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Abstract. Using a geometric framework for the interpretation of
crossover of recent introduction, we show an intimate connection be-
tween particle swarm optimization (PSO) and evolutionary algorithms.
This connection enables us to generalize PSO to virtually any solution
representation in a natural and straightforward way. We demonstrate
this for the cases of Euclidean, Manhattan and Hamming spaces.

1 Introduction

Particle swarm optimisation (PSO) [5] has traditionally been applied to contin-
uous search spaces. Although a version of PSO for binary search spaces has been
defined [4], attempts to extend PSO to richer spaces, e.g., combinatorial spaces,
have not been very successful.

There are two ways of extending PSO to richer spaces. Firstly one can re-
think and adapt the PSO for each new solution representation. Secondly one can
define a mathematical generalisation of the notion (and motion) of particles for
a general class of spaces. This second approach has the advantage that a PSO
can be derived in a principled way for any search space belonging to the given
class. Here we follow this approach.

In particular, we show formally how a general form of PSO (without the
inertia term) can be obtained by using theoretical tools developed for evolu-
tionary algorithms using geometric crossover and geometric mutation. These are
representation-independent operators that generalise many pre-existing search
operators for the major representations, such as binary strings [7], real vectors
[7], permutations [8], syntactic trees [8] and sequences [12].

In Sec. 2, we introduce the geometric framework and introduce the notion of
multi-parental geometric crossover. In Sec. 3, we recast PSO in geometric terms
and generalize it to generic metric spaces. In Sec. 4, we apply these notions to
the Euclidean, Manhattan and Hamming spaces. In Sec. 5, we discuss how to
specialise the general PSO automatically to virtually any solution representation
using geometric crossover. In Sec. 6, we present conclusions and future work.

2 Geometric framework

Geometric operators are defined using the notions of line segment and ball. These
notions and the corresponding genetic operators are well-defined once a notion



of distance in the search space is defined. Defining search operators as functions
of the search space is opposite to the standard way where the search space is
seen as a function of the search operators employed [3].

2.1 Geometric preliminaries

The terms distance and metric denote any real valued function that conforms to
the axioms of identity, symmetry and triangular inequality. A simple connected
graph is naturally associated to a metric space via its path metric: the distance
between two nodes in the graph is the length of a shortest path between the
nodes. Distances arising from graphs via their path metric are called graphic
distances. Similarly, an edge-weighted graph with strictly positive weights is
naturally associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is a set of the form B(x; r) = {y ∈
S|d(x, y) ≤ r} where x ∈ S and r is a positive real number. A line segment is
a set of the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are
called extremes of the segment. Metric ball and metric segment generalise the
familiar notions of ball and segment in the Euclidean space to any metric space
through distance redefinition. In general, there may be more than one shortest
path (geodesic) connecting the extremes of a metric segment; the metric segment
is the union of all geodesics.

We assign a structure to the solution set by endowing it with a notion of
distance d. M = (S, d) is a solution space and L = (M, g) is the corresponding
fitness landscape.

A family X of subsets of a set X is called convexity on X if: (C1) the empty
set ∅ and the universal set X are in X , (C2) if D ⊆ X is non-empty, then⋂
D ∈ X , and (C3) if D ⊆ X is non-empty and totally ordered by inclusion,

then
⋃
D ∈ X . The pair (X,X ) is called convex structure. The members of X are

called convex sets. By the axiom (C1) a subset A of X of the convex structure is
included in at least one convex set, namely X . From axiom (C2), A is included
in a smallest convex set, the convex hull of A: co(A) =

⋂
{C|A ⊆ C ∈ X}.

The convex hull of a finite set is called a polytope. The axiom (C3) requires
domain finiteness of the convex hull operator: a set C is convex iff it includes
co(F ) for each finite subset F of C. The convex hull operator applied to set of
cardinality two is called segment operator. Given a metric space M = (X, d) the
segment between a and b is the set [a, b]d = {z ∈ X |d(x, z) + d(z, y) = d(x, y)}.
The abstract geodetic convexity C on X induced by M is obtained as follow: a
subset C of X is geodetically-convex provided [x, y]d ⊆ C for all x, y in C. If
co denotes the convex hull operator of C, then ∀a, b ∈ X : [a, b]d ⊆ co{a, b}.
The two operators need not to be equal: there are metric spaces in which metric
segments are not all convex.

2.2 Two-parent and multi-parent geometric crossover

Definition 1. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.



The definition is representation-independent and, therefore, crossover is well-
defined for any representation. Being based on the notion of metric segment,
crossover is only function of the metric d associated with the search space.

This class of operators is really broad. For example, it includes: various types
of blend or line crossovers, box recombinations, and discrete recombinations
[7]; homologous crossovers [7, 9]; PMX, Cycle crossover and merge crossover [8];
homologous GP crossovers [11]; and several others [12, 7, 8, 10].

We now provide the following extension:

Definition 2. (Multi-parental geometric crossover) In a multi-parental geomet-
ric crossover, given n parents p1, p2, . . . , pn their offspring are contained in the
metric convex hull of the parents co({p1, p2, . . . , pn}) for some metric d

Theorem 1. (Decomposable three-parent recombination) Every recombination
RX(p1, p2, p3) that can be decomposed as a sequence of 2-parental geometric
crossovers GX and GX ′ under the same metric, so that RX(p1, p2, p3) =
GX(GX ′(p1, p2), p3), is a three-parental geometric crossover

Proof. Let P be the set of parents and co(P ) their metric convex hull. By defini-
tion of metric convex hull, for any two points a, b ∈ co(P ) their offspring are in
the convex hull [a, b] ⊆ co(P ). Since P ⊆ co(P ), any two parents p1, p2 ∈ P have
offspring o12 ∈ co(P ). Then any other parent p3 ∈ P when recombined with o12

produces offspring o123 in the convex hull co(P ). So the three-parental recombi-
nation equivalent to the sequence of geometric crossover GX ′(p1, p2) → o12 and
GX(o12, p3) → o123 is a multi-parental geometric crossover.

3 Geometric PSO

3.1 Basic, Canonical PSO Algorithm and Geometric Crossover

Consider the canonical PSO in Algorithm 1. It is well known that one can write
the equation of motion of the particle without making explicit use of its velocity.

Let x be the position of a particle and v be its velocity. Let x̂ be the current
best position of the particle and let ĝ be the global best. Let v′ and v′′ be the
velocity of the particle and x′ = x + v and x′′ = x′ + v′ its position at the
next two time ticks. The equation of velocity update is the linear combination:
v′ = w1v + w2(x̂ − x′) + w3(ĝ − x′) where w1, w2 and w3 are scalar coefficients.
To eliminate velocities we substitute the identities v = x′ − x and v′ = x′′ − x′

in the equation of velocity update and rearrange it to obtain an equation that
expresses x′′ as function of x and x′: x′′ = (1+w1−w2−w3)x

′−w1x+w2x̂+w3ĝ.
If we set w1 = 0, which corresponds to setting ω = 0 (i.e., the particle has no

inertia), x′′ becomes independent on its position two time ticks earlier x. The
equation of motion becomes:

x′′ = (1 − w2 − w3)x
′ + w2x̂ + w3ĝ. (1)

In these conditions, the main feature that allows the motion of particles is the
ability to perform linear combinations of points in the search space. As we will see



in the next section, we can achieve this same ability by using multiple (geometric)
crossover operations. This makes it possible to obtain a generalisation of PSO
to generic search spaces.

Algorithm 1 Standard PSO algorithm

1: for all particle i do

2: initialise position xi and velocity vi

3: end for

4: while stop criteria not met do

5: for all particle i do

6: set personal best x̂i as best position found so far by the particle
7: set global best ĝ as best position found so far by the whole swarm
8: end for

9: for all particle i do

10: update velocity using equation

vi(t + 1) = ωvi(t) + φ1U(0, 1)(ĝ(t) − xi(t)) + φ2U(0, 1)(x̂i(t) − xi(t)) (2)

11: update position using equation

xi(t + 1) = xi(t) + vi(t + 1) (3)

12: end for

13: end while

3.2 Geometric interpretation of linear combinations

If v1, ..., vn are vectors and a1, ..., an are scalars, then the linear combination of
those vectors with those scalars as coefficients is : a1v1+a2v2+a3v3+ · · ·+anvn .
A linear combination on n linearly independent vectors spans completely an n-
dimensional space but not a higher dimensional one. So, the linear combination
of three linearly independent points spans a 3-dimensional space but not a 4-
dimensional one.

An affine combination of vectors v1, ..., vn is a linear combination
∑

i ai · xi

in which
∑

i ai = 1. When a vector represents a point in space, the affine combi-
nation of 2 independent points spans completely the line passing through them;
the affine combination of 3 points spans completely the plane (2D line) passing
through them; increasing number of linearly independent points span completely
higher dimensional “lines”.

A convex combination is an affine combination of vectors where all coefficients
are non-negative. It is called “convex combination”, since, when vectors represent
points in space, the set of all convex combinations constitutes the convex hull.

A special case is n = 2, where a point formed by the convex combination will
lie on a straight line between two points. For three points, their convex hull is
the triangle with the points as vertices.



Theorem 2. In a PSO with no inertia (ω = 0) and where learning rates are
such that φ1 + φ2 ≤ 1, the next position of a particle x′ is within convex hull
formed by its current position x, its local best x̂ and the swarm best ĝ.

Proof. As we have seen in Sec. 3.1, when ω = 0, a particle’s update equation
becomes the linear combination in equation (1). Notice that this is an affine
combination since the coefficients of x′, x̂ and ĝ add up to 1. Interestingly, this
means that the new position of the particle is coplanar with x′, x̂ and ĝ. If we
restrict w2 and w3 to be positive and their sum to be less than 1, equation (1)
becomes a convex combination. Geometrically this means that the new position
of the particle is in the convex hull formed by (or more informally, between) its
previous position, its local best and the swarm best.

In the next section, we generalize this simplified form of PSO from real vectors
to generic metric spaces. Mutation will be required to extend the search beyond
the convex hull.

3.3 Convex combinations in metric spaces

Linear combinations are well-defined for vector spaces, algebraic structures en-
dowed with scalar product and vectorial sum. A metric space is a set endowed
with a notion of distance. The set underlying a metric space does not normally
come with well-defined notions of scalar product and sum among its elements.
So a linear combination of its elements is not defined. How can we then define
a convex combination in a metric space? Vectors in a vector space can easily be
understood as points in a metric space. However, the interpretation of scalars
is not as straightforward: what do the scalar weights in a convex combination
mean in a metric space?

As seen in Sec. 3.2, a convex combination is an algebraic description of a
convex hull. However, even if the notion of convex combination is not defined
for metric spaces, convexity in metric spaces is still well-defined through the
notion of metric convex set that is a straightforward generalization of traditional
convex set. Since convexity is well-defined for metric spaces, we still have hope
to generalize the scalar weights of a convex combination trying to make sense of
them in terms of distance.

The weight of a point in a convex combination can be seen as a measure
of relative linear attraction toward its corresponding point versus attractions
toward the other points of the combination. The closer the weight to one, the
stronger the attraction to its corresponding point. The point resulting from a
convex combination can be seen as the equilibrium point of all the attraction
forces. The distance between the equilibrium point and a point of the convex
combination is therefore a decreasing function of the level of attraction (weight)
of the point: the stronger the attraction, the smaller its distance to the equilib-
rium point. This observation can be used to reinterpret the weights of a convex
combination in a metric space as follows: y = w1x1 + w2x2 + w3x3 with w1, w2

and w3 greater than zero and w1 + w2 + w3 = 1 is generalized to mean that y is
a point such that d(x1, y) ∼ 1/w1, d(x2, y) ∼ 1/w2 and d(x3, y) ∼ 1/w3.



This definition is formal and valid for all metric spaces but it is non-
constructive. In contrast a convex combination, not only defines a convex hull,
but it tells also how to reach all its points. So, how can we actually pick a point in
the convex hull respecting the above distance requirements? Geometric crossover
will help us with this, as we show in the next section.

The requirements for a convex combination in a metric space are:

1. Convex weights: the weights respect the form of a convex combination:
w1, w2, w3 > 0 and w1 + w2 + w3 = 1

2. Convexity: the convex combination operator combines x1, x2 and x3 and
returns a point in their metric convex hull, or simply triangle, under the
metric of the space considered

3. Coherence between weights and distances: the distances to the equilibrium
point are decreasing functions of their weights

4. Symmetry: the same value assigned to w1, w2 or w3 has the same effect
(so in a equilateral triangle, if the coefficients have all the same value, the
distances to the equilibrium point are the same)

3.4 Geometric PSO algorithm

The generic Geometric PSO algorithm is illustrated in Algorithm 2. This differs
from the standard PSO (Algorithm 1) in that: there is no velocity, the equation
of position update is the convex combination, there is mutation and the param-
eters w1, w2, and w3 are non-negative and add up to one. The specific PSO
for the Euclidean, Manhattan and Hamming spaces use the randomized convex
combination operators described in Sec. 4 and space-specific mutations.

Algorithm 2 Geometric PSO algorithm

1: for all particle i do

2: initialise position xi at random in the search space
3: end for

4: while stop criteria not met do

5: for all particle i do

6: set personal best x̂i as best position found so far by the particle
7: set global best ĝ as best position found so far by the whole swarm
8: end for

9: for all particle i do

10: update position using a randomized convex combination

xi = CX((xi, w1), (ĝ, w2), (x̂i, w3)) (4)

11: mutate xi

12: end for

13: end while



4 Geometric PSO for specific spaces

4.1 Euclidean space

Geometric PSO for the Euclidean space is not an extension of the traditional
PSO. We include it to show how the general notions introduced in the previous
section materialize in a familiar context. The convex combination operator for
the Euclidean space is the traditional convex combination that produces points
in the traditional convex hull.

In Sec. 3.3, we have mentioned how to interpret the weights in a convex
combination in terms of distances. In the following we show analytically how the
weights of a convex combination affect the relative distances to the equilibrium
point. In particular we show that the relative distances are decreasing functions
of the corresponding weights.

Theorem 3. In a convex combination, the distances to the equilibrium point
are decreasing functions of the corresponding weights.

Proof. Let a, b and c be three points in R
n and x = waa+wbb+wcc be a convex

combination. Let us now decrease wa to w′

a = wa−∆ such that w′

a, w′

b and w′

c still
form a convex combination and that the relative proportions of wb and wc remain

unchanged:
w′

b

w′

c

= wb

wc
. This requires w′

b and w′

c to be w′

b = wb(1+∆/(wb+wc)) and

w′

c = wc(1+∆/(wb+wc)). The equilibrium point for the new convex combination
is x′ = (wa −∆)a+wb(1+∆/(wb +wc))b+wc(1+∆/(wb +wc))c. The distance
between a and x is |a− x| = |wb(a− b) + wc(a− c)| and the distance between a
and the new equilibrium point is |a−x′| = |wb(1+∆/(wb +wc))(a− b)+wc(1+
∆/(wb + wc))(a− c)| = (1 + ∆/(wb + wc))|a− x|. So when wa decreases (∆ > 0)
and wb and wc maintain the same relative proportions, the distance between
the point a and the equilibrium point x increases (|a − x′| > |a − x|). Hence
the distance between a and the equilibrium point is a decreasing function of wa.
For symmetry this applies to the distances between b and c and the equilibrium
point: they are decreasing functions of their corresponding weights wb and wc,
respectively.

The traditional convex combination in the Euclidean space respects the four
requirements for a convex combination presented in Sec. 3.3.

4.2 Manhattan space

In the following we first define a multi-parental recombination for the Manhattan
space and then prove that it respects the four requirements for being a convex
combination presented in Sec. 3.3.

Definition 3. (Box recombination family) Given two parents a and b in
R

n, a box recombination operator returns offspring o such that oi ∈
[min(ai, bi), max(ai, bi)] for i = 1 . . . n.



Theorem 4. (Geometricity of box recombination) Any box recombination is ge-
ometric crossover under Manhattan distance

Theorem 4 is an immediate consequence of the product geometric crossover
theorem.

Definition 4. (Three-parent Box recombination family) Given three parents a,
b and c in R

n, a box recombination operator returns offspring o such that oi ∈
[min(ai, bi, ci), max(ai, bi, ci)] for i = 1 . . . n.

Theorem 5. (Geometricity of three-parent box recombination) Any three-parent
box recombination is geometric crossover under Manhattan distance

Proof. We prove it by showing that any multi-parent box recombination
BX(a, b, c) can be decomposed as a sequence of two simple box recombinations.
Since simple box recombination is geometric (Theorem 4), this theorem is a sim-
ple corollary of the multi-parental geometric decomposition theorem (Theorem
1).

We will show that o′ = BX(a, b) followed by BX(o′, c) can
reach any offspring o = BX(a, b, c). For each i we have oi ∈
[min(ai, bi, ci), max(ai, bi, ci)]. Notice that [min(ai, bi), max(ai, bi)] ∪
[min(ai, ci), max(ai, ci)] = [min(ai, bi, ci), max(ai, bi, ci)]. We have two
cases: (i) oi ∈ [min(ai, bi), max(ai, bi)] in which case oi is reachable by the
sequence BX(a, b)i → oi, BX(o, c)i → oi; (ii) oi 6∈ [min(ai, bi), max(ai, bi)]
then it must be in [min(ai, ci), max(ai, ci)] in which case oi is reachable by the
sequence BX(a, b)i → ai, BX(a, c)i → oi

Definition 5. (Weighted multi-parent Box recombination) Given three parents
a, b and c in R

n and weights wa, wb and wc, a weighted box recombination
operator returns offspring o such that oi = wai

ai + wbi
bi + wci

ci for i = 1 . . . n,
where wai

, wbi
and wci

are a convex combination of randomly perturbed weights
with expected values wa, wb and wc

The difference between box recombination and linear recombination (Eu-
clidean space) is that in the latter the weights wa, wb and wc are randomly per-
turbed only once and the same weights are used for all the dimensions, whereas
the former one has a different randomly perturbed version of the weights for
each dimension.

The weighted multi-parent box recombination belongs to the family of
multi-parent box recombination because oi = wai

ai + wbi
bi + wci

ci ∈
[min(ai, bi, ci), max(ai, bi, ci)] for i = 1 . . . n, hence it is geometric.

Theorem 6. (Coherence between weights and distances) In weighted multi-
parent box recombination, the distances of the parents to the expected offspring
are decreasing functions of the corresponding weights.

The proof of theorem 6 is a simple variation of that of theorem 3.
In summary in this section we have introduced the weighted multi-parent

box recombination and shown that it is a convex combination operator satisfying



the four requirements of a metric convex combination for the Manhattan space:
convex weights by definition (Definition 4), convexity (geometricity, Theorem
5), coherence (Theorem 6) and symmetry (self-evident).

4.3 Hamming space

In the following we first define a multi-parental recombination for binary strings
that is a straightforward generalization of mask-based crossover with two par-
ents and then prove that it respects the four requirements for being a convex
combination in the Hamming space presented in Sec. 3.3.

Definition 6. (Three-parent mask-based crossover family) Given three parents
a, b and c in {0, 1}n, generate randomly a crossover mask of length n with
symbols from the alphabet {a, b, c}. Build the offspring o filling each position
with the bit from the parent appearing in the crossover mask at the position.

The weights wa, wb and wc of the convex combination indicate for each
position in the crossover mask the probability of having the symbols a, b or c.

Theorem 7. (Geometricity of three-parent mask-based crossover) Any three-
parent mask-based crossover is geometric crossover under Hamming distance

Proof. We prove it by showing that any three-parent mask-based crossover can
be decomposed as a sequence of two simple mask-based crossovers. Since simple
mask-based crossover is geometric, this theorem is a simple corollary of the
multi-parental geometric decomposition theorem (Theorem 1).

Let mabc the mask to recombine a, b and c producing the offspring o. Let
mab the mask obtained by substituting all occurrences of c in mabc with b and
mbc the mask obtained by substituting all occurrences of a in mabc with b. Now
recombine a and b using mab obtaining b′. Then recombine b′ and c using mbc

where the b’s in the mask stand for alleles in b′. The offspring produced by the
second crossover is o, so the sequence of the two simple crossovers is equivalent
to the three-parent crossover. This is because the first crossover passes to the
offspring the all genes it needs to take from a according to mabc and the rest of
the genes are all from b; the second crossover corrects those genes that should
have been taken from parent c according to mabc but were taken from b instead.

Theorem 8. (Coherence between weights and distances) In weighted three-
parent mask-based crossover, the distances of the parents to the expected offspring
are decreasing functions of the corresponding weights.

Proof. We want to know the expected distance from parent p1, p2 and p3 and
their expected offspring o as a function of the weights w1, w2 and w3. To do
so, we first determine, for each position in the offspring, the probability to be
the same as p1. From that then we can easily compute the expected distance
between p1 and o. We have that

pr{o = p1} = pr{p1 → o}+pr{p2 → o} ·pr{p1|p2}+pr{p3 → o} ·pr{p1|p3} (5)



where: pr{o = p1} is the probability of a bit of o at a certain position to be
the same as the bit of p1 at the same position; pr{p1 → o}, pr{p2 → o} and
pr{p3 → o} are the probabilities that a bit in o is taken from parent p1, p2 and p3,
respectively (these coincide with the weights of the convex combination w1, w2

and w3); pr{p1|p2} and pr{p1|p3} are the probabilities that a bit taken from p2 or
p3 coincides with the one in p1 at the same location. These last two probabilities
equal the number of common bits in p1 and p2 (p1 and p3) over the length of
the strings n. So pr{p1|p2} = 1 − H(p1, p2)/n and pr{p1|p3} = 1 − H(p1, p3)/n
where H(·, ·) is the Hamming distance. So equation (5) becomes

pr{o = p1} = w1 + w2(1 − H(p1, p2)/n) + w3(1 − H(p1, p3)/n). (6)

Hence the expected distance between the parent p1 and the offspring o is:
E(H(p1, o)) = n ·(1−pr{o = p1}) = w2H(p1, p2)+w3H(p1, p3). Notice that this
is a decreasing function of w1 because increasing w1 forces w2 or w3 to decrease
since the sum of the weights is constant, hence E(H(p1, o)) decreases. Analo-
gously, E(H(p2, o)) and E(H(p3, o)) are decreasing functions of their weights w2

and w3, respectively.

In summary in this section we have introduced the weighted multi-parent
mask-based crossover and shown that it is a convex combination operator sat-
isfying the four requirements of a metric convex combination for the Hamming
space: convex weights by definition (Definition 5) , convexity (geometricity, The-
orem 7), coherence (Theorem 8) and symmetry (self-evident).

5 Towards a geometric PSO for GP and other

representations

Before looking into how we can extend geometric PSO to other solution repre-
sentations, we will discuss the relation between 3-parental geometric crossover
and the symmetry requirement for a convex combination.

For each of the spaces considered in section 4, we have first considered, or
defined, a three-parental recombination and then we proved that it is a three-
parental geometric crossover by showing that it can actually be decomposed into
two sequential applications of a geometric crossover for the specific space.

However, we could have skipped altogether the explicit definition of a three-
parental recombination. In fact to obtain the three-parental recombination we
could have used two sequential applications of a known two-parental geometric
crossover for the specific space. This composition is indeed a three-parental re-
combination, it combines three parents, and it is decomposable by construction,
hence it is a three-parental geometric crossover. This, indeed, would have been
simpler than the route we took.

The reason we preferred to define explicitly a three-parental recombination is
that the requirement of symmetry of the convex combination is true by construc-
tion: if the roles of any two parents are swapped exchanging in the three-parental



recombination both positions and respective recombination weights, the result-
ing recombination operator is equivalent to the original operator.

The symmetry requirement becomes harder to enforce and prove for a three-
parental geometric crossover obtained by two sequential applications of a two-
parental geometric crossover. We illustrate this in the following. Let us consider
three parents a, b and c with positive weights wa, wb and wc which add up to one.
If we have a symmetric three-parental weighted geometric crossover ∆GX , the
symmetry of the recombination is guaranteed by the symmetry of the operator.
So, ∆GX((a, wa), (b, wb), (c, wc)) is equivalent to ∆GX((b, wb), (a, wa), (c, wc)),
hence the requirement of symmetry on the weights of the convex combination
holds. If we consider a three-parental recombination defined by using twice a
two-parental genetic crossover GX we have:

∆GX((a, wa), (b, wb), (c, wc)) = GX((GX((a, w′

a), (b, w′

b)), wab), (c, w
′

c)) (7)

with the constraint that w′

a and w′

b are positive and add up to one and wab

and w′

c are positive and add up to one. It is immediate to notice the inherent
asymmetry in this expression: the weights w′

a and w′

b are not directly comparable
with w′

c because they are relative weights between a and b. Moreover there is the
extra weight wab. This makes the requirement of symmetry problematic to meet:
given the desired wa, wb and wc, what values of w′

a, w′

b, wab and w′

c do we have
to choose to obtain an equivalent symmetric 3-parental weighted recombination
expressed as a sequence of two two-parental geometric crossovers?

For the Euclidean space, it is easy to answer this question using simple al-
gebra: ∆GX = wa · a + wb · b + wc · c = (wa + wb)(

wa

wa+wb

· a + wb

wa+wb

· b) +
wc · c. Since the convex combination of two points in the Euclidean space is
GX((x, wx), (y, wy)) = wx · x + wy · y and wx, wy > 0 and wx + wy = 1
then ∆GX((a, wa), (b, wb), (c, wc)) = GX((GX((a, wa

wa+wb

), (b, wb

wa+wb

)), wa +

wb), (c, wc)). This question may be less straightforward to answer for other
spaces, although we could use the equation above as a rule-of-thumb to map
the weights of ∆GX and the weights in the sequential GX decomposition.

Where does this discussion leave us in relation to the extension of geomet-
ric PSO to other representations? We have seen that there are two alternative
ways to produce a convex combination for a new representation: (i) explicitly
define a symmetric three-parental recombination for the new representation and
then prove its geometricity by showing that it is decomposable into a sequence
of two two-parental geometric crossovers, or (ii) use twice the simple geometric
crossover to produce a symmetric or nearly symmetric three-parental recombi-
nation. In this paper we used the first approach, but the second option is also
very interesting because it allows us to extended automatically geometric PSO
to all representations we have geometric crossovers for, such as permutations,
GP trees, variable-length sequences, to mention a few, and virtually any other
complex solution representation.



6 Conclusions and future work

We have extended the geometric framework with the notion of multi-parent
geometric crossover that is a natural generalization of two-parental geometric
crossover: offspring are in the convex hull of the parents. Then, using the geo-
metric framework, we have shown an intimate relation between a simplified form
of PSO, without the inertia term, and evolutionary algorithms. This has enabled
us to generalize in a natural, rigorous and automatic way PSO for any type of
search space for which a geometric crossover is known.

We have specialised the general PSO to Euclidean, Manhattan and Hamming
spaces, obtaining three instances of the general PSO for the specific spaces.

In future work we will consider geometric PSO for permutation spaces and
spaces of genetic programs, for which several geometric crossovers exist. We will
also test the geometric PSO experimentally.
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