
Geometric Differential Evolution
on the Space of Genetic Programs

Alberto Moraglio1 and Sara Silva2,3

1 School of Computing, University of Kent, Canterbury, UK
a.moraglio@kent.ac.uk

2 INESC-ID Lisboa, Portugal
3 Center for Informatics and Systems of the University of Coimbra, Portugal

sara@{kdbio.inesc-id.pt,dei.uc.pt}

Abstract. Geometric Differential Evolution (GDE) is a very recently in-
troduced formal generalization of traditional Differential Evolution (DE)
that can be used to derive specific GDE for both continuous and com-
binatorial spaces retaining the same geometric interpretation of the dy-
namics of the DE search across representations. In this paper, we derive
formally a specific GDE for the space of genetic programs. The result is a
Differential Evolution algorithm searching the space of genetic programs
by acting directly on their tree representation. We present experimental
results for the new algorithm.

1 Introduction

Differential Evolution (DE) is a population-based stochastic global optimization
algorithm [16] that has a number of similarities with Particle Swarm Optimiza-
tion (PSO) and Evolutionary Algorithms (EAs), and has proven to have robust
performance over a variety of difficult continuous optimization problems [16].
The search done by DE has a natural geometric interpretation and can be un-
derstood as the motion of points in space obtained by linear combinations of
their current positions to determine their new positions.

The original formulation of DE requires the search space to be continuous
and the points in space to be represented as vectors of real numbers. There are
only few extensions of DE to combinatorial spaces [16] [15] [2] [14] and to the
space of genetic programs [13]. Some of these works recast the search in discrete
spaces as continuous search via encoding the candidate solutions as vectors of
real numbers and then applying the traditional DE algorithm to solve these
continuous problems. Other works present DE algorithms defined on combinato-
rial spaces acting directly on the original solution representation that, however,
are only loosely related to the traditional DE in that the original geometric in-
terpretation is lost in the transition from continuous to combinatorial spaces.
Furthermore, in the latter approaches every time a new solution representation
is considered, the DE algorithm needs to be rethought and adapted to the new
representation.

GDE [12] is a very recently devised formal generalization of DE that, in prin-
ciple, can be specified to any solution representation while retaining the original



geometric interpretation of the dynamics of the points in space of DE across
representations. In particular, GDE can be applied to any search space endowed
with a distance and associated with any solution representation to derive for-
mally a specific GDE for the target space and for the target representation.
GDE is related to Geometric Particle Swarm Optimization (GPSO) [7], which is
a formal generalization of the Particle Swarm Optimization algorithm [3]. Spe-
cific GPSOs were derived for different types of continuous spaces and for the
Hamming space associated with binary strings [8], for spaces associated with
permutations [11] and for spaces associated with genetic programs [17].

In previous work [12], GDE was specialized to the space of binary strings
endowed with the Hamming distance and produced good experimental results. In
this paper, we extend the study of the GDE algorithm and apply it to searching
the space of computer programs represented as parse trees. The main purpose
of this paper is to show that this is at all possible, and in particular to show
that differential mutation, the core search operator of DE that casts it apart
from PSO and EAs, can be readily derived for this non-trivial representation.
We also present an initial experimental analysis of this new algorithm, which we
call GDE-GP.

The remaining part of the paper is organized as follows. Section 2 describes
the general GDE algorithm. Section 3 presents specific GDE search operators
for parse trees. Section 4 reports an initial experimental analysis for GDE-GP
on standard GP benchmark problems. Section 5 presents the conclusions and
future work.

2 Geometric Differential Evolution

In this section, we summarize how the general GDE algorithm was derived (Al-
gorithm 2) [12] from the classic DE algorithm (Algorithm 1). The generalization
was obtained using a methodology to generalize search algorithms for continuous
spaces to combinatorial spaces [12] based on the geometric framework introduced
by Moraglio [6]. The methodology is sketched in the following. Given a search
algorithm defined on continuous spaces, one has to recast the definition of the
search operators expressing them explicitly in terms of Euclidean distance be-
tween parents and offspring. Then one has to substitute the Euclidean distance
with a generic metric, obtaining a formal search algorithm generalizing the origi-
nal algorithm based on the continuous space. Next, one can consider a (discrete)
representation and a distance associated with it (a combinatorial space) and use
it in the definition of the formal search algorithm to obtain a specific instance
of the algorithm for this space. Finally, one can use this geometric and declar-
ative description of the search operator to derive its operational definition in
terms of manipulation of the specific underlying representation. This methodol-
ogy was used to generalize PSO and DE to any metric space, obtaining GPSO
and GDE, and then to derive their search operators for specific representations
and distances. In particular for DE, the specific GDE for the Hamming space
associated with binary strings was derived. In Section 3, we derive the specific



GDE for the space of parse trees with Structural Hamming Distance (SHD) [9]
by plugging this distance in the abstract definition of the search operators.

2.1 Classic Differential Evolution

In the following, we describe the traditional DE [16] (see Algorithm 1). The char-
acteristic that sets DE apart from other Evolutionary Algorithms is the presence
of the differential mutation operator (see line 5 of Algorithm 1). This operator
creates a mutant vector U by perturbing a vector X3 picked at random from
the current population with the scaled difference of other two randomly selected
population vectors F ·(X1−X2). This operation is considered important because
it adapts the mutation direction and its step size to the level of convergence and
spatial distribution of the current population. The mutant vector is then recom-
bined with the currently considered vector X(i) using discrete recombination
and the resulting vector V replaces the current vector in the next population if
it has better or equal fitness (in line 7 of Algorithm 1, higher is better).

Algorithm 1 DE with differential mutation and discrete recombination
1: initialize population of Np real vectors at random
2: while stop criterion not met do
3: for all vector X(i) in the population do
4: pick at random 3 distinct vectors from the current population X1, X2, X3
5: create mutant vector U = X3 + F · (X1−X2) where F is the scale factor parameter
6: set V as the result of the discrete recombination of U and X(i) with probability Cr
7: if f(V ) ≥ f(X(i)) then

8: set the ith vector in the next population Y (i) = V
9: else
10: set Y (i) = X(i)
11: end if
12: end for
13: for all vector X(i) in the population do
14: set X(i) = Y (i)
15: end for
16: end while

2.2 Generalization of Differential Mutation

Let X1, X2, X3 be real vectors and F ≥ 0 a scalar. The differential mutation
operator produces a new vector U as follows:

U = X3 + F · (X1−X2) (1)

The algebraic operations on real vectors in Equation 1 can be represented graph-
ically [16] as in Figure 1(a).

Unfortunately, this graphical interpretation of Equation 1 in terms of op-
erations on vectors cannot be used to generalize Equation 1 to general metric
spaces because algebraic operations on vectors are not well-defined at this level
of generality. However, Equation 1 can be rewritten in terms of only convex
combinations of vectors. This allows us to interpret graphically this equation in
terms of segments and extension rays, which are geometric elements well-defined



(a) (b)

Fig. 1. Construction of U using vectors (a) and construction of U using convex com-
bination and extension ray (b)

on any metric space. Figure 1(b) illustrates the construction of U using convex
combination and extension ray. The point E is the intersection point of the seg-
ments [U,X2] and [X1, X3]. All the distances from E to the endpoints of these
segments can be determined from the coefficients of Equation 1 [12]. The point
U can therefore be determined geometrically in two steps: (i) determining E as
convex combination of X1 and X3; (ii) projecting X2 beyond E (extension ray)
obtaining a point U at the known required distance from E. In the Euclidean
space, the constructions of U using vectors (Figure 1(a)) and convex combina-
tions (Figure 1(b)) are equivalent. For a detailed description of the relationship
between the two interpretations see [12].

Segments and extension rays in the Euclidean space can be expressed in
terms of distances, hence, these geometric objects can be naturally generalized
to generic metric spaces by replacing the Euclidean distance with a generic metric
[12]. The differential mutation operator U = DM(X1, X2, X3) with scale factor
F can now be defined for any metric space following the construction of U
presented in Figure 1(b) as follows:

1. Compute W = 1
1+F

2. Get E as the convex combination CX(X1, X3) with weights (1−W,W )
3. Get U as the extension ray ER(X2, E) with weights (W, 1−W )

The weight pair of CX can be thought of indicating the intensity of “linear
attraction” of E to X1 and X3 respectively. So, the larger the weight of X1 the
closer E will be to it. The weight pair of ER has an analogous meaning where
the weights refer to attraction of E to X2 and U respectively. However, notice
that the unknown in the ER case is a point of attraction (U), rather than the
point on which the attraction is exerted (E) as it was the case in CX.

After applying differential mutation, the DE algorithm applies discrete re-
combination to U and X(i) with probability parameter Cr generating V . This
operator can be thought as a weighted geometric crossover and readily general-
ized as follows: V = CX(U,X(i)) with weights (Cr, 1− Cr) [12].

2.3 Definition of convex combination and extension ray

The notion of convex combination in metric spaces was introduced in the GPSO
framework [7]. The convex combination C = CX((A,WA), (B,WB)) of two



Algorithm 2 Formal Geometric Differential Evolution
1: initialize population of Np configurations at random
2: while stop criterion not met do
3: for all configuration X(i) in the population do
4: pick at random 3 distinct configurations from the current population X1, X2, X3
5: set W = 1

1+F where F is the scale factor parameter

6: create intermediate configuration E as the convex combination CX(X1, X3) with weights
(1−W, W )

7: create mutant configuration U as the extension ray ER(X2, E) with weights (W, 1−W )
8: create candidate configuration V as the convex combination CX(U, X(i)) with weights

(Cr, 1− Cr) where Cr is the recombination parameter
9: if f(V ) ≥ f(X(i)) then

10: set the ith configuration in the next population Y (i) = V
11: else
12: set Y (i) = X(i)
13: end if
14: end for
15: for all configuration X(i) in the population do
16: set X(i) = Y (i)
17: end for
18: end while

points A and B with weights WA and WB (positive and summing up to one)
in a metric space endowed with distance function d returns the set of points C
such that d(A,C)/d(A,B) = WB and d(B, C)/d(A,B) = WA (the weights of
the points A and B are inversely proportional to their distances to C). When
specified to Euclidean spaces, this notion of convex combination coincides with
the traditional notion of convex combination of real vectors.

The notion of extension ray in metric spaces was introduced in the GDE
framework [12]. The weighted extension ray ER is defined as the inverse opera-
tion of the weighted convex combination CX, as follows. The weighted extension
ray ER((A,wab), (B,wbc)) of the points A (origin) and B (through) and weights
wab and wbc returns those points C such that their convex combination with A
with weights wbc and wab, CX((A,wab), (C, wbc)), returns the point B.

The set of points returned by the weighted extension ray ER can be charac-
terized in terms of distances to the input points of ER, as follows [12]. This char-
acterization may be useful to construct procedures to implement the weighted
extension ray for specific spaces.

Lemma 1. The points C returned by the weighted extension ray ER((A,wab),
(B,wbc)) are exactly those points which are at a distance d(A,B) ·wab/wbc from
B and at a distance d(A,B)/wbc from A (see [12] for the proof).

3 GP-specific search operators for GDE

In order to specify the GDE algorithm to the specific space of genetic programs,
we need to choose a distance between genetic programs. A natural choice of
distance would be a distance (metric) associated to the Koza-style crossover
[4]. This would allow us to derive the specific GDE that searches the same
fitness landscape seen by this crossover operator. Unfortunately, the Koza-style
crossover is provably non-geometric under any metric [10], so there is no distance



associated with it4 we can use as basis for the GDE. Another crossover operator,
the homologous crossover [5] is provably geometric under Structural Hamming
Distance (SHD) [9] which is a variant of the well-known structural distance
for genetic programming trees [1]. We use this distance as basis for the GDE
because we will be able to use the homologous crossover as a term of reference.
Notice, however, that in principle, we could choose any distance between genetic
programming trees as a basis of the GDE.

3.1 Homologous crossover and Structural Hamming Distance

The common region is the largest rooted region where two parent trees have
the same topology. In homologous crossover [5] parent trees are aligned at the
root and recombined using a crossover mask over the common region. If a node
belongs to the boundary of the common region and is a function then the entire
subtree rooted in that node is swapped with it.

The structural distance [1] is an edit distance specific to genetic programming
trees. In this distance, two trees are brought to the same tree structure by
adding null nodes to each tree. The cost of changing one node into another can
be specified for each pair of nodes or for classes of nodes. Differences near the
root have more weight. The Structural Hamming Distance [9] is a variant of the
structural distance in which, when two matched subtrees have roots of different
arities, they are considered to be at a maximal distance (set to 1). Otherwise,
their distance is computed as in the original structural distance.

Definition 1. (Structural Hamming Distance (SHD)). Let T1 and T2 be trees,
and p and q their roots. Let hd(p, q) be the Hamming distance between p and q
(0 if p = q, 1 otherwise). Let si and ti be the ith of the m subtrees of p and q.

dist(T1, T2) = hd(p, q) if arity(p) = arity(q) = 0
dist(T1, T2) = 1 if arity(p) 6= arity(q)
dist(T1, T2) = 1

m+1 (hd(p, q)+
∑

i=1..m dist(si, ti)) if arity(p) = arity(q) = m

Theorem 1. Homologous crossover is a geometric crossover under SHD [9].

3.2 Convex combination

In the following, we first define a weighted version of the homologous crossover.
Then we show that this operator is a convex combination in the space of genetic
programming trees endowed with SHD. In other words, the weighted homologous
crossover implements a convex combination CX in this space.

Definition 2. (Weighted homologous crossover). Let P1 and P2 be two parent
trees, and W1 and W2 their weights, respectively. Their offspring O is generated
using a crossover mask on the common region of P1 and P2 such that for each
position of the common region, P1 nodes appear in the crossover mask with
probability W1, and P2 nodes appear with probability W2.
4 In the sense that there is no distance such that the offspring trees are always within

the metric segment between parent trees.



Theorem 2. The weighted homologous crossover is (in expectation) a convex
combination in the space of genetic programming trees endowed with SHD.

Proof. The weighted homologous crossover is a special case of homologous crossover
so it is also geometric under SHD. Therefore, the offspring of the weighted homologous
crossover are in the segment between parents as required to be a convex combina-
tion. To complete the proof we need to show that the weights W1 and W2 of the
weighted homologous crossover are inversely proportional to the expected distances
E[SHD(P1, O)], E[SHD(P2, O)] from the parents P1 and P2 to their offspring O, as
follows.

Given two trees P1 and P2, the SHD can be seen as a weighted Hamming dis-
tance on the common region of P1 and P2 where the weight wi on the distance of
the contribution of a position i in the common region depends on the arities of the
nodes on the path from i to the root node. For each position i of the common re-
gion, the expected contribution SHDi(P1, O) to the distance SHD(P1, O) of that
specific position is directly proportional to wi and inversely proportional to the weight
W1 (so, E[SHDi(P1, O)] = wi/W1). This is because, from the definition of weighted
homologous crossover, W1 is the probability that at that position the offspring O
equals the parent P1. So, the higher this probability, the smaller the expected con-
tribution to the distance at that position. Furthermore the contribution to the dis-
tance is proportional to the weight wi of the position i by definition of weighted
Hamming distance. From the linearity of the expectation operator, we have that
E[SHD(P1, O)] = E[

∑
i
SHDi(P1, O)] =

∑
i
E[SHDi(P1, O)] =

∑
i
wi/W1 = 1/W1.

The last passage holds true because by definition of SHD the sum of the weights on the
common region equals 1 (this corresponds to the case of having two trees maximally
different on the common region and their distance is 1). Analogously, for the other
parent one obtains E[SHD(P2, O)] = 1/W2. This completes the proof.

3.3 Extension ray

In the following, we first define two weighted homologous recombinations. Then
we show that these operators are extension ray recombinations in the space of
genetic programming trees endowed with SHD. The first recombination produces
offspring with the same tree structure as the second parent. The second recom-
bination is more general and can produce offspring with tree structure different
from both parents. From a geometric viewpoint, these weighted homologous re-
combinations implement two different versions of extension ray recombination
ER in the space of genetic programming trees endowed with SHD, where the
first operator produces a subset of the points produced by the second operator.

To determine a recombination that implements an extension ray operator,
it is useful to think of an extension ray operator, algebraically, as the inverse
operation of a convex combination operator. In the convex combination, the
unknown is the offspring C that can be determined by combining the known
parents P1 and P2. In the extension ray, the distance relationship between P1,
P2 and C is the same as in the convex combination, but P1 (the origin of the
extension ray) and C (the point the extension ray passes through) are known,
and P2 (the point on the extension ray) is unknown, i.e., C = CX(P1, P2) can



be equivalently rewritten as P2 = ER(P1, C) depending whether C or P2 is the
unknown.

The first weighted extension ray homologous recombination is described in
Algorithm 3. The second recombination is the same operator as the first with
the following addition before line 6 in Algorithm 3. In the common region, if
two subtrees SA(i) and SB(i) coincide in structure and contents (not only if
their root nodes TA(i) and TB(i) coincide), put in the corresponding position
i in the offspring TC a random subtree SC (with in general different structure
and contents from SA and SB). Skip the remaining nodes in the common region
covered by SA(i) and SB(i).

Notice that, in the definition of the second recombination above, any arbi-
trarily large subtree SC could be generated to be included in TC . However, in
the implementation, its size should be limited. In the experiment, we generate
SC with the same number of nodes as SA and SB .

Algorithm 3 Weighted extension ray homologous recombination 1
Inputs: parent trees TA (origin point of the ray) and TB (passing through point of the ray), with
corresponding weights wAB and wBC (both weights are between 0 and 1 and sum up to 1)
Output: a single offspring tree TC (a point on the extension ray beyond TB on the ray originating
in TA and passing through TB)

1: compute the Structural Hamming Distance SHD(TA, TB) between TA and TB

2: set SHD(TB , TC) = SHD(TA, TB)·wAB/wBC (compute the distance between TB and TC using
the weights)

3: set p = SHD(TB , TC)/(1 − SHD(TA, TB)) (the probability p of flipping nodes in the common
region away from TA and TB beyond TB)

4: set TC = TB

5: for all position i in the common region between TA and TB do
6: consider the paired nodes TB(i) and TA(i) in the common region
7: if TB(i) = TA(i) and p > random number between 0 and 1 then
8: set TC(i) to a random node with the same arity of TA(i) and TB(i)
9: end if
10: end for
11: return tree TC as offspring

Theorem 3. The weighted extension homologous ray recombinations 1 and 2
are (in expectation) extension ray operators in the space of genetic programming
trees endowed with SHD.

Proof. First we prove that TC = ER(TA, TB) by showing that TB = CX(TA, TC).
Then we prove that the expected distances E[SHD(TA, TB)] and E[SHD(TB , TC)]
are inversely proportional to the weights wAB and wBC , respectively.

Let us consider recombination 1. The offspring TC has the same structure of TB .
This is because TC was constructed starting from TB and then for each node of the
common region between TA and TB , TC was not changed or it was randomly chosen
but preserving the arity of that node in TB .

The structures of the common regions CR(TA, TB) and CR(TA, TC) coincide. This
is because the structure of the common region between two trees is only function of their
structures. So, since TB and TC have the same structure, CR(TA, TB) and CR(TA, TC)
have the same structure.

The tree TB can be obtained by homologous crossover applied to TA and TC (hence,
TC = ER(TA, TB)). This can be shown considering two separate cases, (i) nodes of TB



inherited from the common region CR(TA, TC) and (ii) subtrees of TB inherited from
subtrees of TA and TC at the bottom of the common region. Let us consider nodes
on the common region. For each node with index i in the common region, the node
TB(i) matches TA(i) or TC(i). This is true from the way TC(i) was chosen on the
basis of the values of TA(i) and TB(i). We have two cases. First, TC(i) was chosen at
random, when TA(i) = TB(i). In this case TB(i) can be inherited from TA(i), since it
may be TB(i) 6= TC(i) but TB(i) = TA(i). Second, TC(i) was chosen to equal TB(i),
when TA(i) 6= TB(i). In this case TB(i) can be inherited from TC(i). In either cases,
for nodes on the common region the corresponding nodes of TB can be inherited from
TA or TC . The subtrees of TB at the bottom of the common region can be inherited
all from TC (both structures and contents). Since by construction TC inherited those
subtrees from TB without modifying them.

To show that recombination 1 is a weighted extension homologous ray recom-
bination, we are left to show that the expected distances E[SHD(TA, TB)] and
E[SHD(TB , TC)] are inversely proportional to the weights wAB and wBC . The proba-
bility p of flipping nodes in the common region away from TA and TB beyond TB was
chosen as an appropriate function of wAB and wBC and of SHD(TA, TB) to obtain
SHD(TB , TC) such that the above requirement holds true. It is possible to prove that
the chosen p is the correct one using the same argument used in the proof of theorem 2.

Let us consider now recombination 2. In this case, the offspring TC by construction
may have structure different from TA and TB . Also, the structures of the common
regions CR(TA, TB) and CR(TA, TC) do not coincide. The structure of CR(TA, TC) is
covered by the structure of CR(TA, TB) (CR(TA, TC) is a substructure of CR(TA, TB)).
The part of CR(TA, TB) that does not cover CR(TA, TC) comprises subtrees that are
identical in structures and contents in TA and TB .

The tree TB can be obtained by homologous crossover applied to TA and TC (hence,
TC = ER(TA, TB)). This can be shown similarly as for recombination 1 but with an
extra case to consider. Nodes of TB corresponding to nodes in the common region
CR(TA, TC) can be inherited from TA or TB . The subtrees of TB at the bottom of
the common region CR(TA, TC) can be inherited all from TC (both structures and
contents). The extra case is for the subtrees of TB that are in the part of CR(TA, TB)
that does not cover CR(TA, TC). These subtrees cannot be inherited from TC , which
differs form TB by construction, but they can always be inherited from TA.

As for the requirement on the expected distances being inversely proportional to
the weights, the probability p can be chosen as the case for recombination 1 due to the
recursive definition of SHD that treats nodes and subtrees uniformly.

Now we have operational definitions of convex combination and extension
ray for the space of genetic programming trees under SHD. These space-specific
operators can be plugged in the formal GDE (Algorithm 2) to obtain a specific
GDE for the genetic programming trees space, the GDE-GP.

4 Experiments

This section reports an initial experimental analysis of the GDE-GP behavior
on four standard GP benchmark problems: Symbolic Regression of the quartic
polynomial, Artificial Ant on the Santa Fe trail, 5-Bit Even Parity, and 11-Bit
Multiplexer. In all these problems fitness is calculated so that lower values are



better. All the experiments used F = 0.8 and Cr = 0.9, according to [16]. Both
extension ray recombinations 1 and 2 were tested, giving rise to distinct tech-
niques we designate as GDE1 and GDE2. As a baseline for comparison we used
standard GP with homologous crossover (70%) and reproduction (30%), always
applying point mutation with probability 1/L, where L is the number of nodes of
the individual. We call this baseline HGP. All the experiments were performed
using populations of two different sizes (500 and 1000 individuals) initialized
with the Ramped Half-and-Half procedure [4] with an initial maximum depth of
8, allowed to evolve for 50 generations. Each experiment was repeated 20 times.
Statistical significance of the null hypothesis of no difference was determined
with pairwise Kruskal-Wallis non-parametric ANOVAs at p = 0.05.

Figure 2 shows the boxplots of the best fitness achieved along the run, using
populations of 500 individuals (top row) and 1000 individuals (bottom row).
With a population size of 500, in all four problems there is a statistically sig-
nificant difference between HGP and each of the GDE-GP techniques, and no
significant difference between GDE1 and GDE2. GDE-GP is consistently better
than HGP, regardless of the extension ray recombination used.

It may be argued that HGP is being crippled by such a small population
size, which may reduce diversity along the run. This could be true, because
when doubling the population size HGP significantly improves its best fitness
of run in all except the Parity problem. However, the GDE-GP techniques also
show significant improvements in most cases, and remain consistently better than
HGP, regardless of the extension ray recombination used, exactly as before.

HGP GDE1 GDE2
0

1

2

3

4

B
es

t F
itn

es
s

Regression − PopSize 500

HGP GDE1 GDE2
0

10

20

30

40

50

60

B
es

t F
itn

es
s

Artificial Ant − PopSize 500

HGP GDE1 GDE2
10

11

12

13

14

B
es

t F
itn

es
s

Parity − PopSize 500

HGP GDE1 GDE2
300

400

500

600

700

800

B
es

t F
itn

es
s

Multiplexer − PopSize 500

HGP GDE1 GDE2
0

1

2

3

4

B
es

t F
itn

es
s

Regression − PopSize 1000

HGP GDE1 GDE2
0

10

20

30

40

50

60

B
es

t F
itn

es
s

Artificial Ant − PopSize 1000

HGP GDE1 GDE2
10

11

12

13

14

B
es

t F
itn

es
s

Parity − PopSize 1000

HGP GDE1 GDE2
300

400

500

600

700

800

B
es

t F
itn

es
s

Multiplexer − PopSize 1000

Fig. 2. Boxplots of the best fitness achieved in each problem (× marks the mean).
Population sizes of 500 individuals (top row) and 1000 individuals (bottom row)

However, the observation of diversity, measured as the percentage of geno-
typically distinct individuals in the population, revealed somewhat unexpected
results. Figure 3 (top row) shows the evolution of the median values of diversity
along the run, for both population sizes. Not only HGP shows no clear signs of



0 25 50
0

20

40

60

80

100

Regression
D

iv
er

si
ty

0 25 50
0

20

40

60

80

100

Artificial Ant

0 25 50
0

20

40

60

80

100

Parity

0 25 50
0

20

40

60

80

100

Multiplexer

0 25 50
5

10

15

20

25

Generations

A
ve

ra
ge

 P
ro

gr
am

 L
en

gt
h

0 25 50
0

100

200

300

400

500

Generations
0 25 50

100

150

200

Generations
0 25 50

10

20

30

40

50

60

70

Generations

Fig. 3. Evolution of the median values of diversity (top row) and average program
length (bottom row) in each problem

diversity loss, regardless of population size, but GDE-GP exhibits an extraordi-
narily varied behavior, approaching both extreme values in different problems (in
Regression and Artificial Ant it practically reaches 0% while in Parity it reaches
100%), in some cases undergoing large fluctuations along the run (Multiplexer).

Finally, in Figure 3 (bottom row) we look at the evolution of the median
values of average program length along the run, for both population sizes. Once
again GDE-GP behaves radically differently from HGP, with both GDE1 and
GDE2 presenting large but smooth fluctuations in most problems, when com-
pared to the more constrained but somewhat erratic behavior of HGP. The
most interesting case is probably the Artificial Ant, where GDE-GP quickly and
steadily increases the average program length until a plateau is reached, followed
by a steep decrease to very low values. Curiously, there is no correspondingly
interesting behavior in terms of the evolution of fitness (not shown), at least
when observed in median terms. Only in the Parity problem GDE-GP exhibits a
behavior that would be expected in standard (with subtree crossover) GP runs.

5 Conclusions

Geometric DE is a generalization of the classical DE to general metric spaces. In
particular, it applies to combinatorial spaces. In this paper we have demonstrated
how to specify the general Geometric Differential Evolution algorithm to the
space of genetic programs. We have reported interesting experimental results
where the new algorithm performs better than regular GP with homologous
crossover in four typical GP benchmarks using different population sizes. In
terms of diversity and average program length, neither technique seems to be
largely influenced by the population size, most differences being the product



of large individual variations. In the future we will deepen our study of the
interesting dynamics revealed by the new algorithm.

Acknowledgments. We would like to thank Riccardo Poli for passing us the
code of the homologous crossover for genetic programs. The second author
also acknowledges project PTDC/EIACCO/103363/2008 from Fundação para
a Ciência e a Tecnologia, Portugal.

References

1. A. Ekart and S. Z. Nemeth, A Metric for Genetic Programs and Fitness Sharing,
In Proceedings of EuroGP-2000, Springer, 2000, pp. 259–270.

2. T. Gong and A. L. Tuson, Differential Evolution for Binary Encoding, Soft Com-
puting in Industrial Applications, Springer, 2007, pp. 251–262.

3. J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001.
4. J. R. Koza, Genetic Programming: On the Programming of Computers by Means

of Natural Selection, The MIT Press, 1992.
5. W. Langdon and R. Poli, Foundations of Genetic Programming, Springer, 2002.
6. A. Moraglio, Towards a Geometric Unification of Evolutionary Algorithms, Ph.D.

thesis, University of Essex, 2007.
7. A. Moraglio, C. Di Chio, and R. Poli, Geometric Particle Swarm Optimization, In

Proceedings of EuroGP-2007, Springer, 2007, pp. 125–136.
8. A. Moraglio, C. Di Chio, J. Togelius, and R. Poli, Geometric Particle Swarm

Optimization, Journal of Artificial Evolution and Applications, 2008, Article ID
143624.

9. A. Moraglio and R. Poli, Geometric Landscape of Homologous Crossover for Syn-
tactic Trees, Proceedings of CEC-2005, IEEE Press, 2005, pp. 427–434.

10. A. Moraglio and R. Poli, Inbreeding Properties of Geometric Crossover and Non-
geometric Recombinations, In Proceedings of the Workshop on the Foundations of
Genetic Algorithms, Springer, 2007, pp. 1–14.

11. A. Moraglio and J. Togelius, Geometric PSO for the Sudoku Puzzle, In Proceedings
of GECCO-2007, ACM Press 2007, pp. 118–125.

12. A. Moraglio and J. Togelius, Geometric Differential Evolution, In Proceedings of
GECCO-2009, ACM Press, 2009, pp. 1705–1712.

13. M. O’Neill and A. Brabazon, Grammatical Differential Evolution, In Proceedings
of ICAI-2006, CSREA Press, 2006, pp. 231–236.

14. G. C. Onwubolu and D. Davendra (eds.), Differential Evolution: A Handbook for
Global Permutation-based Combinatorial Optimization, Springer, 2009.

15. G. Pampara, A.P. Engelbrecht, and N. Franken, Binary Differential Evolution, In
Proceedings of CEC-2006, IEEE Press, 2006, pp. 1873–1879.

16. K. V. Price, R. M. Storm, and J. A. Lampinen, Differential Evolution: A Practical
Approach to Global Optimization, Springer, 2005.

17. J. Togelius, R. De Nardi, and A .Moraglio, Geometric PSO + GP = Particle Swarm
Programming, In Proceedings of CEC-2008, IEEE Press, 2008, pp. 3594–3600.


