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Abstract. Geometric crossover is a representation-independent
generalization of traditional crossover for binary strings. It is defined
using the distance associated to the search space in a simple geo-
metric way. Many interesting recombination operators for the most
frequently used representations are geometric crossovers under some
suitable distance. Being a geometric crossover is useful because there
is a growing number of theoretical results that apply to this class of
operators. To show that a given recombination operator is a geomet-
ric crossover, it is sufficient to find a distance for which offspring are
in the metric segment between parents associated with this distance.
However, proving that a recombination operator is not a geometric
crossover requires to prove that such an operator is not a geometric
crossoverunder any distance. In this paper we develop some theo-
retical tools to prove non-geometricity results and show that some
well-known operators are not geometric.

1 Introduction

Geometric crossover and geometric mutation [2] are representation-
independent search operators that generalise by abstraction many
pre-existing search operators for the major representations used in
EAs, such as binary strings, real vectors, permutations and syntac-
tic trees. They are defined in geometric terms using the notions of
line segment and ball. These notions and the corresponding genetic
operators are well-defined once a notion of distance in the search
space is defined. This way of defining search operators as function
of the search space is the opposite to the standard approach [3] in
which the search space is seen as a function of the search operators
employed. Our new point of view greatly simplifies the relationship
between search operators and fitness landscape and allows different
search operators to share the same search space thereby clarifying
their roles.

The paper is organized as follows. In section 2, we introduce
the geometric framework and review a number of well-known re-
combination operators that are geometric. In section 3, we show
how the geometric definition of crossover divides recombination op-
erators into two classes: geometric crossovers and non-geometric
crossovers. This classification is based only on the metric properties
of the operators and is representation-independent. In section 4, we
develop some general tools to prove non-geometricity of recombina-
tion operators. In section 5, we prove that a number of recombination
operators for vectors of reals, permutations and syntactic trees repre-
sentations are not geometric. In section 6, we claim that the class of
geometric crossovers captures the essential notion of crossoverness
emerged experimentally over the years and that crossover operators
that are not geometric are not fully matured. Indeed, some of these
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operators are effectively macro mutations while others use ad hoc
strategies to compensate for the bias of specific spaces. In section 7,
we draw some conclusions.

2 Geometric framework

2.1 Geometric preliminaries

In the following we give necessary preliminary geometric definitions
and extend those introduced in [2]. For more details on these defini-
tions see [4].

The termsdistanceand metric denote any real valued function
that conforms to the axioms of identity, symmetry and triangular in-
equality. A simple connected graph is naturally associated to a metric
space via itspath metric: the distance between two nodes in the graph
is the length of a shortest path between the nodes. Distances aris-
ing from graphs via their path metric are calledgraphic distances.
Similarly, an edge-weighted graph with strictly positive weights is
naturally associated to a metric space via aweighted path metric.

In a metric space(S, d) aclosed ballis a set of the formB(x; r) =
{y ∈ S|d(x, y) ≤ r} wherex ∈ S andr is a positive real number
called the radius of the ball. Aline segment(or closed interval) is a
set of the form[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where
x, y ∈ S are called extremes of the segment. Metric ball and metric
segment generalise the familiar notions of ball and segment in the
Euclidean space to any metric space through distance redefinition.
These generalised objects look quite different under different met-
rics. Notice that the notions of metric segment and shortest path con-
necting its extremes (geodesic) do not coincide as it happens in the
specific case of an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is
the union of all geodesics.

We assign a structure to the solution set by endowing it with a
notion of distanced. M = (S, d) is therefore a solutionspaceand
L = (M, g) is the correspondingfitness landscape. Notice thatd is
arbitrary and need not have any particular connection or affinity with
the search problem at hand.

2.2 Geometric crossover definition

The following definitions arerepresentation-independentand, there-
fore, crossover is well-defined for any representation. Being based on
the notion of metric segment,crossover is only function of the metric
d associated with the search space.
Definition: The image setIm[OP ] of a genetic operatorOP is the
set of all possible offspring produced byOP with non-zero proba-
bility.



Definition: A binary operator is a geometric crossover under the met-
ric d if all offspring are in the segment between its parents.
Definition: Uniform geometric crossoverUX is a geometric
crossover where allz laying between parentsx andy have the same
probability of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])

|[x; y]|
Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mu-
tation have been derived in [2].

2.3 Notable geometric crossovers

For vectors of reals, various types of blend or line crossovers, box re-
combinations, and discrete recombinations are geometric crossovers
[2]. For binary and multary strings (fixed-length strings based on
a n symbols alphabet), all mask-based crossovers (one point, two
points, n-points, uniform) are geometric crossovers [2] [6]. For per-
mutations, PMX, Cycle crossover, merge crossover and others are
geometric crossovers [1] [8]. For Syntactic trees, the family of Ho-
mologous crossovers (one-point, uniform crossover) are geometric
crossovers [9]. Recombinations for other more complicated repre-
sentations such as variable length sequences, graphs, permutations
with repetitions, circular permutations, sets, multisets partitions are
geometric crossovers [10] [2] [1] [7].

3 Geometric classes of recombination operators

The definition of geometric crossover requires a distanced that re-
spects the metric axioms. This definition allows to answer easily the
question: what is the geometric crossover associated with a given dis-
tance? Indeed, it is simply matter of applying the geometric definition
to the specific distance to obtain its associated geometric crossover
(or, more precisely, a formal description of it).

However, other questions can be asked: given a recombination op-
erator what is the distance under which the operator fits the definition
of geometric crossover? If there is more than one distance, what is
the distance that fits it best and in what sense? These are very in-
teresting questions. In previous work we have proven that various
crossover operators are geometric crossovers by using our intuition
and experience to identify candidate distances that seemed appropri-
ate, by analysing the geometric crossovers resulting from such dis-
tances, and finally by identifying the one which matched our original
operator. For some nice class of distances, namely graphic distances,
we have some theoretical results that help us match recombination
and distance [2]. In general, however, finding a distance fitting a spe-
cific operator may be rather difficult (see [9] for an example of a
geometric crossover associated to a non-graphic distance and related
issues). We have done some preliminary work on finding the best fit-
ting distance for a given geometric crossover, which will appear in a
future publication.

There is a more fundamental question that can be asked: is there
a distance for any recombination operator? Or more precisely: given
a recombination operator, is it possible that it does not fit the defini-
tion of geometric crossover forany distance? As we will see, some
recombination operators are not geometric crossover, or simply non-
geometric, under any distance. Therefore, the definition of geometric
crossover induces a natural classification of all recombination oper-
ators into two non-empty and mutually exhaustive classes of opera-
tors:

• geometric crossover class: for any recombination belonging to
this class, there exists at least a distance conforming to the met-
ric axioms under which such a recombination is geometric. For-
mally: OP is geometric crossover iff∃d : ∀p1, p2 ∈ S :
Im[OP (p1, p2)] ⊆ [p1, p2]d.

• non-geometric crossover class: for any recombination belonging
to this class, there is no distance conforming to the metric axioms
under which such a recombination is geometric. Formally:OP is
non-geometric crossover iff∀d : ∃p1, p2 ∈ S : Im[OP (p1, p2)]\
[p1, p2]d 6= ∅.

We want to emphasize that the adjective “geometric” before
crossover denotes, not simply a different way of looking at recom-
bination operators, but more fundamentally it denotes the member-
ship to a certain mathematically well-defined class of operators. In
section 4, we will prove some properties common to all geometric
crossovers arising from the definition of geometric crossover class
only.

3.1 Special classes of geometric crossover

The property of a recombination operator of being geometric de-
pends on theexistenceof a metric under which such a recombination
is geometric. If such a metric exists, the operator is geometric; if such
a metric does not exist, the operator is non-geometric. Analogously,
we can define some interesting special classes of geometric crossover
using the existence of specific types of metric as their defining prop-
erty as follows.
Definition: A geometric crossover isgraphic, if there exists a graphic
distance for which it is geometric. Otherwise, the crossover will be
saidnon-graphic.

Notice that the fact that a geometric crossover is geometric under a
non-graphic distance does not imply that it is non-graphic. Indeed, it
may also exist a graphic distance for which this operator is geometric,
making it graphic.
Definition: A geometric crossover iscompleteif there exists a metric
d such that the set of all the offspring coincides with the segment
between two parents. A geometric crossover isincompleteif such a
metric does not exist.

If a geometric crossover is geometric under a metric for which
the set of all offspring does not coincides with the segment between
parents (incomplete under such a metric), it does not imply that the
crossover is incomplete. This is because there may exist another met-
ric that fits the crossover under which the geometric crossover is
complete, making it complete.
Definition: A geometric crossover isuniform if it is complete and
the probability of picking any offspring is uniform. If the crossover
is complete but the probability is not uniform then it isnon-uniform.

4 Inbreeding properties of geometric crossover

Geometric interval spaces based on metric spaces [11] connect very
naturally with the notion of geometric crossover. There is a wealth
of results for these spaces that can be transferred easily to geometric
crossover.

In the following we introduce three fundamental properties of ge-
ometric crossover arising only from its axiomatic definition (met-
ric axioms), hence valid for any distance, probability distribution
and any underlying solution representation. These properties of ge-
ometric crossover are simple properties of geometric interval spaces
adapted to the geometric crossover.



The properties proposed are based on inbreeding (breeding be-
tween close relatives) using geometric crossover and avoid explicit
reference to the solution representation.

In section 5, we will make good use of these properties to prove
some non-geometricity results.

Theorem 1 Property of Purity
If RX is geometric then the recombination of one parent with itself

can only produce the parent itself.

proof: If RX is geometric there exists a metricd such that any off-
springo belongs to the segment between parentss1, s2 under met-
ric d: d(s1, o) + d(o, s2) = d(s1, s2). When the parents coincide,
s = s1 = s2, we have:d(s, o) + d(o, s) = d(s, s) hence for sym-
metry and identity axioms of metricd(s, o) = 0 for any metric. For
the identity axiom this implieso = s.

Inbreeding diagram of the property of purity (see Fig. 1(a)): when
the two parents are the sameP1, their childC must beP1.

Figure 1. Inbreeding diagrams.

Theorem 2 Property of Convergence
If RX is geometric then the recombination of one parent with one

offspring cannot produce the other parent of that offspring unless the
offspring and the second parent coincide.

proof: If RX is geometric there exists a metricd such that any off-
springo belongs to the segment between parentss1, s2 under metric
d: d(s1, o) + d(o, s2) = d(s1, s2). If one can produce parents2 by
recombinings1 ando, it must be also true that:d(s1, s2)+d(s2, o) =
d(s1, o). By substituting this last expression in the former one we
have:d(s1, s2) + d(s2, o) + d(o, s2) = d(s1, s2) hence simplify-
ing d(o, s2) = 0 for any metric. For the identity axiom this implies
s2 = o.

Inbreeding diagram of the property of convergence (see Fig. 1(b)):
two parentsP1 andP2 produce the childC. We consider aC that
does not coincide withP1. The childC and its parentP2 mate and
produce a grandchildG. The property of convergence states thatG
can never coincide withP1.

Theorem 3 Property of Partition
If RX is geometric then the two recombinations, the first of parent

a with a childc of a andb, and the second of parentb with the same
child c, cannot produce a common grandchildeother thanc.

proof:
c ∈ [a, b] → d(a, c) + d(c, b) = d(a, b)
e ∈ [a, c] → d(a, e) + d(e, c) = d(a, c)
e ∈ [b, c] → d(b, e) + d(e, c) = d(b, c)
Substituting the last two expressions in the first one we obtain:
d(a, e) + d(e, c) + d(b, e) + d(e, c) = d(a, b)
Notice that two terms in the left-hand are greater or equal to the

right-hand:
d(a, e) + d(b, e) ≥ d(a, b)
Hence:
2d(e, c) = 0 impliese = c.

Inbreeding diagram of the property of partition (see Fig. 1(c)): two
parentsP1 andP2 produce the childC. The childC mates with
both its parents,P1 andP2, producing grandchildrenG1 andG2,
respectively. We consider the case in which at least one grandchildren
is different fromC. The property of partition states thatG1 andG2
can never coincide.

Complete crossover has a larger set of properties including exten-
siveness (a, b ∈ Im(UX(a, b))) and symmetry (Im(UX(a, b)) =
Im(UX(b, a))), which however, are not common to all geometric
crossovers.

4.1 Relation with forma analysis

Radcliffe developed a theory [14] of recombination operators starting
from the notion of forma that is a representation-independent gener-
alization of schema. A forma is an equivalence class on the space of
chromosomes induced by a certain equivalence relation. Radcliffe
describes a number of important formaldesirable propertiesthat
a recombination operator should respect to be a good recombina-
tion operator. These properties are representation-independent and
are stated as requirements on how formae should be manipulated by
recombination operators.

Geometric crossover, on the other hand, is formally defined geo-
metrically using the distance associated with the search space. Un-
like Radcliffe’s properties, the inbreeding properties of geometric
crossover, are not desired properties but are properties that arecom-
monto all geometric crossovers and derive logically from its formal
definition only. In future work, we will provide a more detailed anal-
ysis of the connections between Radcliffe’s theory and the theory of
geometric crossover.

5 Notable non-geometric crossovers

To prove non-geometricity, one has to prove that the recombina-
tion operator isnon-geometric under any metricandany probabil-
ity distribution over any subsetof the segment. This could be diffi-
cult. The properties of purity, convergence and partition apply to any
geometric crossover. If a recombination fails to fulfil any of these
property then it is not a geometric crossover (under any distance).



These properties, therefore, are necessary conditions for geometric-
ity and therefore can be used to check if a recombination operator
is non-geometric. In the following we use them to prove the non-
geometricity of three important recombination operators: extended
line recombination, Koza’s subtree swap crossover and Davis’s Or-
der Crossover (see [12] for a description of these operators).

Theorem 4 Extended line recombination is not a geometric
crossover.

proof: The convergence property fails to hold. Let p1 andp2 the two
parents, ando the offspring lying in the extension line beyondp1.
Now it is easy to see that using the extension line recombination on
o andp2, one can obtainp1 as offspring.

Theorem 5 Koza’s subtree swap crossover is not a geometric
crossover.

proof: The property of purity fails to hold. Subtree swap crossover
applied to two copies of the same parent tree may produce offspring
trees different from it.

Theorem 6 Davis’s Order Crossover is non-geometric.

proof: We prove the theorem by showing that theconvergence prop-
erty of geometric crossover does not holdin the following counterex-
ample.

Parent 1 : 12.34.567
Parent 2 : 34.56.127
Section : --.34.---
Available elements in order: 12756

Offspring: 65.34.127
Parent 3 := Offspring

Parent 3 : 6534.12.7
Parent 1 : 1234.56.7
Section : ----.12.-
Available elements in order: 73456

Offspring: 3456.12.7
Offspring = Parent 2

Since the last offspring coincides with parent 2 the monotone
property does not hold, hence Order Crossover is not geometric.

6 Are “real-world” recombinations geometric?

We have seen in section 3 that the geometric definition of crossover
induces a well-defined bipartition of all recombination operators: ge-
ometric crossovers and non-geometric crossovers. Starting from the
definition of geometric crossover, in previous work we have started
building a general, representation-independent theory that applies to
all geometric crossovers. This theory, for its own axiomatic foun-
dation, applies to geometric crossovers and does not apply to non-
geometric crossovers. The significance of such a theory is, therefore,
conditional to the fact that interesting recombination operators are
geometric crossovers. So, a very important question is: are “real-
world” recombinations, those used everyday in practice, geometric?
To answer this question we have started a unification programme to

show that most of the pre-existing crossover operators for major rep-
resentations fit the geometric definition. The three operators consid-
ered in section 5, that have been shown to be non-geometric, are in-
deed very rare exceptions. So the theory of geometric crossover has
a considerable scope and a real applicability.

More fundamentally we can put forward the hypothesis that since
established pre-existing operators have emerged from experimental
work done by generations of practitioners over decades, geometric
crossover compresses in a simple class an empirical phenomenon.
Or in other words, the geometric crossover definition captures a law
of nature. In this perspective, it is reasonable to ask why the recombi-
nation operators presented in section 5 are non-geometric. Why don’t
they conform to the geometricity-law?
Extended line crossover: line crossover (that is geometric) is biased
toward the center of the space. The extended line are there to com-
pensate for such a bias.
Subtree swap crossover: Koza’s crossover is strongly suspected to
be equivalent to subtree mutation [13]. Many researchers do not see
it as a crossover and propose new form of operator that require align-
ments on contents or positional alignment before recombinations. In-
terestingly, these two variations would transform Koza’s crossover
into a geometric crossover.
Order crossover: Order crossover was a first attempt to recom-
bine permutations preserving common order of the parents. However
common order is not preserved all the times in this operator. Interest-
ingly, all operator that preserve perfectly common order are provably
geometric (such as merge recombination[12], for example).

7 Conclusions

In this paper we have shown that the abstract definition of geo-
metric crossover induces two representation-independent classes of
recombination operators: geometric crossovers and non-geometric
crossovers. Proving non-geometricity of a recombination operator it
is a non-trivial task because one needs to show that the recombina-
tion considered is not geometric underany distance. We have devel-
oped some theoretical tools to prove non-geometricity. We have then
used these tools to prove the non-geometricity of three well-known
operators for real vectors, permutations, and syntactic trees repre-
sentations. We have argued that geometric crossover subsumes the
notion of crossoverness emerged experimentally over the years, and
that the non-geometric operators considered in this paper are acci-
dentally non-geometric.
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