of one-point geometric crossover
makes it an “over-generalization” of the one-point crossover for binary strings,
as explained as follows. There are three distinct types of indetermination in this
definition: (i) the specific geodesic is not specified, (ii) the specific probability
distribution of the offspring on the geodesic is not specified and, (iii) the specific
distance is not specified. Therefore, even when both the probability distribu-
tion of the offspring is fixed (e.g., uniform probability on the geodesic) and the
operator is instantiated to a specific search space (i.e., the distance is fixed),
the indetermination about the specific geodesic makes the one-point operator
non-uniquely determined. This is unlike the case of uniform geometric crossover
which is unique with respect to its underlying metric space, as the segment
between two points, unlike a geodesic, is uniquely determined by these points.

As a consequence of this indetermination, when the geometric one-point
crossover is instantiated to the space of binary strings under Hamming distance,
it gives rise to a family of crossover operators, one operator for each geodesic
between parents, rather than only to the original one-point crossover, which
corresponds to a specific geodesic. This family of operators is completely charac-
terized by generating offspring on shortest paths using any possible bit ordering.
Every crossover of this family corresponds to a bit ordering, and the strings re-
turned by the application of this ordering to the parent strings correspond to
the offspring set of that specific crossover operator (for those parent strings).

When a space allows for a family of one-point geometric crossovers, rather
than a single one, they are all indistinguishable from a distance viewpoint. So all
are the “right” one-point geometric crossover for the specific space. We will see
that in some spaces one member of this family may be preferable to others for
reasons linked with the specific character of the underlying representation.

3 Euclidean and Manhattan Spaces

Since in the Euclidean space (endowed with Euclidean distance) a segment com-
prises a single geodesic, in this space there is only one possible specification of
one-point geometric crossover. Both uniform one-point geometric crossover, in
which offspring are drawn uniformly at random on a geodesic, and uniform geo-
metric crossover when specified for the Euclidean space pick points uniformly at
random on the only geodesic. So they are equivalent.

In the 2-D Manhattan space (endowed with Manhattan distance), a segment
is a rectangle and its endpoints are two diagonally opposite corners. In higher
dimensions, a segment is a hyper-rectangle. For this specific space, uniform geo-
metric crossover picks uniformly offspring in the hyper-rectangle. In this space,
a segment comprises infinitely many geodesics linking two points. The geodesics
between two points are all monotonic curves joining the two points. So in the



Manhattan space there are infinitely many one-point crossovers, one for each
monotonic curve connecting the two parents.

4 Permutations

In previous work [5], we have shown that PMX, Cycle Crossover, Merge Crossover
and others are geometric crossovers. In the introduction, we mentioned that
geometric crossovers for permutations are naturally associated with sorting al-
gorithms, giving rise to sorting crossovers [5]. In the following, we consider two
different perspectives on one-point geometric crossover for permutations: sorting
crossovers and cut-and-fill crossovers.

Let us consider sorting crossovers. Given two permutations, and a move on
permutation, e.g., swap of two elements, deterministic sorting algorithms sort the
elements of one permutation into the order of the elements of the other permuta-
tion always on the same minimal sorting trajectory out of all the possible mini-
mal sorting trajectories. A minimal sorting trajectory corresponds to a geodesic,
i.e., a shortest path, on the metric space induced by the sorting move (e.g., the
swap move induces a space on permutations endowed with the swap distance).
So, the associated deterministic sorting crossovers pick offspring always on the
same geodesic between two parents. Hence, deterministic sorting crossovers are
one-point geometric crossovers. In randomized sorting algorithms, the sorting
trajectory is still minimal but non-deterministic. The sorting crossovers based
on randomized sorting algorithms, although being geometric crossovers, are not
one-point geometric (under the space induced by the sorting move) 1 because for
two given permutations (parents), different applications of the sorting crossover
may return partially ordered permutations (offspring) belonging to different sort-
ing trajectories (geodesics).

Let us now consider cut-and-fill crossovers [1], which are intuitive extensions
of one-point crossover for permutations, as follows. If the one-point crossover for
binary strings is applied directly on permutations, the offspring so obtained are
not permutations. So, this operator cannot be applied as it is but it can be easily
adapted: the first parent is cut at a crossover point and the part before the cutting
point is passed to the offspring as in the traditional one-point crossover; the
second part is then filled in using the order in the second parent avoiding elements
already present in the offspring before the crossover point. We call this crossover
insertion cut-and-fill crossover. Figure 4 (left) shows an example of this crossover.
P1 and P2 are the parent permutations and O is the offspring permutation. The
vertical bar in P1 indicates the crossover point, and the dashes indicate elements
of parent P2 whose relative order is preserved in the offspring O. The insertion
cut-and-fill crossover is one-point geometric because it is equivalent to a sorting
crossover based on the insertion move: it is like sorting parent P2 into parent P1
using the insertion sort algorithm and stopping it when all the elements before
the crossover point are sorted.
1

Proving that a recombination operator is not a one-point geometric crossover requires showing
it for any choice of the underlying distance, and not only for a specific distance. See Moraglio’s
PhD thesis [5] for how to prove this type of general negative results.
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P2: c d b f e a
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Fig. 2. Insertion cut-and-fill crossover (left) and swap cut-and-fill crossover (right).

The connection between cut-and-fill crossover and sorting crossover suggests
that more types of cut-and-fill crossovers can be defined depending on the type
of move used as base of the sorting. So we can define a swap cut-and-fill crossover
that sorts parent P2 into parent P1 using selection sort (swap-based minimal
sort algorithm) and stopping it when the elements before the crossover point
are sorted. Since swap cut-and-fill crossover is based on a deterministic sorting
algorithm, it is a one-point geometric crossover. Figure 4 (right) gives an example
of swap cut-and-fill crossover. Using the same parents and the same crossover
point as for the insertion cut-and-fill crossover we obtain a different offspring (the
dashes indicate the elements of parent P2 that have been swapped to match the
order of parent P1). If, as a base of the cut-and-fill crossover, we use the adjacent
swap move that is associated with the bubble sort algorithm, we obtain again the
insertion cut-and-fill crossover. This happens because, apart from the number
of moves required (an insertion is equivalent to a sequence of adjacent swaps),
after ordering the elements of parent P2 into the order of parent P1 up to the
crossover point the order of the remaining elements is the same as when using
insertions or adjacent swaps.

5 Genetic Programming Trees

For GP trees, there are two recombination operators that can be thought as
extensions of one-point crossover for binary strings to GP trees: Koza’s sub-
tree swap crossover [3] and one-point homologous crossover [4]. Koza’s subtree
swap crossover is not a geometric crossover [5]. So it is not a one-point geomet-
ric crossover either because this is a subclass of geometric crossover. Homolo-
gous one-point crossover aligns parent trees at the root and then cut-and-swap
subtrees at the same position in the two parents. The family of homologous
crossovers for GP trees [4] are geometric crossovers under Structural Hamming
distance [5], so also one-point homologous crossover is. However, one-point ho-
mologous crossover is not a one-point geometric crossover [5]. After these two
negative results, one may wonder how one-point geometric crossovers for GP
trees look like. In the following we first present a theorem that helps detect-
ing whether a crossover operator is a one-point geometric crossover. Then we
consider a family of crossovers for GP trees that are a subclass of mask-based



homologous crossover. Since all mask-based homologous crossovers for GP trees
are geometric also this family of crossovers is geometric. Then we show that all
these crossovers are one-point geometric.

Theorem 2. The points o1, o2, . . . , on ∈ [a, b]d belong to a single geodesic g
linking a and b in the metric space d iff they can be ordered as ō1, ō2, . . . , ōn such
that d(a, ō1) + d(ō1, ō2) + . . . + d(ōn−1, ōn) + d(ōn, b) = d(a, b).

Proof. If such an order exists the length of the path g connecting a and b passing thought o1, o2, . . . , on

is d(a, b). So g is a shortest path linking a and b. If such an order does not exist, for each order of
ō1, ō2, . . . , ōn we have d(a, ō1) + d(ō1, ō2) + . . . + d(ōn−1, ōn) + d(ōn, b) > d(a, b) for the triangular
inequality. Then the path g connecting a and b passing thought o1, o2, . . . , on is larger than d(a, b).
So g is not a shortest path linking a and b. Since o1, o2, . . . , on ∈ [a, b]d, for each point there exists
a geodesic linking a and b passing for that point. Therefore since there is no geodesic between a and
b passing through all points o1, o2, . . . , on they must belong to distinct geodesics.

Definition 2. (Ordered homologous crossover family) Let us define a total order
on the nodes of the common region of two parent trees. The order is a (determin-
istic) function of the two parents. The offspring that the two parents can produce
are those obtained, exchanging in the parents the node at position 1 in the order,
plus those obtained by exchanging simultaneously the nodes at positions 1 and
2, plus those obtained by exchanging simultaneously nodes at positions 1, 2 and
3 and so on.

For example, we can define a total order on the common region by numbering
its nodes starting from the root and then visiting and numbering successive nodes
of the common region using a breath-first strategy. Then generating uniformly a
random number k between 1 and the number of nodes in the common region and
exchanging in the two parents all nodes up to k. We term this crossover breath-
first homologous geometric crossover. One could change the numbering strategy
with a depth-first or bottom-up or any other strategy that visits all nodes of a
tree in a systematic and deterministic way and obtain new geometric crossover
belonging to the ordered homologous crossover family. Figure 5 illustrates the
breath-first ordered homologous crossover. The crossover mask tells for each
position of the common region from which of the parents to take the node or
subtree to pass to the offspring. The crossover mask on the bottom left is valid
because the nodes from 1 to 5 marked with ’X’ will be passed to the offspring from
parent 1; the node from 6 to 10 marked with ’Y’ will be passed to the offspring
from parent 2. The crossover mask on the right is invalid for the breath-first
ordered homologous crossover because the numbering of the nodes passed to
the offspring from parent 1 (marked with ’X’) is not an uninterrupted sequence
(since X-marked nodes are: 1, 2, 4, 7 and 8).

Theorem 3. Ordered homologous crossovers are one-point geometric crossovers.

Proof. We prove it by showing that the offspring o1, o2, . . . , on generated respectively by exchanging
nodes at position 1, and at positions 1 and 2, and at positions 1, 2 and 3 and so on respect the
condition of theorem 2 to be on a geodesic. It is easy to see that the sequence of offspring is
a cumulative sequence of independent syntactic differences. Since the metric SHD is a weighted
Hamming distance it is an additive distance on the contribution of independent syntactic differences.
So we have d(a, b) = d(a, o1) + d(o1, b) and d(a, b) = d(a, o1) + d(o1, o2) + d(o2, b) and d(a, b) =
d(a, o1)+d(o1, o2)+d(o2, o3)+d(o3, b) and so on. So we have d(a, o1)+d(o1, o2)+. . .+d(on−1, on)+
d(on, b) = d(a, b).



Fig. 3. Breath-first ordered homologous crossover for GP trees: (top) two parent trees P1 and P2;
(center left) their associated hyperschema H(P1,P2) with nodes numbered in breath-first order;
(center right) all the potential offspring applying homologous crossover to parents P1 and P2 (the
part in bold means alternative content of the tree; in this case there are 5 independent binary
alternatives, resulting in 32 possible offspring); (bottom left) a valid crossover mask for the breath-
first ordered homologous crossover, and (bottom right) an invalid one.

The application of one-point geometric crossover to GP trees is instructive
because it shows that operators that would have been intuitively understood
as reasonable extensions of one-point geometric crossover for binary strings to
GP trees, in fact, are not one-point geometric crossovers. This point deserves
some attention. In intuitive terms, one-point geometric crossover generalizes the
aspect of traditional one-point crossover for binary strings that the offspring
must form a chain of gradual syntactic changes leading from one parent to the
other parent. In particular, the aspect of the traditional one-point crossover that
adjacent syntactic elements (adjacent loci in the string) are more likely to be
passed together to the offspring is not captured by the generalization. This is
essentially because this property is very specific of the binary string representa-
tion and cannot be defined in general geometric terms. One might enforce the
adjacency property choosing a specific one-point geometric crossover out of the
many possible for the representation at hand, if some notion of adjacency can



be defined for the specific representation. For example, the breath-first order
crossover introduced above has a property of syntactic adjacency as it can be
understood as slicing the tree incrementally starting from the root (see also figure
5). Although this property makes this operator more in the spirit of one-point
for binary strings, it is not more one-point geometric than any other operator
belonging to the ordered homologous crossover family that does not have such
a syntactic adjacency property.

6 Variable-Length Sequences

In previous work [5], we have introduced a class of alignment-based homologous
operators for variable-length sequences in which parent sequences are aligned
optimally on their contents before exchanging genetic material using a crossover
mask on the alignment. This is a closer model of biological recombination at
molecular level than traditional crossovers for binary strings. Then, we proved
that this class of operators are geometric crossovers under edit distance for se-
quences. One-point homologous crossover for sequences is an operator belonging
to the class of alignment-based homologous operators in which the crossover
masks on the alignment are the traditional one-point mask of the one-point
crossover for binary strings. The following result shows that one-point homolo-
gous crossover for sequences is a one-point geometric crossover.

Theorem 4. One-point alignment-based homologous crossover is one-point ge-
ometric crossover under edit distance.
Proof. An optimal edit transcript T contains a smallest set E of edit moves to transform parent u
in parent v. A mask m selects a subset of edit moves Em ⊆ E from the transcript T to apply to u
and produces the offspring z. z is on a shortest path for the geometricity of homologous crossover.
Any homologous crossover operator for which all offspring are generated employing a set of masks
mi that forms a total order (when understood as vectors) generates offspring on a single shortest
path between parents. This is because: (i) the sets of edit moves Emi

corresponding to the masks
mi can be totally ordered under inclusion; (ii) the contribution of each edit move to the distance
between parents is independent and additive; (iii) hence, when considered in this order, Emi

generate
a sequence of offspring zi on a single shortest path between parents that incrementally leads from u
to v. One-point alignment-based homologous crossover uses crossover masks that form a total order:
(00...0) < (10...0) < (11...0) < ... < (11...1). So all its offspring are on a single shortest path between
parents. Hence it is one-point geometric.

7 Sets

In previous work [5], we have seen that there is a duality between the geometric
crossover under Hamming distance for binary strings and the geometric crossover
under ins/del edit distance for sets. In fact, these two crossovers, although be-
ing based on two different solution representations, are associated to isomorphic
metric spaces (via the set indicator function), hence they are completely equiv-
alent. Using the duality, in the following we will show the equivalent for sets of
the one-point crossover for binary strings. Let us consider two binary strings of
length 5, p1 = 11000 and p2 = 01110. Let U = {a, b, c, d, e} be the universal set.
The corresponding sets of p1 and p2 are s1 = {a, b} and s2 = {b, c, d}. After re-
moving repetitions, the geodesic path of the traditional one-point crossover (i.e.,



with bit ordering 12345) applied to parents p1 and p2 is 11000, 01000, 01100,
01110. The corresponding sequence of offspring sets is {a, b}, {b}, {b, c}, {b, c, d}.
Notice that this sequence gradually transforms s1 into s2 a move at a time using
the ins/del edit move. This is the interpretation of one-point crossover for sets.

8 Conclusions

One-point geometric crossover clarifies and makes rigorous the notion of one-
point crossover across representations and formalizes the intuition behind it. It
can be used to generate new one-point crossovers for new representations in a
formal way without involving ad-hoc adaptations of the original concept. We
have derived specific one-point crossovers for a number of well-known repre-
sentations. Some of the derived operators correspond to pre-existing operators,
others are new operators. Few pre-existing operators, which were conceived as
analogues of the traditional one-point crossover for other representations, are not
one-point geometric crossovers. In future work, we will derive properties common
to all one-point crossovers, test the new operators experimentally and extend the
geometric framework with the generalization of multi-point crossover.
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