
Journal of Ambient Intelligence and Smart Environments 0 (0) 1 1
IOS Press

Geometric Crossover for the
Permutation Representation

Alberto Moraglio a, Riccardo Poli b

a School of Computing and Centre for Reasoning,
University of Kent, Canterbury, UK
email: A.Moraglio@kent.ac.uk
b School of Computer Science and Electronic
Engineering, University of Essex, Colchester, UK
email: rpoli@essex.ac.uk

Abstract. Geometric crossovers are a class of
representation-independent search operators for evolution-
ary algorithms that are well-defined once a notion of dis-
tance over a solution space is defined. In this paper we ex-
plore the specialisation of geometric crossovers to the per-
mutation representation analysing the consequences of the
availability of more than one notion of distance. Also, we
study the relations among distances and build a rational pic-
ture in which pre-existing recombination operators for per-
mutations fit naturally. Lastly, we illustrate the application
of geometric crossover to the Travelling Salesman Problem
(TSP).

Keywords: Evolutionary algorithms, crossover, permuta-
tions, theory.

1. Introduction

Darwinian evolution – one of the most intriguing
and powerful mechanism of nature – has been a con-
stant source of inspiration for researchers interested in
search and optimisation for over three decades, lead-
ing to the formation of a large research community and
a huge body of literature which go under the name of
Evolutionary Computation (EC).

Evolutionary algorithms (EAs) [? ? ?] rely on
surprisingly few ingredients of Darwinian evolution,
namely:

Inheritance: individuals have a genetic representation
(in nature, the chromosomes and the DNA) such

that it is possible for the offspring of an individual
to inherit some of the features of its parent.

Variation: the offspring are not exact copies of the
parents. Instead, reproduction involves mecha-
nisms that create innovation, as new generations
are born. Typically, variation is produced both
through mutations of the genome and through the
effect of sexually recombining the genetic mate-
rial coming from the parents to obtain offspring
chromosomes (crossing over).

Selection: individuals best adapted to the environment
have longer life and higher chances of mating and
spreading their genetic makeup.

In EAs, the notion of individual corresponds to a
tentative solution to a problem of interest. The fit-
ness of natural individuals corresponds to the objec-
tive function used to evaluate the quality of the ten-
tative solutions in the computer. The genetic variation
processes of mutation and recombination are seen as
mechanisms (search operators) to generate new tenta-
tive solutions to the problem. Finally, natural selection
is interpreted as a mechanism to promote the diffusion
and mixing of the genetic material of individuals rep-
resenting good quality solutions, and, therefore, hav-
ing the potential to create even fitter individuals (better
solutions).

Typically evolutionary algorithms have the follow-
ing form [?]:

1. Initialise population and evaluate the fitness of
each population member

2. Repeat until a stopping condition is satisfied

(a) Select sub-population for reproduction on
the basis of fitness (Selection)

(b) Copy some of the selected individuals (Re-
production), perform Crossover or Mutation
on the remaining selected individuals

(c) Evaluate the fitness of the new population

1876-1364/0-1900/$17.00 c© 0 – IOS Press and the authors. All rights reserved

2 /

Although a lot more goes on in natural evolution, these
ingredients are in fact sufficient to obtain artificial sys-
tems with the ability to find high quality individuals.

For all the phases in a EA there exist many different
realisations. For example, there are many alternative
genetic representations for solutions, the most impor-
tant being binary strings, real-valued vectors, permuta-
tions, and trees. Also particularly striking is the case of
the genetic operators (crossover and mutation), where
there are completely different classes of operators for
different representations. Also, even focusing on one
representation, there are almost as many alternative re-
alisations of crossover and mutation in the literature as
there are researchers working in EC.

This is certainly a healthy situation, but it makes it
difficult to understand the difference and similarities
between different evolutionary methods. This has led
us to start a research programme attempting to unify
alternative operators and representations under a single
more general theory [?]. In particular, in [?] we de-
fined the geometric crossovers (also known as topolog-
ical crossovers), which are a class of representation-
independent operators that are well-defined once a no-
tion of distance over the solution set is defined. All
these operators have in common the fact that the off-
spring they produce are between their parents.1

This simple definition has surprising implications,
including a powerful way to do crossover design for
any representation and the potential for the develop-
ment of a general theory of evolutionary algorithms
encompassing all representations. Alternative ways of
linking a notion of distance to recombination operators
are possible and have been actively pursued (see e.g.,
[?]).

In this paper we will focus in particular on the per-
mutation representation (see [?] for an introduction).
This is one of the most-frequently used representa-
tions in evolutionary algorithms. Many combinatorial
optimisation problems, including TSP and scheduling
problems, are naturally cast using permutations.

When applied to permutations, traditional crossover
operators can produce invalid offspring. So, re-
searchers have proposed a variety of operators specif-
ically designed for permutations. They range from
general-purpose operators working reasonably well on
a wide spectrum of problems, such as the Partially
Matched Crossover [?], to specialised operators that

1Note, however, that the meaning of the term “between” depends
on the representation and the distance chosen.

work best on a specific class of problems [?], such as
Edge Recombination Crossover for TSP [?].

In previous work [?] we have shown how geomet-
ric crossover generalises the notion of crossover for bi-
nary strings. Differently from the binary string case,
for which a single natural distance (the Hamming dis-
tance) is defined, permutations allow for various no-
tions of distance that are all equally natural. In this
paper, we explore how our geometric framework ap-
plies to the permutation representation and in partic-
ular analyse the consequences of having more than
one notion of distance available. We study the rela-
tions among distances and we build a rational picture
in which pre-existing recombination operators fit nat-
urally. As an important example, we also analyse in
detail the application of geometric crossover to TSP.

The paper is organised as follows. In section 2, we
introduce the geometric framework. Section 3 intro-
duces various notions of distance for permutations.
Section 4 focuses on distances based on permutation
interpretation and discusses the difficulty with geomet-
ric crossovers based on such distances. Section 5 intro-
duces various edit distances. Section 6 shows that ge-
ometric crossover is naturally suited to edit distances.
Section 7 draws a parallel between “interpretation”
distances and edit distances and suggests that geo-
metric crossovers defined over edit distances can be
thought as geometric crossovers defined over the cor-
responding interpretation distances. In section 8, we
suggest that many pre-existing recombination opera-
tors for permutations are in fact geometric crossovers
under different edit distances. Section 9 gives an anal-
ysis of geometric crossover for the TSP problem, dis-
cussing problems in its applicability and solutions. In
section 10 we present our conclusions.

2. Geometric Framework

A configuration space C is a pair (G,Nhd) where
G is a set of configurations (genotypes) and Nhd :
G → 2G is a neighbourhood function which maps
every configuration in C to the set of all its neigh-
bour configurations in C which can be obtained by
applying any unitary move from a pre-specified set.
The neighbourhood function is generally symmetric
(y ∈ Nhd(x)⇔ x ∈ Nhd(y) , which is to say moves
are reversible) and connected (any configuration can
be transformed into any other in a finite number of
moves). The same configuration set may be associated
with more than a configuration space if multiple neigh-

/ 3

bourhood functions are available. The neighbourhood
function induces an undirected neighbourhood graph
(or neighbourhood structure)W = (V,E), where V is
the set of vertices representing configurations and E is
the set of edges representing the relationship of neigh-
bourhood between configurations. The neighbourhood
structure is symmetric and connected. Thus, this space
is also a metric space provided with a distance func-
tion d induced by the neighbourhood function which
assigns as distance between any two configurations the
length of a shortest path linking them in the neighbou-
hood structure. Both Nhd and d identify univocally
the structure of the space, so we can equivalently write
C = (G,Nhd) or C = (G, d). A fitness landscape F
is a pair (C, f) where C = (G, d) is a configuration
space and f : G → R is a fitness function mapping
configurations to their fitness values.

In [?] we have defined two classes of
representation-independent operators, which are
defined on the representation only indirectly via
the notion of distance associated to the landscape:
geometric mutation and geometric crossover. We give
the main definitions and properties for geometric
crossover below since these are the starting point for
the work on permutations reported in this paper. Note
that alternative ways of linking a notion of distance
to mutation and recombination operators are possible
and have been actively pursued (see e.g., [?]).

In a metric space (S, d) a line segment is the set of
the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)}
where x, y ∈ S are called end-points of the segment.
The line segment can be thought of as a function of the
underlying metric d.

A g-ary genetic operator OP takes g parents
p1, p2, ..., pg ∈ C and produces one offspring c ∈ C
according to a given conditional probability distribu-
tion:
Pr{OP (p1, p2, ..., pg) = c} = fOP (c|p1, p2, ..., pg)

Definition 1 (Image set) The image sets
Im[OP (p1, p2, ..., pg)] of a genetic operator OP are
the sets of all possible offspring that may be produced
by OP from the parents p1, p2, ..., pg .

Definition 2 (Geometric crossover) A binary operator
is a geometric crossover under the metric d if all off-
spring are in the segment between their parents for the
distance d.

Definition 3 (Uniform geometric crossover) Uniform
geometric crossover UX is a geometric crossover

where all z laying between parents x and y have the
same probability of being the offspring:

fUX(z|x, y) = δ(z ∈ [x; y])

|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

Theorem 1 The structure over the configuration space
C is equivalently identified by the set G of the con-
figurations together with any one of the following el-
ements: 1. the neighbourhood function Nhd, 2. the
neighbourhood graph W = (V,E), 3. the distance
function d, 4. the uniform geometric crossover UX , 5.
the set of all segments H .

Corollary 1 Given a structure of the configuration
search space in terms of neighbourhood function or
distance function, UX is unique.

Corollary 2 Given a representation, there are as
many UX operators as notions of distance for the rep-
resentation.

The following two properties apply to binary
strings:

Theorem 2 All mask-based crossover operators for
binary strings are geometric crossovers under Ham-
ming distance.

Theorem 3 The uniform geometric crossover for
the configuration space of binary strings endowed
with Hamming distance is the traditional uniform
crossover.

3. Distances between Permutations

Differently from binary strings where a single, nat-
ural definition of distance, the Hamming distance, is
normally used, for permutations many notions of dis-
tance are equally natural. This situation is further com-
plicated by the fact that such distances relate to each
others in various ways with subtle dependencies. Fur-
ther complication arises from the fact that representa-
tions related to permutations such as circular permu-
tations and permutations with repetitions are normally
treated as if they were permutations, which is incorrect
as they allow for different notions of distance. For a
survey on metrics on permutations see [?].

Distances for permutations may have different ori-
gins:

4 /

1. Notions of distance arising from the interpreta-
tion of permutations: these measure the distance
between the objects represented by two permuta-
tions (phenotypes).

2. Notions of distance directly connected with the
syntax: these distances measure how two permu-
tations differ in their syntax (genotypes).

3. Notions of distance connected with the idea of
mutation or edit distance: these distances mea-
sure the minimum number of moves necessary to
transform a permutation into another by the ap-
plication of a unitary move operator defined on
the syntax of permutations.

These three types of distances are interdependent.
For example, an edit distance is also a syntactic dis-
tance but a syntactic distance is not necessarily an edit
distance as one can define a measure of syntactic sim-
ilarity that is not defined on edit moves. In the follow-
ing three sections, we study the connections between
these three notions of distance and their suitability as
bases for geometric crossover.

In principle, given any notion of distance over the
solution set, the corresponding geometric crossover
and geometric mutation operators are well-defined.
What is a good distance to use as a basis for these op-
erators then? A good distance is one that (i) gives rise
to a fitness landscape which is easy to search for the
specific search operator employed and that (ii) allows
such operator to be implemented efficiently. The first
point is a design issue. A rule of thumb to pick a dis-
tance as a basis for geometric crossover that is likely
to produce good performance is to choose a distance
that is meaningful for the interpretation of the solution
representation (phenotype) most suited to the problem
at hand. The second point is an implementation issue.
What is a class of distances that would allow us to build
an operational procedure that implements the geomet-
ric crossover associated with them? Here we elaborate
on the latter.

Geometric crossover and mutation are well-defined
for any notion of distance, whether based on syntax
or not. In other words, operators are well-defined in-
dependently from any aspect of the underlying repre-
sentation. In practice, however, the genetic operators
have to be implemented. In this paper we show that
if they are not based on a notion of edit distance that
links them tightly to the solution representation, they
become difficult or even impossible to implement effi-
ciently. To understand the reasons for this we need to
elicit a duality relating geometry in the search space

and underlying representation. The notion of edit dis-
tance arising from the syntax of configurations has a
natural dual interpretation:

1. seen in the configuration space, it is a measure of
dissimilarity between two syntactic objects

2. seen in the neighbourhood graph, it is a mea-
sure of spatial remoteness between points in the
search space.

Importantly, an edit move is a natural unit for both
dissimilarity of configurations and discrete geometry
of the search space. As a consequence, when a search
operator is defined by means of edit moves using ge-
ometric definitions involving an edit distance, its defi-
nition has also a natural corresponding syntactical in-
terpretation. This is because the same operator can be
equivalently defined operationally by means of suit-
able combination and aggregation of edit moves origi-
nating in the syntax of the parents to produce the syn-
tax of the offspring.

For each representation and edit move definitions,
this duality manifests itself in a different way. In the
case of permutations, as we will see, picking offspring
on shortest paths between parents is equivalent to pick-
ing elements on minimal sorting trajectories from one
parent permutation to the other. This connection be-
tween the geometric notion of “belonging to a seg-
ment” and its syntactic dual of “being on a minimal
sorting trajectory” is ultimately what allows geomet-
ric crossover to be actually implemented possibly in
an efficient way. So, even if a geometric crossover is
representation-independent, when dealing with its im-
plementation the specific representation and the spe-
cific distance used make indeed the difference between
a practical operator, that can be implemented, and a
merely theoretical one, which may not admit any op-
erational definition.

4. Permutation Interpretations and Related
Distances

To fully understand distances for permutations, we
cannot separate them from permutation interpretations.
Permutations can be used to represent solutions to dif-
ferent types of problems for which different relations
among the elements in the permutation are relevant.
There are three major interpretations of a permuta-
tion [?]. For example, in TSP, permutations repre-
sent tours and the relevant information is the adja-
cency relation among the elements of a permutation. In

/ 5

resource scheduling problems, permutations represent
priority lists and the relevant information is the rela-
tive order of the elements of a permutation. In other
problems, the important characteristic is the absolute
position of the elements in the permutation.

Let us consider the permutation (345261) that might
be produced by randomly shuffling the elements of the
identity permutation (123456). If adjacency is impor-
tant then the fact that elements 4 and 5 are adjacent is
relevant as is the fact that elements 3 and 2 are not. If
the important aspect is relative order then what is rele-
vant is that 4 precedes 5 and that 3 precedes 2. If abso-
lute order is important then the relevant point is that 3
is at position 1, 4 at position 2, etc.

For each permutation interpretation, it is possible
to write a binary matrix that represents the relation
among pairs of elements in the permutation associated
with that specific interpretation. So, we can have a rel-
ative order matrix (ROM), an absolute position matrix
(APM) and an adjacency matrix (AM). For example,
for the permutation (345261) we have the following
matrices:

ROM =


0 0 0 0 0 0
1 0 0 0 0 1
1 1 0 1 1 1
1 1 0 0 1 1
1 1 0 0 0 1
1 0 0 0 0 0



APM =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0



AM =


0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
1 1 0 0 0 0


The matrix ROM describes the binary relation of

strict relative order precedence among all elements in
the permutation. In the matrix, there is an entry for
each possible pair of elements of the permutation. The
entry is 0 if the element associated with its row does
not precede in the permutation the element associated
with its column. Otherwise the entry is 1.

The matrix APM describes the binary relation of
absolute position of the elements in the permutation.

In the matrix, rows are associated with positions of the
permutation, columns are associated with elements of
the permutation. The entry is 0 if the associated ele-
ment with its column is not at the position associated
with its row. If it is, the entry is 1.

The matrix AM describes the binary relation of ad-
jacency of the elements in the permutation. In the ma-
trix, there is an entry for each possible pair of elements
of the permutation. The entry is 0 if the elements asso-
ciated with its row and column are not adjacent in the
permutation. Otherwise the entry is 1.

It is possible to define three distance functions for
permutations based on relative order matrices, abso-
lute position matrices and adjacency matrices. The dis-
tance between two permutations is then the Hamming
distance between their corresponding matrices in the
three interpretations. We refer to these distances as rel-
ative order distance (ROD), absolute position distance
(APD) and adjacency distance (AD).

For example, the ROM matrices associated with the
permutations (345261) and (123456) are, respectively,
the ROM matrix provided in the example above and
a triangular matrix filled with 1 in all entries above
the main diagonal, and 0 elsewhere. The ROD distance
between these permutations is the Hamming distance
between these two matrices, which is 16. That gives
a measure of their diversity in terms of relative order
of their elements. In [?], we have shown that ROD
and APD are metrics for permutations, while AD is
a pseudo-metric for permutations and a metric for re-
versible permutations.

Once we have these distances, we have a well-
defined notion of segment for each of them. For exam-
ple, the segment between two permutations p1 and p2
under ROD includes all the permutations whose ROM
are between the ROMs of p1 and p2. This means that
this segment includes all those permutations whose
relative order relation among their elements is com-
patible with the common relative order among the ele-
ments of p1 and p2.

Continuing the example above, the permutation
p3 = (341256) is in the ROD-segment between p1 =

(345261) and p2 = (123456). This can be verified by
computing the ROM for p3, which is:

6 /


0 1 0 0 1 1
0 0 0 0 1 1
1 1 0 1 1 1
1 1 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0



Since ROD(p1, p2) = 16, ROD(p1, p3) = 8 and
ROD(p3, p2) = 8 then p3 ∈ [p1, p2]ROD.

Geometric operators can be defined using these no-
tions of distance. So we can rigorously define rel-
ative order geometric crossover (ROX) and muta-
tion (ROM), absolute position geometric crossover
(APX) and mutation (APM), and adjacency geomet-
ric crossover (AX) and mutation (MX). ROX trans-
mits perfectly to the offspring permutations the com-
mon relative order relation among elements of par-
ent permutations. APX transmits perfectly to the off-
spring permutations the common absolute positions
of the elements of parent permutations. AX transmits
perfectly to the offspring (reversible) permutations the
common adjacency relation of the elements of parent
(reversible) permutations.

Let us consider the ROX crossover. This crossover
could be implemented by recombining the ROMs of
the parent permutations using a simple extension to
matrices of the traditional crossover for binary strings
and converting the offspring ROM into the correspond-
ing offspring permutation. The price to pay to recom-
bine permutations in this way is that offspring matri-
ces are not guaranteed to be valid ROMs correspond-
ing to feasible permutations. Hence, one may need to
deal with this form of infeasibility, for example, by us-
ing some form of repair mechanism. Note that in this
case the repaired offspring is not guaranteed anymore
to cover the common relative order of the parent per-
mutations perfectly. Analogous considerations hold for
the APX and AX crossovers.

The infeasibility problem arises from the fact that
the distances considered in this section as basis for ge-
ometric crossover are not directly based on permuta-
tions, but on an auxiliary matrix representation. In the
next section, we consider distances defined directly on
the “syntax” of permutations, edit distances, for which
the infeasibility problem does not exist.

5. Edit distances and mutations

5.1. Mutations for Permutations

Various mutation operators have been defined for
permutations. The most common are [?]:

Inversion or 2-change (block-reversal): This operator
selects two points along the permutation then re-
verses the segment between the points. It is par-
ticularly well-suited for the TSP and for all the
problems that naturally admit a permutation rep-
resentation in which adjacency among elements
is important.

Insert and block-transposition: This operator selects
one element and inserts it at some other position
in the permutation. There is a variant: one selects
two elements and then moves the second element
before the first. This move is irreversible because
it is not possible to return to the previous permu-
tation by a single further application of the move.
These operators are used in scheduling problems
in which relative order of elements is important.

Swap and adjacent swap (two-element swap): The
swap operator selects and swaps two elements.
The adjacent swap swaps two contiguous
elements.

Scramble: This operator selects a sublist of elements
of the permutation and randomly reorders them
while leaving the other elements in the permuta-
tion in the same absolute position.

Since the notion of mutation is naturally connected
with edit moves, it is also connected with edit distances
for permutations. However, mutations and edit moves
do not coincide: an edit move is a deterministic and
unitary syntactic transformation, whereas a mutation is
a non-deterministic operator with a given probability
distribution. So, it does not always correspond to a sin-
gle edit move (a mutation can generate offspring more
than one edit move away from their parent).

A valid edit move must be symmetric and con-
nected. All the mutation operators listed above, ex-
cept for the irreversible variant of the insert mutation,
are associated with edit moves that are symmetric and
fully connected. For example, the inversion operator is
symmetric (re-reversing the same sub-list produces the
original permutation) and connected (by repeated re-
versions it is possible to reach any permutation from
any other permutation). Also the adjacent swap opera-
tor is symmetric and connected (bubble sort based on
adjacent swap is able to sort any permutation of ele-
ments). The same holds for the swap operator.

/ 7

Therefore, we can talk of reversal distance, transpo-
sition distance, swap distance, adjacent swap distance,
scramble distance and so on. Notice that there are a
number of variations for each of these distances which
result from imposing constraints on the edit move.

5.2. Relations between edit distances and
interpretation distances

Depending on the interpretation of the permutation,
the same mutation can be seen as a small change or
a major change. For example, the inversion operator
does a minimal change when one thinks of a permu-
tation in terms of adjacency, but a major change when
the same permutation is seen as a priority list (relative
order).

A single mutation should represent a minimal
change at a phenotypic level to be likely to give rise
to a smooth fitness landscape, which, in turn, may lead
to good performance [?]. According to this principle,
there are three mutation operators that make a mini-
mal change in a permutation, one for each interpreta-
tion. When the permutation is thought of as an adja-
cency relation then the minimal mutation operator is
the inversion operator: while reversing the order of a
sub-list, only two adjacency links (edges) are changed.
When the permutation represents a relative order the
minimal mutation operator is the adjacent swap oper-
ator that affects only the relative order of a pair of el-
ements. When the absolute position of elements in the
permutation is relevant, the minimal mutation operator
is the swap operator that changes the absolute positions
of only two elements.

6. Sorting crossovers

6.1. Edit distances and sorting crossovers

For each notion of edit distance there is a cor-
responding notion of geometric crossover. So, we
can define many possible crossovers for permutations,
each induced from a corresponding mutation. Since
these are crossovers based on similar, but not identical,
neighbourhood structures, they will tend to have simi-
lar behaviours. Not all geometric crossovers based on
edit distances have efficient implementations though.
Indeed, constraints on edit moves transform the com-
plexity of computing the distance, hence of imple-
menting the corresponding crossover, from polynomial
to NP-hard [?].

Because of the distance duality, a point on a seg-
ment between two permutations, under a given edit
distance, is on a minimal sorting trajectory connect-
ing the two permutations. This allows to actually im-
plement such geometric crossovers based on edit dis-
tances by sorting algorithms. Some edit distances give
rise to crossovers that can be implemented exactly and
efficiently. Others give rise to crossovers that are possi-
ble to implement efficiently (in polynomial time) only
in an approximated way. Quite interestingly, bubble
sort and insertion sort fit the definition of geometric
crossover for, respectively, the adjacent swap distance
and the swap distance. So, ordinary sorting algorithms
can actually be used as crossovers!

Not all classic sorting algorithms can be used as a
base for geometric crossover though. We can adopt
only those algorithms that use the same move through-
out the sorting, and that are guaranteed to sort al-
ways using the minimum number of move applica-
tions. Technically, these algorithms when applied to
permutations solve the “minimal permutation sorting
by x problem” [?] where x stands for the move used.
Bubble sort, insertion sort and selection sort belong to
this class of sorting algorithms, for which the sorting
move, respectively adjacent swap, insertion and swap,
is pre-specified and fixed over the whole execution of
the algorithm. Some more effective sorting algorithms,
such as quick sort, use different moves while progress-
ing with the sorting, so they cannot be used as a basis
for geometric crossovers.

In the following we highlight some important differ-
ences between sorting algorithms and crossover oper-
ators for permutations based on edit moves:

1. Sorting algorithms sort permutations into the
fully ordered permutation (123 · · ·). Crossover
operators sort one parent permutation toward the
order of the other parent permutation, which can
be any permutation. However, sorting algorithms
can be easily adapted to sort any permutation into
any other (by renaming the elements of both per-
mutations).

2. Traditional sorting algorithms are designed to
sort vectors of any type of objects coming with
a well-defined notion of order between objects:
they can sort permutations, as well as real vec-
tors, list of words, etc. Crossover operators sort
permutations, which are special in that the order-
ing rank of each element is already known, and
it is specified by the element itself (for exam-
ple, the element 2 is to be placed in position 2 in

8 /

the ordered permutation). This additional infor-
mation can be used to build different and more
efficient sorting algorithms for permutations that
do not resemble the classical ones.

3. Traditional sorting algorithms are designed to
use the minimal number of moves (exchanges
between elements), and also to do the mini-
mal number of comparisons between elements.
Crossover operators, like the traditional sorting
algorithms, require sorting using the minimal
number of moves. However, crossover operators
do not require optimality in the number of com-
parisons.

4. The purpose of sorting algorithms is to sort the
elements of a vector. The purpose of crossover
operators is, instead, to return an offspring per-
mutation on the minimal sorting trajectory be-
tween parent permutations. This can be done by
interrupting the sorting algorithm at a random
point and returning the partially sorted permuta-
tion as offspring.

5. There are two distinct categories of sorting algo-
rithms: deterministic and non-deterministic. De-
terministic sorting algorithms perform the sort-
ing always in the same way given the same per-
mutation to sort. For example, deterministic bub-
ble sort scans the permutation always from left
to right and applies the first adjacent swaps that
make closer the current permutation to the com-
plete ordered one. Non-deterministic sorting al-
gorithms are randomised sorting algorithms that
do not select the next move deterministically
but according to some randomised strategy. For
example, the uniform non-deterministic sorting
strategy for bubble sort is scanning the current
permutation considering all the sorting moves
(those that get the current permutation one move
closer to the complete order), and then select-
ing one at random and applying it. Crossover op-
erators may benefit from non-deterministic sort-
ing. That is, given the same permutation to sort,
crossover may return offspring on different min-
imal sorting trajectories in different executions.

In the following two subsections we present two
simple and efficient algorithms that implement geo-
metric crossover and geometric mutation for permuta-
tions based on edit distances.

Algorithm 1 Sorting crossover
1: Input: par1, par2 Output: offsp
2: normalised_par1 = compose(par1, inverse(par2))
3: moves = sort(normalised_par1)
4: distance = length(moves)
5: xo-point = random_int([0, distance])
6: offsp = par1
7: while xo-point > 0 do
8: offsp = compose(offsp, moves[xo-point])
9: xo-point = xo-point - 1

10: end while
11: return offsp

6.2. Implementation of sorting crossovers

In Algorithm 1 we report the pseudo-code for a
generic sorting crossover based on any edit move.
Firstly, the elements of parent1 are renumbered (nor-
malized) according to the order of the elements in
parent2. This is done by permutation composition of
parent1 with the inverse permutation of parent2. This
transformation allows us to reduce the task of sort-
ing one permutation toward a second arbitrary permu-
tation into the standard task of sorting a permutation
into a completely ordered permutation. The following
step is obtaining the sequence of edit moves that or-
der the normalised parent1 on a minimal sorting tra-
jectory. This can be done by modifying any sorting al-
gorithm that satisfies the requirement of being a “min-
imal sorting by x” algorithm in a way that, while sort-
ing, it collects the sequence of sorting moves it uses,
and it returns it. The distance between the two parent
permutations based on the edit move considered is the
number of moves on the sorting trajectory between the
two permutations returned by the modified sorting al-
gorithm. A crossover point is then selected at random
on the sorting trajectory and the offspring permutation
is obtained by applying the sequence of moves to the
first parent permutation until the crossover point has
been reached.

We obtain two different types of crossover depend-
ing on whether we use a deterministic or a non-
deterministic sorting algorithm as a basis for crossover.
The offspring of a deterministic sorting crossover all
lie on the same geodesic between their parents. The
offspring of a non-deterministic sorting crossover, in-
stead, cover all segment between their parents (because
the union of all geodesics connecting two points co-
incides with the segment between them). Notice that
the actual probability distribution of the offspring over

/ 9

Algorithm 2 Mutation operator
1: Input: par, mutation prob pm Output: offsp
2: offsp = par
3: while pm > uniform_random([0, 1]) do
4: neighbours = get_neighbours(offsp)
5: offsp = uniform_random(neighbours)
6: end while
7: return offsp

the segment is not necessarily uniform, and it depends
on the specific geometry of the space induced by the
specific edit move considered.

6.3. Implementation of edit mutation

In Algorithm 2 we report a generic geometric mu-
tation that can be used with any solution representa-
tion coming with a notion of edit distance (not only
with permutations). The parameter pm is the mutation
probability. The neighbours of a given syntactic con-
figuration are all those syntactic configurations within
the reach of a single edit move. The mutation operator
can reach any point in the space from any other with
an exponentially decreasing probability for increasing
distance.

7. Existing crossovers and permutation
interpretations

There are a number of crossover operators defined
for permutations.2 Most of them were devised with a
specific interpretation of the permutation in mind. This
is reflected in their names. So, for example, Davis’s or-
der crossover [?] emphasises the fact that a permu-
tation is seen as a relative order, cycle crossover [?]
preserves absolute positions, and edge recombination
crossover [?] focuses on the adjacency relation of the
elements in the permutation.

Some crossovers achieve their goals of transmit-
ting a specific relationship among elements from the
parents to the children perfectly (perfect crossovers),
others achieve their goals only approximately (imper-
fect crossovers). For example cycle crossover trans-
mits perfectly the common positional information of
parents to children and, so, it is a perfect crossover.
Both Davis’s order crossover and edge recombination

2For a good overview see [?] and [?]. These describe the
crossovers considered in this and the next section in detail.

are imperfect crossovers in that they are not able to
transmit perfectly the common relative order of the
parents and the adjacency relation, respectively. How-
ever, the common relative order is much easier to trans-
mit perfectly than the adjacency relation (because the
distance associated with the adjacency relation, rever-
sal distance, is NP-Hard to compute). Indeed, another
crossover, the merge crossover [?], perfectly transmits
the relative order of parents to children.

Some crossover operator is deliberately designed
to be a trade-off, transmitting part of the relative or-
der, part of the absolute position and part of the ad-
jacency relation present in the parent permutations to
the offspring permutations (hybrid crossovers). This
is indeed possible since the three relations have sub-
tle interdependencies. One of such crossover opera-
tors is the partially mapped crossover (PMX) [?]. Hy-
brid crossovers have the advantage to work reasonably
well independently from the specific interpretation of
the permutation. However, when hybrid crossovers are
compared with perfect crossovers for a specific inter-
pretation of the permutation on a problem in which this
interpretation is relevant, the hybrid ones tend to per-
form worse than the perfect ones.

8. Geometricity of pre-existing crossovers

In this section, we consider some of the most fre-
quently used recombination operators for permutations
and analyse whether they are geometric crossovers
and, if so, under what distances.

In section 6, we showed that geometric crossovers
for permutations under edit distances are naturally as-
sociated with sorting algorithms. This allows us to
implement these crossovers using sorting algorithms.
However, using sorting algorithms is not the only
way to implement these crossovers. Indeed, some pre-
existing crossovers for permutations that fit the defini-
tion of geometric crossover under edit distances don’t
really look like sorting algorithms, even if in fact they
are in fact related to them, as we will show briefly. Any
crossover for permutations which is found to be geo-
metric under edit distance produces offspring on the
minimal sorting trajectory between parents according
to some edit move. The reason why such a crossover
may not look like a sorting crossover is because it picks
offspring on a minimal sorting trajectory without gen-
erating explicitly the permutations on this trajectory.
Instead, it generates directly offspring permutations by
a single syntactic manipulation of the parent permu-

10 /

Parent 1: A B . C D E F . G H I
Crossover section: _ _ C D E F _ _ _

Parent 2: h d . a e i c . b f g
Available elements in order: b g h a i

Offspring: a i C D E F b g h

Fig. 1. Example of Davis’s order crossover.

tations equivalent to the application of a sequence of
single edit moves on a minimal sorting trajectory be-
tween parents. This is made possible by the special
property of permutations with regard to sorting (see
section 6). The recombination operators for permuta-
tions analysed in the following, which are geometric
crossovers, are sorting crossovers of the type just de-
scribed.

8.1. Order crossover

Davis’s order crossover [?] was expressly designed
to transmit information about the relative order. Fig-
ure 1 shows an example of this crossover. It begins
by copying a randomly chosen segment of parent 1,
the crossover section, into the offspring. Then, starting
from the second crossover point in parent 2, it copies
the remaining unused elements into the offspring in the
order they appear in parent 2, wrapping around at the
end of the list.

Davis’s order crossover is a hybrid crossover that
tends to preserve, only partially, all the three rela-
tions (adjacency, relative order and absolute position)
among elements. We illustrate this in the following.
The elements in the crossover section preserve relative
order, absolute position and adjacency from parent 1.
The elements copied from parent 2 do not preserve nei-
ther position nor adjacency. In the example in figure 1,
position is not respected because, for example, at po-
sition two the offspring differs from both its parents.
Adjacency is not respected either: in both parents B
(b) and C (c) are adjacent, but they are not adjacent
in the offspring. Also, the relative order information
contained in the parents is passed to the offspring only
partially. In the example, H (h) precedes I (i) in both
parents, but in the offspring i precedes h. In [?], we
proved that Davis’s order crossover is not a geometric
crossover.

Parent 1: A B . C D E . F G
Crossover section: _ _ C D E _ _

Parent 2: c f . e b a . d g

Offspring: _ _ C D E b _
Offspring: a _ C D E b _
Offspring: a f C D E b g

Fig. 2. Example of partially mapped crossover.

8.2. Partially mapped crossover

Partially mapped crossover (PMX) was proposed by
Goldberg and Lingle [?]. Figure 2 shows an example
of this crossover.

Like order crossover, PMX begins by copying a ran-
domly chosen segment of parent 1, the crossover sec-
tion, into the offspring. Then, it considers the elements
between the crossover points in parent 2 which have
not already been copied to the offspring. In the exam-
ple, these elements are b and a. For each of those el-
ements, it looks in the offspring to see what element
has been copied in its place from parent 1. In the ex-
ample, b in parent 2 is at the position of D in the off-
spring, and a in parent 2 is at the position of E in the
offspring. Then PMX places each of these elements in
parent 2, say b, in the offspring at the position occu-
pied in parent 2 by the element which is in place of b in
the offspring (D). In the example, the position ofD (d)
in parent 2 is immediately after the second crossover
point, so b is placed at that position in the offspring.
In the offspring, at the position of a in parent 2, there
is E. The position in the offspring, corresponding with
the position of E (e) in parent 2, is already filled by
another element (C). In this case, the element coming
from parent 2 (a) goes in the offspring at the position
occupied in parent 2 by the elementC (c), which in the
example is position one. When finished with the ele-
ments of the crossover section, the rest of the offspring
can be filled from parent 2 without changing positions
of the elements. In the example, f and g are filled from
parent 2 to the offspring.

PMX, like order crossover, is a hybrid crossover in
that it tends to preserve, only partially, all the three
relations (adjacency, relative order and absolute po-
sition) among elements. Adjacency is not perfectly
transmitted: in the example, in both parents a (A) and
b (B) are adjacent, but in the offspring they are not.
Common relative order of the elements of the parents
is not preserved either: in the example, in both par-

/ 11

Positions: 1 2 3 4 5 6 7 8 9 10 11 12
Parent 1: A B C D E F G H I J K L
Parent 2: h k c e f d b l a i g j
Cycle label: 1 2 3 4 4 4 2 1 1 1 2 1

Offspring: A k C e f d b H I J g L

Fig. 3. Example of cycle crossover.

ents b (B) comes before d (D), but in the offspring b
comes after D. Also, position-wise values are not per-
fectly transmitted: in the example, at position six the
elements in the parents are F and d, but the element
at that position in the offspring (b) is neither of them.
Notice, however, that when both parents have the same
element at the same position, also the offspring will
have that element at that position. In [?], we proved
that PMX is geometric under swap distance.

8.3. Cycle crossover

Cycle crossover [?] is concerned with preserving as
much information as possible about the absolute posi-
tion in which elements occur. Figure 3 shows an exam-
ple of this crossover. Cycle crossover has two phases.
Firstly, it divides the elements into cycles. A cycle is
a subset of elements that has the property that each el-
ement always occurs paired with another element of
the same cycle when the two parents are aligned. Sec-
ondly, the offspring are created by selecting randomly
cycles from the parents. In the example, the elements
a, h, i, j and l belong to cycle 1, the elements b, g and k
belong to cycle 2, the element c belong to cycle 3, and
the remaining elements (d, e and f) belong to cycle 4.
The offspring was formed by passing to the offspring
the elements of cycles 1 and 3 from parent 1, and the
elements of cycle 2 and 4 from parent 2.

Since all elements in the offspring occupy the same
positions as in one of the two parents, cycle crossover
preserves perfectly the absolute positions of the par-
ents. Relative order is not transmitted perfectly (see el-
ements h and k in the example). Also, adjacency is not
preserved perfectly (in the example, in both parents a
and k are not adjacent, but in the offspring they are ad-
jacent). In [?], we proved that Cycle crossover is geo-
metric under Hamming distance restricted to permuta-
tions and that it is also geometric under swap distance.

8.4. Merge crossovers

Merge crossovers 1 and 2 [?] use a global prece-
dence vector to recombine parent permutations (see

Parent 1: C F G B A H D I E J
Parent 2: E B G J D I C A F H
Precedence: A B C D E F G H I J

Offspring: C B G F A H D E I J (MX1)

Offspring: C E B F G A H D I J (MX2)

Fig. 4. Example of merge crossover 1 and 2.

figure 4). Given any two elements in the permutation,
the global precedence vector indicates which element
has higher priority for processing (elements which ap-
pear earlier in the vector have higher precedence).

Let us consider merge crossover 1. Parents are pro-
cessed from left to right. At position 1, parent 1 has
C and parent 2 has E. Since C has precedence on E,
C is copied to the offspring at position 1. Since C has
already been allocated a position in the offspring, the
C which appears later in parent 2 is swapped with E
at the position 1 of parent 2. The second position will
be processed next in the same way. When all positions
have been processed, both parents are transformed into
copies of the same offspring. Merge crossover 2 dif-
fers from merge crossover 1 in that when an element
is added to the offspring it is deleted from both parents
instead of being swapped. The deletion treats permu-
tations as lists. Therefore, the deletion of an element
does not leave an empty position in the permutations.
After all elements have been processed, both parents
are transformed into empty lists.

Merge crossover 1 does not preserve perfectly the
absolute position relation between elements (see ele-
ments of the parents and of the offspring at position
4 in the example). It does not transmits the adjacency
relation either (elements F and A are non-adjacent in
both parents, but they are adjacent in the offspring).
Although in this example the common relative order of
the elements of the parents is perfectly transmitted to
the offspring, this does not hold in general.3 In [?], we
proved that Merge crossover 1 is a geometric crossover
under swap distance.

Merge crossover 2 does not preserve perfectly the
absolute position relation between elements (see ele-
ments of the parents and of the offspring at position
4 in the example). It does not transmits the adjacency

3For a counterexample, consider parent permutations
(ACDEB) and (BACDE), and precedence vector (BCDEA).
In this case, the offspring permutation is (BCDEA). In both
parents, A precedes C, but in the offspring C precedes A.

12 /

relation either (elements B and G are adjacent in both
parents, but they are not adjacent in the offspring).
However, merge crossover 2 transmits perfectly the
common relative order of the elements of the parents to
the offspring. In [?], we proved that Merge crossover
2 transmits perfectly the common relative order of the
elements of the parents to the offspring, and as a con-
sequence it is a geometric crossover under ROD (Ham-
ming distance between relative order matrices).

9. Sorting crossover for TSP

Edge recombination [?] is an operator expressly
designed for TSP. It considers a solution as a tour of
cities. Therefore, rather than being defined for permu-
tations it is defined over circular permutations. In its
various improvements its stated objective is to greedily
recombine parent tours in order to transmit as much as
possible the adjacency relation, introducing in the off-
spring tours the minimum number of “foreign” edges
not present in either parent [?].

As in the linear case, also circular permutations can
be represented with an adjacency matrix. Again, the
segment between the parent circular permutations (un-
der Hamming distance for the adjacency relation ma-
trix) contains all the feasible offspring circular permu-
tations that perfectly respect the adjacency relation of
their parents. The geometric crossover for circular per-
mutations under this notion of distance is well-defined
and actually achieves what edge recombination can
only aspire to. However, this is only a theoretical oper-
ator that cannot be directly implemented.

In the case of circular permutations, the block-
reversal move is the notion of edit distance closest to
the adjacency matrix distance. In a single application
to a tour, this introduces the minimal change to the ad-
jacency relation among elements in the permutation.
This move is the well-known 2-change move, and it
is the basis for successful local search algorithms for
TSP [?]. Figure 5 shows the possible offspring (the
segments) between two circular permutations (parents)
under geometric crossover.

Analogously to the linear case, the circular permu-
tations in the segment under reversal distance are those
laying in a minimal sorting trajectory from a parent
circular permutation to the other. Sorting circular per-
mutations by reversals is NP-hard [?]. So, the geomet-
ric crossover under this notion of distance cannot be
implemented efficiently.

Fig. 5. Example of geometric crossover between two circular per-
mutations. The parents are the configurations at the top and at the
bottom. The set of all possible offspring are all intermediate config-
urations obtained by transforming (i.e., sorting) one parent into the
other using the minimum number of reversal moves. As there are
multiple minimal sorting trajectories, offspring configurations may
lay on separate paths. The offspring are in the segment between the
parents under reversal distance as, on minimal sorting trajectories,
the sum of the reversal distances between any intermediate config-
uration and the initial and target configurations equals the reversal
distance between those configurations.

Sorting circular permutations by reversals is tightly
connected with the problem of sorting linear permuta-
tions by reversals. So, all the algorithms developed for
the latter task can be used with minor modifications
also for the former [?]. Sorting linear permutations
by reversals is NP-hard, too [?]. However, a number
of approximation algorithms (running in polynomial
time) exist to solve this problem within a bounded er-
ror from the optimum [?]. This allows implementing
efficiently approximate geometric crossovers.

9.1. Experiments

We have implemented an efficient approximate geo-
metric crossover for circular permutations under rever-
sal distance based on the algorithm for sorting permu-
tations by reversals by Kececioglu and Sankoff [?].4

This algorithm achieves a worst-case approximation of
a factor of 2. In other words, in the worst case, it sorts
permutations using twice the minimum number of re-
versals needed. However, on average the approxima-
tion factor is close to 1. It has (worst-case) time com-
plexity O(n2), where n is the number of elements of
the permutations to sort. The approximated geometric
crossover uses the algorithm for sorting permutations
by reversals to generate all permutations on a sorting
trajectory by reversals between the two parent permu-
tations, and it returns one of those permutations drawn
at random as offspring.

We have tested our sorting crossover on the fol-
lowing frequently used problem instances of the well-
known library of TSP problems TSPLIB5 : eil51, gr96,
eil101, lin105, d198, kroA200, lin318 and pcb442. The
number in the name is the size of the instance (number
of cities).

4The authors want to express their gratitude to John Kececioglu
and David Sankoff for making the source code of their algorithm
available.

5TSPLIB can be downloaded from http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/.

/ 13

Fig. 6. A typical run (on instance KroA200) showing the perfor-
mance curves for PMX (dotted line), ERX (solid line), and SBRX
(dashed line). The generation number is on the abscissa, the average
fitness over 30 runs of the best individual in the population is on the
ordinate.

We compared three different recombination opera-
tors under the same setting: PMX, Edge Recombina-
tion (EX), which is known to be a very good operator
for TSP, and sorting by reversal geometric crossover
(SBRX). Since we wanted to compare the performance
of the recombination operators alone, no mutation was
used. We used a generational genetic algorithm with
probability of crossover 1 and linear ranking. The pop-
ulation size was set to 20 times the problem instance
size. As stop criterion we used population conver-
gence. The ratio between population size and problem
instance was chosen to allow the best recombination to
reach a near optimal solution before population con-
vergence for all instances. No other parameter tuning
was performed.

We run 30 independent runs for each problem. In ta-
ble 1 we report, for each operator, the average and the
standard deviation of the best fitness found, and the av-
erage and standard deviation of the number of fitness
evaluation until convergence. In terms of solution qual-
ity, PMX is always the worst. ERX performs slightly
better than SBRX for small instances (eil51 and gr96),
but SBRX performs better on all the other instances.
In particular, SBRX performs better and better against
ERX as the instance size grows. In terms of number of
iterations to convergence, better performing operators
tend to take more time to converge. However, the extra
time is only a fraction of the overall running time.

In figure 6 we show a plot of the fitness of the best
individual in the population over time for a run with
the problem KroA200. This is a typical run: PMX pro-
duces the worst result in terms of fitness and stops ear-
lier than the other two recombination operators; ERX
has better fitness than SBRX until halfway, then SBRX
continues to improve and overtaking ERX. ERX con-
verges earlier than SBRX.

10. Conclusions

Permutations differ strongly from binary strings and
real vectors, from which the geometric framework has
originally arisen. In particular the geometric notion of
orthogonality, common to binary strings and real vec-
tors, is not present in permutations. Given this, one

might wonder about the meaningfulness on applying a
geometric framework to permutations.

As we have shown in this paper, however, not only
the geometric framework can be applied to permu-
tations, but, perhaps more importantly, it sheds light
on this representation, revealing a hidden and inti-
mate connection between geometry of permutations,
crossover and sorting algorithms.

Geometric crossover and mutation are well-defined
once one has a notion of distance over the solution
set. The permutation representation allows for three
notions of non-edit distances connected with the per-
mutation interpretations. Three geometric crossovers
based on the permutation interpretations are therefore
well-defined. However, such geometric crossovers are
hard or even impossible to implement efficiently, in
that they are based on non-edit distances.

Most of the pre-existing crossover operators for
permutations are designed around interpretations. We
have shown that they fit, some exactly and some
imperfectly, the geometric crossover definitions con-
nected with permutations interpretations. The permu-
tation representation also allows for a number of edit
distances connected with various notions of mutation.
Each notion of edit distance induces a notion of geo-
metric crossover. Because of the distance duality, un-
der a given edit distance a point on a segment be-
tween two permutations is on a minimal sorting trajec-
tory connecting the two permutations. This allows im-
plementing such crossovers using sorting algorithms.
Some edit distances give rise to crossovers that can
be implemented exactly and efficiently. Other edit dis-
tances give rise to crossovers can be implemented ef-
ficiently (in polynomial time) only in an approximated
way.

We have shown that a number of important re-
combination operators for permutations used in prac-
tice are geometric crossovers under different edit dis-
tances: PMX is geometric under swap distance, cy-
cle crossover is geometric under both hamming dis-
tance restricted to permutations and swap distance,
merge crossovers 1 and 2 are geometric crossovers un-
der swap distance and relative order distance, respec-
tively. Also, edge recombination aims to be a geomet-
ric crossover under the distance associated with the ad-
jacency relation among elements of the permutation,
but it succeeds only partially in this.

Circular permutations are tightly connected to tradi-
tional permutations but they do not coincide. We have
shown how to apply geometric crossover to TSP that
is naturally defined over circular permutations. The fit-

14 /

Table 1
Results of the comparison of recombination operators for the TSP

PMX ERX SBRX
Problem(Opt) Fitness Iterations Fitness Iterations Fitness Iterations

avg std avg std avg std avg std avg std avg std
eil51(426) 631.4 38.6 81369.7 10036.5 426.4 1.2 118221.3 11596.1 431.8 4.6 84594.2 5340.6

gr96(51229) 149118 12110.8 210688 27685.9 58608.7 5356.5 427072 100460.5 61446.7 1633.2 258560 12116.1
eil101(629) 1413.4 86.2 213042.7 19913.4 738.1 63.3 369458 127840.5 686.4 27 272498 18398.3

lin105(14379) 40969.6 3257.5 247520 23564.5 16515.1 1675.4 481460 148344.8 15804.9 368.5 312900 15602.3
d198(15780) 54746.1 4052.8 750684 63448 29673.5 1430 829224 187930 18609.8 542.1 908292 129387.5

kroA200(29368) 141416.3 11771.9 634666.7 85717.9 58603.4 1760.4 763200 95640.4 38282.9 836.7 873200 59653.7
lin318 271538.3 12078.8 1284296 100264 113785.3 6947.5 1341960 324625.9 76735.3 5069.9 1833376 104026.1
pcb442 354119.5 14325.1 2110403 155927.4 166380.4 11564.3 2079463 435060.2 106840.9 2775.2 3023575 193856

ness landscape for the TSP problem based on rever-
sals distance for circular permutations is smoother than
with any other distances; for this reason one might
expect the associated geometric crossover to perform
well. Experimental results agree with this prediction:

our proposed geometric crossover for TSP outper-
forms edge recombination, which is one of the best
crossover for this problem.

