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Abstract. Geometric crossover is a representation-independenoperators are effectively macro mutations while others use ad hoc
generalization of traditional crossover for binary strings. It is definedstrategies to compensate for the bias of specific spaces. In section 7,
using the distance associated to the search space in a simple gewe draw some conclusions.

metric way. Many interesting recombination operators for the most

frequently used representations are geometric crossovers under some .

suitable distance. Being a geometric crossover is useful because thege Geometric framework

is a growing number of theoretical results that apply to this class °f2.l Geometric preliminaries

operators. To show that a given recombination operator is a geomet-
ric crossover, it is sufficient to find a distance for which offspring are|n the following we give necessary preliminary geometric definitions
in the metric segment between parents associated with this distancgad extend those introduced in [2]. For more details on these defini-
However, proving that a recombination operator is not a geometrigions see [4].

crossover requires to prove that such an operator is not a geometric The termsdistanceand metric denote any real valued function
crossoverunder any distanceln this paper we develop some theo- that conforms to the axioms of identity, symmetry and triangular in-
retical tools to prove non-geometricity results and show that somequality. A simple connected graph is naturally associated to a metric

well-known operators are not geometric. space via itpath metric the distance between two nodes in the graph
is the length of a shortest path between the nodes. Distances aris-
1 Introduction ing from graphs via their path metric are callgchphic distances

Similarly, an edge-weighted graph with strictly positive weights is

Geometric crossover and geometric mutation [2] are representatiomratura”y associated to a metric space viaeighted path metric
independent search operators that generalise by abstraction manyjn a metric spacés, d) aclosed balis a set of the fornB(z; r) =
pre-existing search operators for the major representations used i, ¢ S|d(z,y) < r} wherex € S andr is a positive real number
EAs, such as binary strings, real vectors, permutations and syntagaled the radius of the ball. Ane segmentor closed interval) is a
tic trees. They are defined in geometric terms using the notions ofet of the formz; y] = {z € S|d(x, z) + d(z,y) = d(z,y)} where
line segment and ball. These notions and the corresponding genetic ;, ¢ S are called extremes of the segment. Metric ball and metric
operators are well-defined once a notion of distance in the searc§egment generalise the familiar notions of ball and segment in the
space is defined. This way of defining search operators as functiogyclidean space to any metric space through distance redefinition.
of the search space is the opposite to the standard approach [3] i#hese generalised objects look quite different under different met-
which the search space is seen as a function of the search operatejss. Notice that the notions of metric segment and shortest path con-
employed. Our new point of view greatly simplifies the relationship necting its extremesgeodesit do not coincide as it happens in the
between search operators and fitness landscape and allows differeg?jeciﬁc case of an Euclidean space. In general, there may be more
search operators to share the same search space thereby clarifyifigin one geodesic connecting two extremes; the metric segment is
their roles. the union of all geodesics.

The paper is organized as follows. In section 2, we introduce \ve assign a structure to the solution set by endowing it with a
the geometric framework and review a number of well-known re-notion of distancel. M = (S, d) is therefore a solutiospaceand
combination operators that are geometric. In section 3, we showy, — (M, g) is the correspondinfitness landscapeotice thatd is

how the geometric definition of crossover divides recombination oparbitrary and need not have any particular connection or affinity with
erators into two classes: geometric crossovers and non-geometrige search problem at hand.

crossovers. This classification is based only on the metric properties

of the operators and is representation-independent. In section 4, we

develop some general tools to prove non-geometricity of recombina2.2  Geometric crossover definition

tion operators. In section 5, we prove that a number of recombination . . o

operators for vectors of reals, permutations and syntactic trees repr&€ following definitions areepresentation-independeand, there-

sentations are not geometric. In section 6, we claim that the class épre, crossover is well-defined for any representation. Being based on

geometric crossovers captures the essential notion of crossoverne@g notion of metric segmerttfossover is only function of the metric

emerged experimentally over the years and that crossover operatdf@Ssociated with the search space.

that are not geometric are not fully matured. Indeed, some of thes@efinition: Thgimage se-tlm[OP] ofa geneti(; operatap P is the
set of all possible offspring produced 6P with non-zero proba-
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Definition: A binary operator is a geometric crossover under the met-e geometric crossover clasgor any recombination belonging to

ric d if all offspring are in the segment between its parents. this class, there exists at least a distance conforming to the met-
Definition: Uniform geometric crossovel/ X is a geometric ric axioms under which such a recombination is geometric. For-
crossover where all laying between parentsandy have the same mally: OP is geometric crossover ifBd : Vpi,p2 € S
probability of being the offspring: Im[OP(p1,p2)] C [p1, p2]a-

e non-geometric crossover clager any recombination belonging

fox(zlz,y) = w to this class, there is no distance conforming to the metric axioms

|[z; ]l under which such a recombination is geometric. Forma@ly. is

Im[UX (z,y)] = {2 € S|fux(z|lz,y) > 0} = [x;y]. non-geometric crossover ffd : 3p1,p2 € S : Im[OP(p1,p2)]\

. . [p1,p2la # 0.
A number of general properties for geometric crossover and mu-

tation have been derived in [2]. We want to emphasize that the adjective “geometric” before
crossover denotes, not simply a different way of looking at recom-
2.3 Notable geometric crossovers bination operators, but more fundamentally it denotes the member-

) ) ship to a certain mathematically well-defined class of operators. In
For vectors of reals, various types of blend or line crossovers, box resection 4, we will prove some properties common to all geometric

combinations, and discrete recombinations are geometric Crossoveggpssovers arising from the definition of geometric crossover class
[2]. For binary and multary strings (fixed-length strings based ONonly.

an symbols alphabet), all mask-based crossovers (one point, two
points, n-points, uniform) are geometric crossovers [2] [6]. For per- ) )
mutations, PMX, Cycle crossover, merge crossover and others a1 SpeC|a| classes of geometric crossover

geometric crossovers [1] [8]. For Syntactic trees, the family of Ho-_l_he property of a recombination operator of being geometric de-

mologous crossovers (one-point, uniform crossover) are geometric - . ) S
o . pends on thexistencef a metric under which such a recombination
crossovers [9]. Recombinations for other more complicated repre: . o . o
. . -is geometric. If such a metric exists, the operator is geometric; if such
sentations such as variable length sequences, graphs, permutation . : . :
. » . . . - a metric does not exist, the operator is hon-geometric. Analogously,
with repetitions, circular permutations, sets, multisets partitions are ! . . . .
. we can define some interesting special classes of geometric crossover
geometric crossovers [10] [2] [1] [7]. . : . . . -
using the existence of specific types of metric as their defining prop-
erty as follows.
3 Geometric classes of recombination operators Definition: A geometric crossover graphic if there exists a graphic

The definition of geometric crossover requires a distahteat re- distance for which it is geometric. Otherwise, the crossover will be

spects the metric axioms. This definition allows to answer easily théaldngn-graphlc . . .
question: what is the geometric crossover associated with a given dis- Notice that t_he fact thata geo_metnc CrOSSOVeris geometrlc under_a
tance? Indeed, it is simply matter of applying the geometric definitionnon'graph'c_ distance c_ioe_s notimply ‘h"?“ I 'S non-graph_lc. Indeed,' It
to the specific distance to obtain its associated geometric crossov@?ay,alsq eX|st§graph|c distance for which this operator is geometric,
(or, more precisely, a formal description of it). maI_ar_lg it graphic. . . . . .
However, other questions can be asked: given a recombination OBeflnmon: A geometric crossover mpletgf there e>'<|sts ametric
erator what is the distance under which the operator fits the definitioﬂ such that the set of all the 0ﬁ§prlng °°'“F’"§’es with .the segment
of geometric crossover? If there is more than one distance, what igetvv_een two parer_1ts. A geometric crossovenempletaf such a
the distance that fits it best and in what sense? These are very iHJe“'C does not_ exist. . . . .
teresting questions. In previous work we have proven that various, If a geometric CrOSSOVer 1S geqmgtrlc under a metric for which
crossover operators are geometric crossovers by using our intuitio%1e set Of_ all offspring does not commdgs W_'th the segment between
and experience to identify candidate distances that seemed appropﬂ§1rents (|n_0(_)mplete under _su_ch a metric), it does not_lmply that the
ate, by analysing the geometric crossovers resulting from such gigrossoveris incomplete. This is becagse there may e>.(|st another m.et-
tances, and finally by identifying the one which matched our originalrIC that fits the_ crossover under which the geometric crossover is
operator. For some nice class of distances, namely graphic distancé:é)mplete’ making it complete.

we have some theoretical results that help us match recombinatiolaef'n't'on: A geometric crossover iniformif it is complete and

and distance [2]. In general, however, finding a distance fitting a spe_t-he probability of picking any o_ffspring _is uniform._lf_the crossover

cific operator may be rather difficult (see [9] for an example of als complete but the probability is not uniform then inien-uniform

geometric crossover associated to a non-graphic distance and related

issues). We have done some preliminary work on finding the best flt4 |nbreeding properties of geometric crossover

ting distance for a given geometric crossover, which will appear in a

future publication. Geometric interval spaces based on metric spaces [11] connect very
There is a more fundamental question that can be asked: is thef@turally with the notion of geometric crossover. There is a wealth

a distance for any recombination operator? Or more precisely: giveff results for these spaces that can be transferred easily to geometric

a recombination operator, is it possible that it does not fit the definiCrossover.

tion of geometric crossover fany distanc@ As we will see, some In the following we introduce three fundamental properties of ge-

recombination operators are not geometric crossover, or simply normetric crossover arising only from its axiomatic definition (met-

geometric, under any distance. Therefore, the definition of geometriic axioms), hence valid for any distance, probability distribution

crossover induces a natural classification of all recombination oper@and any underlying solution representation. These properties of ge-

ators into two non-empty and mutually exhaustive classes of opers@metric crossover are simple properties of geometric interval spaces

tors: adapted to the geometric crossover.



The properties proposed are based on inbreeding (breeding be- Inbreeding diagram of the property of convergence (see Fig. 1(b)):
tween close relatives) using geometric crossover and avoid explictivo parentsP1 and P2 produce the child”. We consider & that

reference to the solution representation. does not coincide wittP1. The childC and its parenf”2 mate and

In section 5, we will make good use of these properties to provegroduce a grandchild:. The property of convergence states t6at
some non-geometricity results. can never coincide witt1.
Theorem 1 Property of Purity Theorem 3 Property of Partition

If RX is geometric then the recombination of one parent with itself  If RX is geometric then the two recombinations, the first of parent
can only produce the parent itself. awith a childc of aandb, and the second of parehtwith the same

child ¢, cannot produce a common grandchddther thanc.
proof: If RX is geometric there exists a metricsuch that any off-
springo belongs to the segment between parentss, under met-  proof:
fic d: d(s1,0) + d(o, s2) = d(s1,s2). When the parents coincide, ¢ € [a,b] — d(a,c) + d(c,b) = d(a,b)

s = s1 = s2, We haved(s, o) + d(o,s) = d(s, s) hence for sym- e € a,c] — d(a,e)+d(e,c) = d(a,c)
metry and identity axioms of metrié(s, o) = 0 for any metric. For e € [bc] —d(be)+d(ec)=db,c)
the identity axiom this implies = s. Substituting the last two expressions in the first one we obtain:
Inbreeding diagram of the property of purity (see Fig. 1(a)): when @(@,¢) +d(e,¢) + d(b,e) + d(e, c) = d(a, b)
the two parents are the sarfa, their childC’ must beP1. Notice that two terms in the left-hand are greater or equal to the
right-hand:
(a) Purity: d(a,e) +d(b,e) > d(a,b)
Hence:
P1 —— P1 2d(e, c) = 0 impliese = c.
| Inbreeding diagram of the property of partition (see Fig. 1(c)): two
c=p1 parentsP1 and P2 produce the child”. The childC' mates with
both its parentsP1 and P2, producing grandchildret¥1 and G2,
respectively. We consider the case in which at least one grandchildren
(b) Convergence: is different fromC'. The property of partition states th@tl andG2
can never coincide.
PL —————— P2 Complete crossover has a larger set of properties including exten-
| sivenessd,b € Im(UX (a,b))) and symmetry {m(U X (a, b)) =
C ——— P2 (C!=P1) Im(UX (b, a))), which however, are not common to all geometric
I crossovers.
G!=P1

4.1 Relation with forma analysis

Radcliffe developed a theory [14] of recombination operators starting

Partiti : . . L
(c) Partition from the notion of forma that is a representation-independent gener-

3 P2 alization of schema. A forma is an equivalence class on the space of
| chromosomes induced by a certain equivalence relation. Radcliffe
Pl —— C ——— P2 describes a number of important form@désirable propertieghat
| | a recombination operator should respect to be a good recombina-
Gl != G2 (Gl!=C or G2!=C) tion operator. These properties are representation-independent and

are stated as requirements on how formae should be manipulated by
recombination operators.

Geometric crossover, on the other hand, is formally defined geo-
metrically using the distance associated with the search space. Un-
like Radcliffe’s properties, the inbreeding properties of geometric
crossover, are not desired properties but are properties thedare
Theorem 2 Property of Convergence monto all geometric crossovers and derive logically from its formal

If RX is geometric then the recombination of one paren’[ with onedefinition Only. In future WOI’k, we will prOVide a more detailed anal-
offspring cannot produce the other parent of that offspring unless th/sis of the connections between Radcliffe’s theory and the theory of
offspring and the second parent coincide. geometric crossover.

Figure 1. Inbreeding diagrams.

proof: If RX is geometric there exists a metricsuch that any off- 5 Notable non-geometric crossovers
springo belongs to the segment between parents. under metric

d: d(s1,0) + d(o,s2) = d(s1,s2). If one can produce parest by To prove non-geometricity, one has to prove that the recombina-
recombinings; ando, it must be also true thad(s1, s2)+d(s2,0) = tion operator isnon-geometric under any metrandany probabil-
d(s1,0). By substituting this last expression in the former one weity distribution overany subsebf the segment. This could be diffi-
have:d(s1, s2) + d(s2,0) 4 d(o, s2) = d(s1,s2) hence simplify-  cult. The properties of purity, convergence and partition apply to any
ing d(o, s2) = 0 for any metric. For the identity axiom this implies geometric crossover. If a recombination fails to fulfil any of these
S2 = o. property then it is not a geometric crossover (under any distance).



These properties, therefore, are necessary conditions for geometrishow that most of the pre-existing crossover operators for major rep-
ity and therefore can be used to check if a recombination operataesentations fit the geometric definition. The three operators consid-
is non-geometric. In the following we use them to prove the non-ered in section 5, that have been shown to be non-geometric, are in-
geometricity of three important recombination operators: extendedleed very rare exceptions. So the theory of geometric crossover has

line recombination, Koza's subtree swap crossover and Davis’s Ora considerable scope and a real applicability.

der Crossover (see [12] for a description of these operators).

More fundamentally we can put forward the hypothesis that since
established pre-existing operators have emerged from experimental

Theorem 4 Extended line recombination is not a geometric work done by generations of practitioners over decades, geometric

crossover.

proof: The convergence property fails to holgt p; andp. the two
parents, and the offspring lying in the extension line beyond.

crossover compresses in a simple class an empirical phenomenon.
Or in other words, the geometric crossover definition captures a law
of nature. In this perspective, it is reasonable to ask why the recombi-
nation operators presented in section 5 are non-geometric. Why don’t

Now it is easy to see that using the extension line recombination othey conform to the geometricity-law?

o andp, one can obtaip; as offspring.

Extended line crossoverline crossover (that is geometric) is biased
toward the center of the space. The extended line are there to com-

Theorem 5 Koza's subtree swap crossover is not a geometricpensate for such a bias.

crossover.

Subtree swap crossoverKoza’s crossover is strongly suspected to
be equivalent to subtree mutation [13]. Many researchers do not see

proof: The property of purity fails to holdSubtree swap crossover it as a crossover and propose new form of operator that require align-
applied to two copies of the same parent tree may produce offspringnents on contents or positional alignment before recombinations. In-

trees different from it.
Theorem 6 Davis’s Order Crossover is non-geometric.
proof: We prove the theorem by showing that twnvergence prop-

erty of geometric crossover does not holdhe following counterex-
ample.

Parent 1 : 12.34.567

Parent 2 : 34.56.127

Section : --.34.---

Available elements in order: 12756
Offspring: 65.34.127

Parent 3 := Offspring

Parent 3 : 6534.12.7

Parent 1 : 1234.56.7

Section : ----.12.-

Available elements in order: 73456

Offspring: 3456.12.7
Offspring = Parent 2

terestingly, these two variations would transform Koza’s crossover
into a geometric crossover.

Order crossover. Order crossover was a first attempt to recom-
bine permutations preserving common order of the parents. However
common order is not preserved all the times in this operator. Interest-
ingly, all operator that preserve perfectly common order are provably
geometric (such as merge recombination[12], for example).

7 Conclusions

In this paper we have shown that the abstract definition of geo-
metric crossover induces two representation-independent classes of
recombination operators: geometric crossovers and non-geometric
crossovers. Proving non-geometricity of a recombination operator it
is a non-trivial task because one needs to show that the recombina-
tion considered is not geometric undety distanceWe have devel-
oped some theoretical tools to prove non-geometricity. We have then
used these tools to prove the non-geometricity of three well-known
operators for real vectors, permutations, and syntactic trees repre-
sentations. We have argued that geometric crossover subsumes the
notion of crossoverness emerged experimentally over the years, and
that the non-geometric operators considered in this paper are acci-
dentally non-geometric.
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