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Abstract. In this paper we give a representation-independent topological defi-
nition of crossover that links it tightly to the notion of fitness landscape. Build-
ing around this definition, a geometric/topological framework for evolutionary 
algorithms is introduced that clarifies the connection between representation, 
genetic operators, neighbourhood structure and distance in the landscape. Tra-
ditional genetic operators for binary strings are shown to fit the framework. The 
advantages of this interpretation are discussed 

1   Introduction 

Fitness landscapes and genetic operators have been studied for considerable time in 
connection with evolutionary algorithms. However, a unifying theory of the two is 
missing and many questions about their relationship remain unanswered. Below we 
will briefly analyze the current situation in this respect. 

Fitness landscapes and genetic operators are undoubtedly connected. Mutation is 
intuitively associated with the neighbourhood structure of the search space. However, 
the connection between landscape and crossover is less clear. Complicated topological 
structures, hyper-neighbourhoods, have been proposed [Culberson, 1995; Jones, 1995; 
Gitchoff & Wagner, 1996; Reidys & Stadler, 2002] to formally link crossover to fit-
ness landscapes. However, even using these ideas, effectively one is left with a differ-
ent landscape for each operator [Culberson, 1995], which is deeply unsatisfactory. 
Important questions then are: is there an easier way of interpreting crossover in con-
nection to fitness landscapes? Are crossover and mutation really unrelated? 

An established way of defining a fitness landscape for search spaces where a natu-
ral notion of distance exists is to imagine that the neighbourhood of each point in-
cludes the points that are at minimum distance from that point [Back et al, 1997]. 
Once a landscape is defined, typically the notion of distance is not used further. 
Couldn’t distance play a much more important role in explaining the relationship 
between landscapes and crossover? 

Local search and many other meta-heuristics are naturally defined over the 
neighbourhood structure of the search space [Glover, 2002]. However, a peculiarity of 
evolutionary algorithms (seen as meta-heuristics) is that the neighbourhood structure 
over the search space is specified by the way genetic operators act on the representa-



tion for solutions. One may wonder whether it is possible to naturally reconcile these 
two ways of defining structure over the search space.  

Yet in another sense, solution representation and neighbourhood structure are just 
two different perspectives on the solution space. An example is the classical binary 
string representation and its geometric dual, a hypercube, which has been extremely 
useful in explaining genetic algorithms [Whitley, 1994]. Can solution representation 
and neighbourhood structure be two sides of the same coin for other representations, 
like permutation lists or syntax trees?  

The traditional mutation and crossover operators defined for binary strings have 
been extended to other representations [Langdon & Poli, 2002]. Also, there are gen-
eral guidelines for the design of such operators for representations other than binary 
[Radcliffe, 1994; Surry, 1998]. Is there a way to rigorously define, rather than design 
or extend, mutation and crossover in general, independently of the representation 
adopted? 

Except for solution representations, many evolutionary algorithms are very similar 
which suggests that unification might be possible [Stephens & Poli, 2004]. Are all 
evolutionary algorithms really the same algorithm in some sense?   

In this paper we clarify the connection between representation, genetic operators, 
neighbourhood structure and distance and we propose a new answer to the previous 
questions. The results of our work are surprising: all the previous questions are con-
nected, and that the central question to address is really only one: what is crossover?  

The paper is organized as follows. In section 2, we introduce some necessary defi-
nitions.  Geometric/topological definitions of crossover and mutation are given in 
section 3, where we also prove some properties of these operators. As an example, in 
section 4, we show how traditional mutation and crossover defined over binary strings, 
fit our general topological definitions for mutation and crossover. In section 5, we 
discuss some implications of our topological interpretation of crossover. Finally, in 
section 6, we draw some conclusions and we indicate our future research directions.   

2   Preliminary definitions 

2.1   Search problem  

Let S denote the solution set1 comprising all the candidate solutions to a given 
search problem P. The members of this set must be seen as formal solutions not relay-
ing on any specific underlying representation. 

The goal of a search problem P is to find specific solution/s in the search space that 
maximize (minimize) an objective function: 

RSg →:  

                                                           
1 We distinguish between solution set and solution space. The first refers to a collection of 

elements, while the second implies a structure over the elements. 
 



Let us assume, without loss of generality, that the goal of the search problem P is to 
maximize g. The global optima x* are points in S for which g is a maximum: 

)(max*)(** xgxgSx
Sx∈

=⇔∈  

Notice that global optima are well defined when the objective function is well de-
fined and are independent of any structure defined on S� On the contrary, local optima 
are definable only when a structure over S is defined. A search problem in itself does 
not come with any predefined structure over the solution set.  

2.2   Fitness landscape 

A configuration space C is a pair (G, Nhd) where G is a set of syntactic configura-
tions (syntactic objects or genotypes) and GGNhd 2: →  is a syntactic neighbourhood 
function which maps every configuration in C to the set of all its neighbour configura-
tions in C which can be obtained by applying a unitary syntactic modification opera-
tor. The unitary syntactic modification operator must be reversible (i.e. 

)()( yNhdxxNhdy ∈⇔∈ ) and connected (any configuration can be transformed 
into any other by applying the operator a finite number of times). Notice that a con-
figuration set may lead to more than one configuration space if multiple syntactic 
neighbourhood functions are available. 

A configuration space C=(G, Nhd) is said to be a space endowed with a neighbour-
hood structure. This is induced by the syntax of the configurations and the particular 
notion of syntactic neighbourhood function adopted. Such a neighbourhood structure 
can be associated with an undirected neighbourhood graph W= (V, E), where V is the 
set of vertices representing configurations and E is the set of edges representing the 
relationship of neighbourhood between configurations.  

Since the neighbourhood is symmetric ( )()( yNhdxxNhdy ∈⇔∈ ) and the 
neighbourhood structure is connected, this space is also a metric space provided with 
a distance function d induced by the neighbourhood function (see formal definition 
below) [Back et al, 1997]. So, we can equivalently write C=(G, Nhd) or C=(G, d). 
However, we must keep in mind that the notion of distance in the metric space of 
syntactic configurations has a syntactic nature (and, therefore, may have special fea-
tures other than respecting distance axioms). Distances arising from graphs are known 
as graphic distances [Van der Vel, 1993]. 

Formally, a metric space (M, d) is a set M provided with a metric or distance d that 
is a real-valued map on MM ×  which fulfils the following axioms for all :, 21 Mss ∈  

1. 0),( 21 ≥ssd  and 0),( 21 =ssd  if and only if 21 ss = ; 
2. ),(),( 1221 ssdssd = , i.e. d is symmetric; and 
3. ),(),(),( 322131 ssdssdssd +≤ , i.e. d satisfies the triangle inequality. 

A representation mapping is a function SGr →: associating any syntactic 
configuration in G with a formal solution in S. Ideally this mapping would be 
bijective. However, there are cases where the sizes of G and S differ.  



A fitness landscape F is a pair (C, f) where C=(G, d) is a configuration space and 
RGf →:  is a fitness function mapping a syntactic configuration to its fitness value. 

The fitness value is a positive real number. It may or may not coincide with the objec-
tive function value of the solution represented by the input genotype. For the sake of 
simplicity, we assume that it is. Therefore, the fitness function is the composition of 
the representation mapping r with the objective function g: rgf �= .  

2.3.   Topological and geometric preliminaries: balls and segments 

In a metric space ),( dS  a closed ball is the set of the form 

}),(|{);( ryxdSyyxB ≤∈= where Sx ∈ and r is a positive real number called 
the radius of the ball. A line segment (or closed interval) is the set of the form 

)},(),(),(|{];[ yxdyzdzxdSzyx =+∈= where Syx ∈, are called extremes 
of the segment. Note that ];[];[ xyyx = . The length l of the segment ];[ yx  is the 
distance between a pair of extremes ),(]);([ yxdyxl = . Let H be a segment and 

Hx ∈  is an extreme of H, there exists only one point Hy ∈ , its conjugate extreme, 
such as Hyx =];[ . Examples of balls and segments for different spaces are shown 
in Figure 1. Note how the same set can have different geometries (see Euclidean and 
Manhattan spaces) and how segments can have more than a pair of extremes. E.g. in 
the Hamming space, a segment coincides with a hypercube and the number of ex-
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Fig. 1. Balls and segments for different spaces 
 



tremes varies with the length of the segment, while in the Manhattan space, a segment 
is a rectangle and it has two pairs of extremes. Also, a segment is not necessarily 
“slim”, it may include points that are not on the boundaries.  Finally, a segment does 
not coincide with a shortest path connecting its extremes (geodesic). In general, there 
may be more than one geodesic connecting two extremes.  

3.   Topological genetic operators 

We define, postponing the justifications of these definitions to the discussion, two 
classes of operators in the landscape (i.e. using the notion of distance coming with the 
landscape): topological mutation and topological crossover. Within these classes, we 
identify two specific operators: topological uniform mutation and topological uniform 
crossover. These definitions are representation-independent and therefore the opera-
tors are well-defined for any representation. 

A g-ary genetic operator OP takes g parents gppp ,..., 21  and produces one off-

spring c according to a given conditional probability distribution: 
),...,|(}...,,|Pr{}),...,(Pr{ 21,221121 gOPggg pppcfpPpPpPcOPcpppOP =======  

Mutation is a unary operator while crossover is typically a binary operator. 
Definition 1 The image set of a genetic operator OP is the set of all possible offspring 
produced by OP when the parents are gppp ,..., 21  with non-zero probability: 

}0),...,|(|{)],...,(Im[ 2121 >∈= gOPg pppcfScpppOP  

Notice that the image set is a mapping from a vector of parents to a set of offspring. 
Definition 2 A unary operator M is a topological �-mutation operator if 

);()](Im[ εpBpM ⊆  where � is the smallest real for which this condition holds true.  

In other words, in a topological �-mutation all offspring are at most � away from their 
parent. 
Definition 3 A binary operator CX is a topological crossover if 

];[)],(Im[ 2121 ppppCX ⊆ . 

This simply means that in a topological crossover offspring lay between parents. We 
use the term recombination as a synonym of any binary genetic operator. 

We now introduce two specific operators belonging to the families defined above.  
Definition 4 Topological uniform �-mutation UM is a topological �-mutation where 
all z at most � away from parent x have the same probability of being the offspring: 

|),(|
)),((

}|Pr{)|(
ε

εδ
ε xB

xBz
xPzUMxzfUM

∈====  

),(}0)|(|{)](Im[ εεε xBxzfSzxUM M =>∈=  

where δ is a function which returns 1 if the argument is true , 0 otherwise.  
When � is not specified, we mean � = 1. 



Definition 5 Topological uniform crossover UX is a topological crossover where all z 
laying between parents x and y have the same probability of being the offspring: 

|],[|
]),[(

}2,1|Pr{),|(
yx

yxz
yPxPzUXyxzfUX

∈===== δ  

],[}0),|(|{)],(Im[ yxyxzfSzyxUX UX =>∈= .  

Theorem 1 The structure over the configuration space C can equivalently be defined 
by the set G of the syntactic configurations and one of the following objects: 1. The 
neighborhood function Nhd, 2. The neighborhood graph W= (V, E), 3. The graphic 
distance function d, 4. Uniform topological mutation UM, 5. Uniform topological 
crossover UX, 6. The set of all balls B, 7. The set of all segments H. 
Proof. 
Equivalences 1, 2 and 3 are trivial consequences of the fitness landscape definition.  
Equivalence 4: given UM one has its conditional density function )|( xzfUM  and, 

consequently, the image set mapping )](Im[ xUM , i.e. the mapping )1,( xBx � . The 
structure of the space is therefore given by }){\)1,((: xxBxNhd � . 
Equivalence 5: analogously, given UX one has the mapping ];[),( yxyx � . By 
restricting this mapping through its co-domain considering only segments of size 2, 
the corresponding restricted domain coincides with the set of edges E of the neighbor-
hood graph, hence the structure of the space is determined. 
Equivalence 6: the relation of inclusion between sets ⊆ induces a partial order in B. 
The set of all balls of radius 1 

1B  can be determined by considering all those balls in 
B that have, as only predecessors, balls of size 1 (i.e. balls of radius zero). Given a 
ball 

1B∈b  a point bx ∈  is the center of the ball if and only if 

bxxbbbxbx ′∈′∧′≠∈′∃∈′∀ ,:}){\( 1B .2 Knowing the center of each ball of 
radius 1, it is possible to form the map )1,( xBx �  and proceed as in equivalence 4.  
Equivalence 7: by considering only segments in H of size 2, one can form the set E of 
the edges of the neighborhood graph; hence, the structure of the space is determined.�     
Corollary 1 Uniform topological mutation UM and uniform topological crossover UX 
are isomorphic. 
Proof. 
Since both UM and UX identify the structure of the configuration space univocally and 
also the configuration space structure identify both operators univocally then they are 
isomorphic.�  
Corollary 2 Given a structure of the configuration search space in terms of neighbor-
hood function or graphic distance function, UM and UX are unique.  
Proof. 

                                                           
2 Given two different points in the same ball of radius 1 bxx ∈′, , they are either at distance 1 

or distance 2. If they are at a distance 2, b is the only ball in 1B satisfying this condition 
since the two points are extremes of a diameter of the ball b and identify the ball univocally. 
If they are at a distance 1, there must exist at least two balls in 1B containing xx ′, one in 
which one is the center and the other is not, and another one in which the roles are reversed; 
this symmetry holds because the neighborhood is symmetric. 



This follows trivially from the definition of UM and UX over the space structure. � 
Corollary 3 Given a representation, there are as many UM and UX operators as 
notions of graphic/syntactic distance for the representation. 
Proof. 
Given a representation, one has a configuration set for which the structure is not speci-
fied. A specific notion of graphic distance transforms the set into a space with a struc-
ture. Given such a structure, UM and UX are unique (corollary 2). � 

5.   Generalization of binary string crossover 

Given two binary strings ),...,( 11 nxxs =  and ),...,( 12 nyys =  of length n, the 

Hamming distance ),( 21 ssd H  is the number of places in which the two strings dif-
fer, i.e. 

�
=

≠=
n

i
iiH yxssd

1
21 )(),( δ  

A property of the Hamming distance is that a binary string ),...,( 13 nzzs = lays be-

tween 1s and 2s  if and only if every bit of 3s  equals al least one of the corresponding 

bits of 1s and 2s , i.e. ],[},{: 213 sssyxzi iii ∈⇔∈∀ . 

Traditional (one-point, two-point, uniform, etc.) crossovers for binary strings be-
long to the class of mask-based crossover operators [Syswerda, 1989]. A crossover 
operator is a probabilistic mapping SSScx m

m  →×: where the mask m is a 

random variable with different probability distributions for different crossover opera-
tors. The mask m  takes the form of a binary string of length n that specifies for each 
position from which parent to copy the corresponding bit to the offspring, i.e. 

321 ),( ssscxm =  and ),...,( 1 nmmm =  then )1()0( =⋅+=⋅= iiiii mymxz δδ . 

Theorem 2 All mask-based crossover operators for binary strings are topological 
crossovers. All mutations for binary strings are topological ε-mutations. 
Proof. 

We need to show that for any probability distribution over m it holds 
],[)],(Im[ 2121 sssscxm ⊆ . Out of all possible mask-based crossovers, those with a 

non-zero probability of using all the 2n masks produce the biggest image set for any 
given pair of parents. Formally, this is given by }|),({)],(Im[ 2121

n
m Bmsscxsscx ∈= . 

So, it is sufficient to prove that ],[)],(Im[ 2121 sssscx ⊆  for this image set. This is 
equivalent to prove that ],[),(: 213213 ssssscxsBm m

n ∈→=∈∀ . 

Given ),...,( 11 nxxs = , ),...,( 12 nyys =  and any mask m there exists a unique 

),...,( 13 nzzs = . From the definition of mask-based crossover it follows that 

},{: iii yxzi ∈∀ . Then, from the Hamming distance property mentioned above, it 

follows that ],[: 213 sssm ∈∀ , which completes the proof of the first part of the 

theorem. 



Let )( 12 ss µ=  be the result of mutating s1, that is )](Im[ 12 ss µ∈ , then  
εε ≤∀∃ ),(:: 212 ssds H  whereby ),( 12 εsBs ∈  with ε being the smallest possible. � 

Theorem 3. The topological uniform crossover for the configuration space of binary 
strings endowed with Hamming distance is the traditional uniform crossover. The 
topological uniform 1-mutation for the configuration space of binary strings endowed 
with Hamming distance is equivalent to a zero-or-one-bit mutation. 
Proof. 
Let us start by proving that the image sets of traditional uniform crossover and topo-
logical uniform crossover coincide. We need to show that ],[)],(Im[ 2121 sssscx = , 
where )],(Im[ 21 sscx  was defined in the proof of theorem 2, from which we know that 

],[)],(Im[ 2121 sssscx ⊆ . Consequently, all we need to prove is that 

321213 ),(:],[ ssscxBmsss m
n =∈∃→∈∀ . For the Hamming distance prop-

erty this is equivalent to say 
3213 ),(:},{: ssscxBmyxzis m

n
iii =∈∃→∈∀∀ , 

where zi are the bits of s3. From the definition of crossover this is equivalent to prov-
ing that )1()0(:},{:3 =⋅+=⋅=∈∃→∈∀∀ iiiii

n
iii mymxzBmyxzis δδ . 

This is true because it always exists at least a mask for which when the bits in the 
parents differ, it specifies the parent for which the bit equals the offspring bit. If the 
bits do not differ, the mask indifferently specifies one parent or the other for that bit. 
This shows that the image sets of traditional uniform crossover and topological uni-
form crossover coincide. 

Every element of the image set of the traditional uniform crossover has identical 
probability of being the offspring [Whitley, 1994] and the same is true for the ele-
ments of the image set of the topological uniform crossover (by definition). This com-
pletes the proof of the first part of this theorem. 

Let us now consider the zero-or-one-bit mutation. This is an operator where a string 
is either mutated by flipping one bit or is not mutated with equal probability. The 
image sets of this mutation and topological 1-mutation coincide as it is trivial to see by 
noting that the Hamming ball of radius 1, which is the image set of topological 1-
mutation, coincides with the image set of the zero-or-one-bit mutation. Every element 
of the image set of zero-or-one-bit mutation has identical probability of being the 
offspring and the same is true for the elements of the image set of the topological 
uniform 1-mutation (by definition). � 

6.   Discussion 

In the introduction, we raised various questions, claiming that this way of interpreting 
crossover lays a foundation to connect all these questions. In the following, we show 
how our framework answers those questions by highlighting the properties of the class 
of topological crossovers. 
1. Generalization: topological crossover is a generalization of the family of cross-

overs based on masks for binary representation in that it captures and generalizes 
the distinction between crossover and recombination for binary representation.  



2. Unification: from preliminary research, we believe that a variety of operators 
developed for other important representations, such as real-valued vectors, per-
mutations and syntax trees, fit our topological definitions given suitable notions 
of distance (naturally not all pre-existing operators do this, but many do).  Hence, 
topological crossover has the potential to lead to a unification of the different 
evolutionary algorithms.  

3. Representation independence: evolutionary computation theory is fragmented. 
One of the reasons is that there is not a unified way to deal with different solution 
representation (although steps forward in this direction have recently been made 
[Langdon & Poli 2002; Stephens & Poli 2004]), which has led to the develop-
ment of significantly different theories for different representations. In this con-
text, one important theoretical implication of our topological definitions is that 
the genetic operators are fully defined without any reference to the representation. 
This may pave the route to a unified treatment of evolutionary theory.  

4. Clarification: the connections between operators, representation, distance and 
neighborhood are completely clear when using topological operators.  

5. Analysis: given a certain representation with pre-existing genetic operators, it is 
easy to check whether they fit our topological definitions. If they do, their proper-
ties are unveiled. 

6. Geometric interpretation: an evolutionary algorithm using topological operators 
does a form of geometric search based on segments (crossover) and balls (muta-
tion). This suggests looking at the solution space not as a graph or hyper-graph, as 
normally done, but rather as a geometric discrete space. The notion of distance 
arising from the syntax of configurations reveals therefore a natural dual interpre-
tation:3 (i) it is a measure of similarity (or dissimilarity) between two syntactic ob-
jects; (ii) and it is a measure of spatial remoteness between points in a geometric 
space. 

7. Principled design: one important practical implication of the topological defini-
tion of crossover is the possibility of doing crossover principled design. When 
applying evolutionary algorithms to optimization problems, a domain specific so-
lution representation is often the most effective [Davis, 1991; Radcliffe, 1992]. 
However, for any non-standard representation, it is not always clear how to define 
a good crossover operator. Given a good neighborhood structure for a problem, 
all meta-heuristics defined over such a structure tend to be good. Indeed, the most 
important step in using a meta-heuristic is the definition of good neighborhood 
structure for the problem at hand [Glover, 2002]. With topological crossover, 
given a good neighborhood structure or a good mutation operator, a crossover 
operator that respects such a structure is automatically defined. This has good 
chances of performing well, being effectively a composition of unitary moves on 
the landscape. An example is shown in Figure 2, where we assume that we want 
to evolve graphs with four nodes and we are given a mutation operator for such 
graphs that either adds or removes exactly one edge. We want to define a good 

                                                           
3 Any mathematical object/property that admits a definition only based on the concept of 

distance possesses a dual nature: a syntactic one and a geometric one. 
 



crossover operator that would, for example, produce meaningful offspring when 
applied to the parent graphs in Figure 2(a). The configuration space for this prob-
lem is shown in Figure 2(b). The parent graphs are boxed while the graphs be-
longing to the segment defined by the parents are encircled. With our definition 
of topological crossover these are all possible successors, as shown in Figure 
2(c). 

 
8. Landscape and knowledge: the landscape structure is relevant to a search method 

only when the move operators used in that search method are strongly related to 
those which induce the neighborhood structure used to define the landscape [Back 
et al, 1997]. This is certainly the case for the topological operators. The problem 
knowledge used by an evolutionary algorithm that uses topological operators is 
embedded in the connectivity structure of the landscape. The landscape is there-
fore a knowledge interface between a formal problem and a formal search algo-
rithm that has no knowledge of the problem whatsoever. In order for the knowl-
edge to be transmissible from the problem to the search algorithm through the 
landscape, there are two requirements: (i) the search operators have to be defined 
over the connectivity structure of the landscape (i.e. using a distance function); 
(ii) the landscape has to be designed around the specific definitions of the opera-
tors employed in such a way to bias the search towards good areas of the search 
space so as to perform better than random search. 

�� ����
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(a) 

(b) 

(c) 

Fig. 2. Inducing crossover from mutation (see text).  
 



9. Landscape conditions: for the no free lunch theorem [Wolpert & Macready, 
1996], over all the problems, on average any search algorithm performs the same 
as random search. So in itself a given search algorithm (any meta-heuristics) is 
not inherently superior to any other. A search algorithm therefore, to be of use, 
has to specify the class of problems for which it works better than random search. 
The geometric definition of mutation (connected with the concept of ball) and the 
geometric definition of crossover (connected with the concept of segment) sug-
gest, respectively, conditions over the landscape in terms of continuity and con-
vexity. These conditions, in various guises, are important to guarantee good per-
formance in optimisation [Pardalos & Resende, 2002] and ensuring them should 
guide the landscape design for the topological operators. 

7.   Conclusions 

In this paper, we have introduced a geometric/topological framework for evolutionary 
algorithms that clarifies the connections between representation, genetic operators, 
neighbourhood structure and distance in the landscape. Thanks to this framework a 
novel and general way of looking at crossover (and mutation) that is based on land-
scape topology and geometry has been put forward. Traditional crossover and muta-
tion for binary strings have been shown to fit our topological framework, which, from 
preliminary investigations, appears to also encompass a variety of other representa-
tions and associated operators.  

This framework presents a number of additional advantages. The theory is repre-
sentation independent, and therefore it offers a unique opportunity for generality and 
unification. The theory provides a natural, direct and automatic way of deriving (de-
signing) both mutation and crossover from the neighbourhood structure of a land-
scape. Conversely, if one adopts our topological operators, one and only one fitness 
landscape is induced: that is we do not have a different landscape for each operator, 
but a common one for both.  

In future work we expect to further extend the applications of our framework to 
other representations and operators, to study the connections between this theory and 
other evolutionary computation theories (including those based on the notions of 
schema) and to investigate the links with generalized notions of convexity and conti-
nuity for the landscape. 
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