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Abstract. Geometric crossover is a representation-independent general-
ization of traditional crossover for binary strings. It is defined in a simple
geometric way by using the distance associated with the search space.
Many interesting recombination operators for the most frequently used
representations are geometric crossovers under some suitable distance.
To show that a given recombination operator is a geometric crossover,
it is sufficient to find a distance for which offspring are in the metric
segment between parents associated with this distance. However, prov-
ing that a recombination operator is not a geometric crossover requires
to prove that such an operator is not a geometric crossover under any
distance. This casts serious doubts on the possibility to draw a clear-cut
line between geometric crossovers and non-geometric crossovers. In this
paper we develop some theoretical tools to resolve this issue and prove
that some well-known operators are not geometric. Finally, we discuss
the important implications of this.

1 Introduction

A fitness landscape [22] can be visualised as the plot of a function resembling
a geographic landscape when the problem representation is a real vector. When
dealing with binary strings and other more complicated combinatorial objects,
e.g., permutations, the fitness landscape is better represented as a height function
over the nodes of a simple graph [19], where nodes represent locations (solutions),
and edges represent the relation of direct neighbourhood between solutions.

An abstraction of the notion of landscape encompassing all the previous cases
is possible. The solution space is seen as a metric space and the landscape as a
height function over the metric space [1]. A metric space is a set endowed with
a notion of distance between elements fulfilling few axioms [3]. Specific spaces
have specific distances that fulfil the metric axioms. The ordinary notion of
distance associated with real vectors is the Euclidean distance, though there are
other options, e.g. Minkowski distances. The distance associated to combinatorial
objects is normally the length of the shortest path between two nodes in the
associated neighbourhood graph [4]. For binary strings, this corresponds to the
Hamming distance.



In general, there may be more than one neighbourhood graph associated to
the same representation, simply because there can be more than one meaningful
notion of syntactic similarity applicable to that representation [10]. For example,
in the case of permutations the adjacent element swap distance and the block
reversal distance are equally natural notions of distance for permutations. Differ-
ent notions of similarity are possible because the same permutation (genotype)
can be used to represent different types of solutions (phenotypes). For example,
permutations can represent solutions of a problem where relative order is im-
portant. However, they can also be used to represent tours, where the adjacency
relationship among elements is what matters.

The notion of fitness landscape is useful if the search operators employed are
connected or matched with the landscape: the greater the connection the more
landscape properties mirror search properties. Therefore, the landscape can be
seen as a function of the search operator employed [5]. Whereas mutation is intu-
itively associated with the neighbourhood structure of the search space, crossover
stretches the notion of landscape further leading to search spaces defined over
complicated topological structures [5].

Geometric crossover and geometric mutation [9] are representation-independent
search operators that generalise by abstraction many pre-existing search opera-
tors for the main representations used in EAs, such as binary strings, real vectors,
permutations and syntactic trees. They are defined in geometric terms using the
notions of line segment and ball. These notions and the corresponding genetic
operators are well-defined once a notion of distance in the search space is de-
fined. This way of defining search operators as function of the search space is the
opposite to the standard approach in which the search space is seen as a function
of the search operators employed. Our new point of view greatly simplifies the
relationship between search operators and fitness landscape and allows different
search operators to share the same search space.

The reminder of this paper is organized as follows. In section 2, we introduce
the geometric framework. In section 3, we show that the definition of geometric
crossover can be cast in two equivalent but conceptually very different forms:
functional and existential. When proving geometricity the existential form is the
relevant one. We use this form also to show why proving non-geometricity of
an operator looks impossible. In section 4, we develop some general tools to
prove non-geometricity of recombination operators. In section 5, we prove that
three recombination operators for vectors of reals, permutations and syntactic
trees representations are not geometric. Importantly this implies that there are
two non-empty representation-independent classes of recombination operators:
geometric crossovers and non-geometric crossovers. In section 6, we discuss the
consequence of this result. In section 7, we draw some conclusions and present
future work.



2 Geometric framework

2.1 Geometric preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [9]. For more details on these definitions see [4].

The terms distance and metric denote any real valued function that con-
forms to the axioms of identity, symmetry and triangular inequality. A simple
connected graph is naturally associated to a metric space via its path metric: the
distance between two nodes in the graph is the length of a shortest path between
the nodes. Distances arising from graphs via their path metric are called graphic
distances. Similarly, an edge-weighted graph with strictly positive weights is nat-
urally associated to a metric space via a weighted path metric.

In a metric space (S,d) a closed ball is a set of the form By(x;r) = {y €
Sld(x,y) < r} where z € S and r is a positive real number called the radius of
the ball. A line segment (or closed interval) is a set of the form [z;y]q = {7 €
Sld(z,z) +d(z,y) = d(x,y)} where z,y € S are called extremes of the segment.
Metric ball and metric segment generalize the familiar notions of ball and seg-
ment in the Euclidean space to any metric space through distance redefinition.
These generalized objects look quite different under different metrics. Notice
that the notions of metric segment and shortest path connecting its extremes
(geodesic) do not coincide as it happens in the specific case of an Euclidean space.
In general, there may be more than one geodesic connecting two extremes; the
metric segment is the union of all geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (S,d) is therefore a solution space (or search space) and
L = (M, g) is the corresponding fitness landscape where g : S — R is the fitness
function. Notice that in principle d could be arbitrary and need not have any
particular connection or affinity with the search problem at hand.

2.2 Geometric crossover definition

The following definitions are representation-independent and, therefore, crossover
is well-defined for any representation. Being based on the notion of metric seg-
ment, crossover is only function of the metric d associated with the search space.

A recombination operator O P takes parents p1, po and produces one offspring
¢ according to a given conditional probability distribution:

Pr{OP(p1,p2) = c} = Pr{OP = c|Py = p1, P, = p2} = for(c|p1,p2)

Definition 1. (Image set) The image set Im[OP(p1,p2)] of a genetic operator
OP is the set of all possible offspring produced by OP with non-zero probability
when parents are p1 and ps.

Definition 2. (Geometric crossover) A recombination operator CX is a geo-
metric crossover under the metric d if all offspring are in the segment between
its parents: ¥p1,pa € S : Im[CX (p1,p2)] C [p1,p2]a



Definition 3. (Uniform geometric crossover) The uniform geometric crossover
UX under d is a geometric crossover under d where all z laying between parents
x and y have the same probability of being the offspring:

8(z € [z;9]a)
|23 ylal

Im[UX (z,y)] = {z € S|fux(z]z,y) > 0} = [z;9]a

where § is a function that returns 1 if the argument is true, 0 otherwise.

Vx,y €S: fUX(Z“Tay) =

A number of general properties for geometric crossover and mutation have
been derived in [9].

2.3 Notable geometric crossovers

For vectors of reals, various types of blend or line crossovers, box recombinations,
and discrete recombinations are geometric crossovers [9]. For binary and mul-
tary strings (fixed-length strings based on a n symbols alphabet), all mask-based
crossovers (one point, two points, n-points, uniform) are geometric crossovers
[9,13]. For permutations, PMX, Cycle crossover, merge crossover and others
are geometric crossovers [10,11]. For Syntactic trees, the family of Homologous
crossovers (one-point, uniform crossover) are geometric crossovers [12]. Recom-
binations for other more complicated representations such as variable length
sequences, graphs, permutations with repetitions, circular permutations, sets,
multisets partitions are geometric crossovers [15,9, 10, 14].

2.4 Geometric crossover landscape

Since our geometric operators are representation-independent, one might wander
as to the usefulness of the notion of geometricity and geometric crossovers in
practical applications. To see this, it is important to understand the difference
between problem and landscape.

Geometric operators are defined as functions of the distance associated to the
search space. However, the search space does not come with the problem itself.
The problem consists only of a fitness function to optimize, that defines what
a solution is and how to evaluate it, but it does not give any structure on the
solution set. The act of putting a structure over the solution set is part of the
search algorithm design and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So, for each problem,
there is one fitness function but as many fitness landscapes as the number of
possible different structures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely independently from
the problem at hand. However, because the search operators are defined over
such a structure, doing so would make them decoupled from the problem, hence
turning the search into something very close to random search.



In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. That is, the landscape can be seen as a knowledge interface between
algorithm and problem [10]. In [10] we discussed three heuristics to do so in such
a way to aid the evolutionary search performed by geometric crossover: i) pick a
crossover associated to a good mutation, ii) build a crossover using a neighbour-
hood structure based on the small-move/small-fitness-change principle, and iii)
build a crossover using a distance that is relevant for the solution interpretation.
Once this is done, problem knowledge can be exploited by search operators to
perform better than random search, even if the search operators are problem-
independent (as in the case of geometric crossover and mutation). Indeed, by
using these heuristics, we have designed very effective geometric crossovers for
N-queens problem [11], TSP [11] [10], Job Shop Scheduling [11], Protein Motifs
discovery [20], Graph Partitioning [6], Sudoku [16] and Finite State Machines
[7].

3 Interpretations of the definition of geometric crossover

In section 2, we have defined geometric crossover as function of the distance d
of the search space. In this section we take a close look at the meaning of this
definition when the distance d is not known. We identify three fundamentally
different interpretations of understanding the definition of geometric crossover.
Interestingly it will become evident that there is an inherent element of self-
reference in the definition of geometric crossover. We show that proving that a
recombination operator is non-geometric may be impossible.

3.1 Functional interpretation

Geometric crossover is function of a generic distance. If one considers a specific
distance one can obtain a specific geometric crossover for that distance by func-
tional application of the definition of geometric crossover to this distance. This
approach is particularly useful when the specific distance is firmly rooted in a
solution representation (e.g., edit distances) because the specification of the defi-
nition of geometric crossover to the distance acts as a formal recipe that indicates
how to manipulate the syntax of the representation to produce offspring from
parents. This is a general and powerful way to get new geometric crossover for
any type of solution representation. For example, given the Hamming distance
on binary string by functional application of the definition of geometric crossover
we obtain the family of mask-based crossover for binary strings. In particular,
by functional application of the definition of uniform geometric crossover one
obtains the traditional uniform crossover for binary strings.

3.2 Abstract interpretation

The second use of the definition of geometric crossover does not require to specify
any distance. In fact we do apply the definition of geometric crossover to a



generic distance. Since the distance is a metric that is a mathematical object
defined axiomatically, the definition of geometric crossover becomes an axiomatic
object as well. This way of looking at the definition of geometric crossover is
particularly useful when one is interested in deriving general theoretical results
that hold for geometric crossover under any specific metric. We will use this
abstract interpretation in section 4 to prove the inbreeding properties that are
common to all geometric crossovers.

3.3 Existential interpretation

The third way of looking at the definition of geometric crossover becomes appar-
ent when the distance d is not known and we want to find it. This happens when
we want to know whether a recombination operator RX, defined operationally as
some syntactic manipulation on a specific representation, is a geometric crossover
and for what distance. This question hides an element of self-reference of the def-
inition of geometric crossover. In fact what we are actually asking is: given that
the geometric crossover is defined over the metric space it induces by manipu-
lating the candidate solutions, what is such a metric space for RX if any?

The self-reference arises from the fact that the definition of geometric crossover
applies at two distinct levels at the same time: (a) at a representation level, as a
manipulation of candidate solutions, and (b) at a geometric level, on the under-
lying metric space based on a geometric relation between points. This highlights
the inherent duality between these two worlds: they are based on the same search
space seen from opposite viewpoints, from the representation side and from the
metric side.

Self-referential statements can lead to paradoxes. Since the relation between
geometric crossover and search space is what ultimately gives to it all its ad-
vantages, it is of fundamental importance to make sure that this relation sits
on a firm ground. So, it is important to show that the definition of geometric
crossover does not lead to any paradox. We show in the following that the ele-
ment of self-reference can be removed and the definition of geometric crossover
can be cast in existential terms making it paradox-free.

A non-functional definition of geometric crossover is the following: a recom-
bination operator RX is a geometric crossover if the induced search space is
a metric space on which RX can be defined as geometric crossover using the
functional definition of geometric crossover. This is a self-referential definition.
If a recombination operator does not induce any metric space on which it can
be defined as geometric crossover, then it is a non-geometric crossover.

We can remove the element of self-reference from the previous definition and
cast it in an existential form: a recombination RX is a geometric crossover if
for any choice of the parents all the offspring are in the metric segment between
them for some metric.

The existential definition is equivalent to the self-referential definition be-
cause if such a metric exists the operator RX can be defined as geometric
crossover on such a space. On the other hand, if an operator is defined on a
metric space as geometric crossover in a functional form, such a space exists by



hypothesis and offspring are in the segment between parents under this metric
by definition.

3.4 Geometric crossover classes

The functional definition of geometric crossover induces a natural existential
classification of all recombination operators into two classes of operators:

— geometric crossover class G: a recombination O P belongs to this class if there
exists at least a distance d under which such a recombination is geometric:
OP e G < 3d:Vp1,p2 € S: Im[OP(p1,p2)] C [p1,p2]a-

— non-geometric crossover class G: a recombination OP belongs to G if there is
no distance d under which such a recombination is geometric: OP € § <=
Vd : 3p1,pe € S : Im[OP(p1,p2)] \ [p1,p2la # 0.

For this classification to be meaningful we need these two classes to be non-
empty. In previous work we proved that a number of recombination operators
are geometric crossovers so G is not empty. What about G? To prove that this
class is not empty we have to prove that at least one recombination operator is
non-geometric. However, as we illustrate below this is not easy.

Let us first illustrate how one can prove that a recombination operator RX
is in G. We will use the self-referential definition of geometric crossover. The
procedure is the following: guess a candidate distance d, then prove that all
offspring of all possible pairs of parents are in the metric segment associated
with d. If this is true then the recombination RX is geometric crossover under
the distance d because the operator RX can be defined as a geometric crossover
on this space. If the distribution of the offspring in the metric segments under d
is uniform, RX is the uniform geometric crossover for the metric d because the
operator RX can be defined as the (unique) geometric uniform crossover on this
space. If one finds that some offspring are not in the metric segment between
parents under the initially guessed distance d then the operator RX cannot be
defined as geometric crossover over this space. However, this does not imply
RX € G because there may exist another metric d’ that fits RX and makes it
definable as a geometric crossover on d’. So, one has to guess a new candidate
distance for RX and start all over again until a suitable distance is found.

Although we developed some heuristics for the selection of a candidate dis-
tance, in general proving that a recombination operator is geometric may be
quite hard (see for example [12] where we considered homologous crossover for
GP trees). Nonetheless, the approach works and, in previous work, we proved
that a number of recombination operators for the most frequently used repre-
sentations are geometric crossover under suitable distances.

It is evident, however, that the procedure just described cannot be used to
prove that a given recombination operator RX is non-geometric. This is because
we would need to test and exclude all possible distances, which are infinitely
many, before being certain that RX is not geometric. Clearly, this is not possible.



In the next section we build some theoretical tools based on the abstract
interpretation of the definition of geometric crossover to prove non-geometricity
in a more straightforward way.

4 Inbreeding properties of geometric crossover

How could we actually prove non-geometricity? From the definition of geomet-
ric crossover based on a generic notion of distance (abstract interpretation), we
could derive metric properties that are common to the class of all geometric
crossovers and that could be tested without making explicit use of the distance.
Any reference to the distance needs necessarily to be excluded from these prop-
erties because what in fact we need to test is the existence of an underlying
distance behind a given recombination operator hence we cannot assume the
existence of one a priori. So the first requirement is that these properties derive
from the metric axioms but cannot be about distance. A second requirement
is generality: these properties need to be representation-independent so that
recombination for any solution representation can be tested. A third and last
requirement is that these properties need to be independent from the specific
probability distribution with which offspring are drawn from the segment be-
tween the parents. In particular they must encompass also geometric crossovers
where offspring are drawn from only part of the segment. If necessary properties
satisfying these requirements existed, testing a recombination operator for non-
geometricity would become straightforward: if such operator does not have a
property common to all geometric crossovers it is automatically non-geometric.
Fortunately, properties of this type do exists. They are the inbreeding properties
of geometric crossover.

In the following we introduce three fundamental properties of geometric
crossover arising only from its axiomatic definition (metric axioms), hence valid
for any distance, probability distribution and any underlying solution represen-
tation. These properties of geometric crossover are simple properties of geomet-
ric interval spaces [21] adapted to the geometric crossover. The properties pro-
posed are based on inbreeding (breeding between close relatives) using geometric
crossover and avoid explicit reference to the solution representation. In section
5, we will make good use of these properties to prove some non-geometricity
results.

Theorem 1. (Property of Purity) If the operator RX is geometric then the
recombination of one parent with itself can only produce the parent itself.

Proof: If RX is geometric there exists a metric d such that any offspring o
belongs to the segment between parents s, so under metric d: d(s1,0)+d(o, s3) =
d(s1,s2). When the parents coincide, s = s1 = s3, we have: d(s,0) + d(o,s) =
d(s,s) hence for symmetry and identity axioms of metric d(s,0) = 0 for any
metric. For the identity axiom this implies o = s. (]

Inbreeding diagram of the property of purity (see Fig. 1(a)): when the two
parents are the same P1, their child C' must be P1.



Theorem 2. (Property of Convergence) If the operator RX is geometric then
the recombination of one parent with one offspring cannot produce the other
parent of that offspring unless the offspring and the second parent coincide.

Proof: If RX is geometric there exists a metric d such that for any offspring o
of parents s; and ss we have d(s1,0) + d(o, s2) = d(s1,s2). If one can produce
parent so by recombining s; and o, it must be also true that d(s1,0) = d(s1, s2)+
d(s2,0). By substituting this last expression in the former one we have: d(s1, s2)+
d(s2,0) + d(o,s2) = d(s1,s2), which implies d(o,s2) = 0 and s; = o for any
metric. U

Inbreeding diagram of the property of convergence (see Fig. 1(b)): two parents
P1 and P2 produce the child C'. We consider a C' that does not coincide with P1.
The child C' and its parent P2 mate and produce a grandchild G. The property
of convergence states that G' can never coincide with P1.

(a) Purity:
P1 —— P1

|

C=P1

(b) Convergence:

C -—- P2 (C!=P1)

I
G!=P1

(¢c) Partition:

Pl ——— C ——— P2

| |
Gl != G2 (Gl!=C or G2!=C)

Fig. 1. Inbreeding diagrams.

Theorem 3. (Property of Partition) If the operator RX is geometric and ¢ is
a child of a and b, then the recombination of a with ¢ and the recombination of
b with ¢ cannot produce a common grandchild e other than c.

Proof: We have that ¢ € [a,b], e € [a,c] and e € [b,c], from which it follows that
d(a,c) +d(c,b) = d(a,b), d(a,e) +d(e,¢) = d(a,c) and d(b, e) + d(e,c) = d(b, ¢).



Substituting the last two expressions in the first one we obtain:
d(a,e) +d(e,c) + d(b,e) + d(e,c) = d(a,b)

Notice that d(a,e) + d(b,e) > d(a,b) and, so, the previous equation implies
d(e,c) =0 and e = c. O

Inbreeding diagram of the property of partition (see Fig. 1(c)): two parents
P1 and P2 produce the child C. The child C' mates with both its parents, P1
and P2, producing grandchildren G1 and G2, respectively. We consider the case
in which at least one grandchildren is different from C'. The property of partition
states that G1 and G2 can never coincide.

Geometric crossovers whose offspring cover completely the segments between
their parents (complete geometric crossovers) have a larger set of properties
including extensiveness (a,b € Im(UX (a,b))) and symmetry (Im(UX (a,b)) =
Im(UX (b,a))), which however, are not common to all geometric crossovers.

4.1 Relation with forma analysis

Since the inbreeding properties of geometric crossover are related with forma
analysis [18] we briefly explain this relation.

Radcliffe developed a theory [18] of recombination operators starting from the
notion of forma that is a representation-independent generalization of schema. A
forma is an equivalence class on the space of chromosomes induced by a certain
equivalence relation. Radcliffe describes a number of important formal desirable
properties that a recombination operator should respect to be a good recombina-
tion operator. These properties are representation-independent and are stated as
requirements on how formae should be manipulated by recombination operators.

Geometric crossover, on the other hand, is formally defined geometrically
using the distance associated with the search space. Unlike Radcliffe’s properties,
the inbreeding properties of geometric crossover are not desired properties but
are properties that are common to all geometric crossovers and derive logically
from its formal definition only.

It is important to highlight that geometric crossover theory and forma anal-
ysis overlap but they are not isomorphic. This becomes clear when we consider
what schemata for geometric crossover are. In forma theory, the recombination
operators introduced by Radcliffe “respect” formae: offspring must belong to the
same formae both parents belong to. A natural generalization of schemata for
geometric crossover in this sense are (metric) convex sets: offspring in the line
segment between parents belong to all convex sets common to their parents. So
geometric crossover induces a convexity structure over the search space. A con-
vexity structure is not the same thing as an equivalence relation: convex sets, like
equivalence classes, cover the entire space but unlike them convex sets do not
partition the search space because they overlap. Interestingly, convex sets seen
as schemata naturally unify the notions of inheritance and fitness landscape.

A further advantage of geometric crossover over forma theory is that whereas
it is rather easy to define and deal with distances for complex representations



such as trees and graphs (using edit distances) it is much harder to use equiva-
lence classes.

5 Non-geometric crossovers

In the followingnwe use the properties of purity, convergence and partition to
prove the non-geometricity of three important recombination operators: ex-
tended line recombination, Koza’s subtree swap crossover and Davis’s Order
Crossover (see, for example, [2] for a description of these operators).

Theorem 4. Ezxtended line recombination is not a geometric crossover.

Proof: The convergence property fails to hold. Let p; and py be two parents, and
o the offspring lying in the extension line beyond p;. It is easy to see that using
the extension line recombination on o and ps, one can obtain p; as offspring. [

Theorem 5. Koza’s subtree swap crossover is mot a geometric crossover.

Proof: The property of purity fails to hold. Subtree swap crossover applied to
two copies of the same parent may produce offspring trees different from it. O

Theorem 6. Davis’s Order Crossover is non-geometric.

Proof: The convergence property does not hold in the counterexample in Figure 2
where the last offspring coincides with parent 2. O

Parent 1 : 12.34.567
Parent 2 : 34.56.127
Section : --.34.---
Available elements in order: 12756

Offspring: 65.34.127
Parent 3 := Offspring

Parent 3 : 6534.12.7
Parent 1 : 1234.56.7
Section : ----.12.-
Available elements in order: 73456

Offspring: 3456.12.7

Offspring = Parent 2

Fig. 2. Counterexample to the geometricity of order crossover.

What is knowing that these operators are not geometric good for? The first
implication is that, when an operator is proven to be non-geometric, one is not
tempted to try to prove its geometricity with yet another distance.



A second immediate and fundamental consequence of knowing that an op-
erator is non-geometric is that since it is not associable with any metric it is
not associable with any simple fitness landscape defined as a height function on
a metric space in a simple way. This is bad news for non-geometric crossovers
because the alternative to a simple fitness landscape with a simple geometric
interpretation is a complex topological landscape with hardly any interpretation
for what is really going on.

This leads us to a third very important practical consequence. Performance-
wise, just knowing that a recombination operator is geometric or non-geometric
cannot tell us anything about its performance. The no free lunch theorem rules.
However, as a rule-of-thumb we know that when the fitness landscape associated
with a geometric crossover is smooth, the geometric crossover associated with it
is likely to perform well. This is fundamental for crossover design because the
designer studying the objective function can identify a metric for the problem at
hand that gives rise to a smooth fitness landscape and then he/she can pick the
geometric crossover associated with this metric. This is a good way to embed
problem knowledge in the search. However, since is inherently linked to the
existence of a distance function associated with a recombination operator, non-
geometric crossovers cannot make use of this strategy.

The forth and last consequence of the mere existence of some non-geometric
operators is that this implies the existence of two separate classes of operators.
We state this in the following as a theorem. This is an important step when
developing a theory of geometric crossover because it allows to meaningfully talk
about geometric crossover in general without the need to specify the distance
associated with it. We discuss the implication of this in the next section.

Theorem 7. (Existence of non-geometric crossover) The class of non-geometric
crossover is not empty. Hence the space of recombination operator is split into
two proper classes: geometric and non-geometric crossover.

6 Discussion

In this section we discuss the implications of the theorem of the existence of
non-geometric crossover.

6.1 Possibility of a general theory of evolutionary algorithms

Not being able to prove non-geometricity at least for a single recombination
operator would leave us in a rather unpleasant situation because we would not
be able to qualify the word “geometric” before “crossover”: what does “geo-
metric crossover” without specifying a distance mean? Is it a synonym of all
recombination operators, hence an empty word, or it defines a proper subclass
of recombination operators defined on their metric property? This is a funda-
mental question because either answers have a critical impact on the possibility
of a general theory of geometric crossover and of a programme of unification of
evolutionary algorithms. We illustrate this issue in the following.



Evolutionary computation theory is fragmented and one of the main reasons
is that there is not a unified way to deal with different solution representations
which has led to the development of significantly different theories for different
flavors of evolutionary algorithms. Once a general mathematical framework en-
compassing all representations is available, it will be possible to accommodate,
blend and generalize pre-existing isolated theories. Geometric crossover and geo-
metric mutation show that this common mathematical framework is possible so
opening the way to a really general representation-independent theory of evolu-
tionary algorithms. But, would such a general theory be able to tell us anything
meaningful or only trivialities encompassing all operators could be derived?

A theory of all operators is an empty theory because the performance of an
EA derives from how its way of searching the search space is matched with some
properties of the fitness landscape. Without restricting the class of operators to a
proper subset of all possible operators, there is no common behavior, hence there
is no common condition on the fitness landscape to be found to guarantee better
than random search performance. This is just another way of stating the NFL
theorem. So a theory of all operators is necessarily a theory of random search
in disguise. Hence, if the the definition of geometric crossover encompasses all
operators, it would be futile to pursue a general theory of geometric crossover.

In previous work we have found that many “real-world” recombinations,
those used in everyday practice, turned out to be geometric. Without being able
to prove the existence of some non-geometric crossovers there are two alterna-
tive explanations for this happening: (a) the geometric crossover definition is
a tautology and the theory built on it a theory of everything hence an empty
theory or (b) if there are non-geometric crossovers, this is hardly a coincidence
and the class of geometric crossover indeed captured the essence of the class of
“real-word” recombinations.

Theorem 7 is therefore foundational because it implies that the true expla-
nation is (b). This has two consequences: first, a general theory of geometric
crossover makes sense because it is not a theory of random search in disguise.
Second, it begs for an explanation on the reason why the definition of geometric
crossover captures the notion of “real-world” recombinations.

6.2 Why are “real-world” recombinations geometric?

Arguably, the most common search operators must be good in practice because
they have emerged from experimental work done by generations of practitioners
over decades and have survived a fierce competition against other operators. So,
it is reasonable to ask what is common to most of these successful recombination
operators, if anything, and infer that this commonality must be related with
the reason of their success. So, what is the underlying regularity, or the “law
of nature”, linking them? They are geometric. This answer would be empty
if geometricity were a tautology, if every recombination were geometric given
some suitable distance. Since geometricity is a clear-cut property and not a
tautology, the class of geometric crossover must have some practical fundamental
advantage over the complementary class. It is reasonable to conjecture that this



is linked with the fact that geometric crossover allows very easily to embed
problem knowledge in the search from the knowledge of the objective function.
The three operators considered in section 5, that have been shown to be
non-geometric, are indeed very rare exceptions of non-geometric “real-world”
operators. Why do not they conform to the geometricity-law?
Extended line crossover: line crossover (that is geometric) is biased toward
the center of the space. The extended line are there to compensate for such a
bias.
Subtree swap crossover: Koza’s crossover is strongly suspected to be equiv-
alent to subtree mutation [8]. Many researchers do not see it as a crossover
and propose new form of operator that require alignments on contents or posi-
tional alignment before recombinations. Interestingly, these two variations would
transform Koza’s crossover into a geometric crossover.
Order crossover: Order crossover was a first attempt to recombine permuta-
tions preserving common order of the parents. However common order is not
preserved all the times in this operator. Interestingly, all operator that preserve
perfectly common order are provably geometric (such as merge recombination|[2],
for example).

7 Conclusions and future work

In this paper we have shown that the abstract definition of geometric crossover
induces two non-empty representation-independent classes of recombination op-
erators: geometric crossovers and non-geometric crossovers. This is a fundamen-
tal result that put a programme of unification of evolutionary algorithms and a
general representation-independent theory of recombination operators on a firm
ground.

Because of the peculiarity of the definition of geometric crossover, proving
non-geometricity of a recombination operator, hence the existence of the non-
geometric crossover class, is a task that at first looks impossible because one
needs to show that the recombination considered is not geometric under any
distance. However taking advantage of the different possible ways of looking at
the definition of geometric crossover we have been able to develop some theo-
retical tools to prove non-geometricity in a straightforward way. We have then
used these tools to prove the non-geometricity of three well-known operators for
real vectors, permutations, and syntactic trees representations. Thereby proving
the fundamental result.

In future work, we will start constructing a general theory of evolutionary
algorithms based on the abstract interpretation of the definition of geometric
crossover. So this theory will be able to describe the generic behavior of all evo-
lutionary algorithms equipped with a generic geometric crossover. We anticipate
that this is a form of convex search. The next step will be to understand under
what exact condition on the fitness landscape, for what general class of fitness
landscape, this way of searching delivers good performance.
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