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ABSTRACT
Geometric crossover is a formal class of crossovers which
includes many well-known recombination operators across
representations. In this paper, we present a general result
showing that all evolutionary algorithms using geometric
crossover with no mutation perform the same form of convex
search regardless of the underlying representation, the spe-
cific selection mechanism, the specific offspring distribution,
the specific search space, and the problem at hand. We then
start investigating a few representation/space-independent
geometric conditions on the fitness landscape – various forms
of generalized concavity – that when matched with the con-
vex evolutionary search guarantee, to different extents, im-
provement of offspring over parents for any choice of parents.
This is a first step towards showing that the convexity rela-
tion between search and landscape may play an important
role towards explaining the performance of evolutionary al-
gorithms in a general setting across representations.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Op-
timization; F.2 [Analysis of Algorithms and Problem
Complexity]

General Terms
Theory

1. INTRODUCTION
In the research community there is a strong feeling that

the Evolutionary Computation (EC) field needs unification
and systematization in a rational framework to survive its
own success (De Jong [4]).

The various flavors of evolutionary algorithms (EAs) look
very similar when cleared of algorithmically irrelevant differ-
ences such as domain of application, phenotype interpreta-
tion and representation-independent algorithmic character-
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istics that, in effect, can be freely exchanged between algo-
rithms, such as the selection scheme. Ultimately, the origin
of the differences of the various flavors of evolutionary algo-
rithms is rooted in the solution representation and relative
genetic operators.

Are these differences only superficial? Is there a deeper
unity encompassing all evolutionary algorithms beyond the
specific representation? Formally, is a general mathemati-
cal framework that unifies search operators for all solution
representations possible at all? Would such a general frame-
work be able to capture essential properties encompassing
all EAs or would it be too abstract to say anything useful?
These are important, difficult open research questions which
the present paper attempts to start attacking.

A number of researchers have been pursuing EC unifica-
tion across representations. Although, so far, no one has
been able to build a fully-fledged theory of representations.
For example, Radcliffe pioneered a unified theory of rep-
resentations [12], although he never used the word “unifica-
tion”; Poli unified the schema theorem for traditional genetic
algorithms and genetic programming [6]; Stephens suggested
that all evolutionary algorithms can be unified using the lan-
guage of dynamical systems and coarse graining [18]; while
Rothlauf initiated a less formal theory of representations
[14]; Rowe et al., building upon Radcliffe’s work, have de-
vised a theory of representation based on group theory [15];
Stadler et al. built a theory of fitness landscapes that con-
nects with representations and search operators [13].

In the last decade, EC theory has experienced important
progress. However, the lack of a unified formal framework
encompassing different solution representations is at the ori-
gin of the fragmentation of evolutionary computation theory,
which has led to the development of significantly different
theories for different representations and for different prob-
lems. This fragmentation is symptomatic of the fact that
the very fundamental working principles underlying all evo-
lutionary algorithms are not yet well understood. More fun-
damentally, the lack of a uniform formal language encom-
passing all representations prevents us from investigating
whether such common principles exist at all.

Recent research [9] has shown that a common geometric
framework is possible and that most of mutation and re-
combination operators across representations admit surpris-
ingly simple common geometric characterizations, termed
geometric mutation and geometric crossover, based on an
axiomatic notion of distance. The geometric view of search
operators formalizes and simplifies the relationship between
representations, search operators and associated distance,



and it equates their induced search space and fitness land-
scape to the traditional notions of neighbourhood space and
fitness landscape.

In this paper, we start building a representation-independent
theory of evolutionary algorithms starting from the defi-
nition of geometric crossover 1. The methodology used is
based on mathematical abstraction (see for example [8][1]):
it voluntarily ignores representation/search space specific
properties of geometric crossover, and uses only those prop-
erties of geometric crossover which derive from the distance
axioms, which are therefore common to all geometric crossovers
across representations. Abstraction results in unification as
a theory is obtained that applies to any representation and
search space.

Abstraction is the key to showing that all evolutionary
algorithms present a common behavioral core. In this pa-
per, we will show that they all do the same type of con-
vex search 2. Naturally, those properties that a geometric
crossover has by virtue of the nature of the specific class of
underlying representation and search space are not within
the scope of a theory of abstract search. Those properties are
reserved for special investigation. To investigate such spe-
cific properties systematically within a general framework,
a possible scenario consists of creating a hierarchy of less
and less abstract spaces (a taxonomy of metric spaces) or-
ganized according to those characteristics that allow us to
prove stronger and stronger statements on the performance
of an evolutionary algorithm when specified to them. As
convexity will appear to be a key element in evolutionary
search, fundamental properties to consider may be the so
called convexity numbers [20](e.g., Radon number and Helly
number) that characterize at a more finely-grained scale the
specific convexity of the underlying spaces. These numbers
then would appear as parameters of a general relation char-
acterizing the performance of an evolutionary algorithm as a
function of the characteristics of the underlying space. This
approach to a general theory of evolutionary algorithms fol-
lows, in spirit, the philosophy proposed by Stephens and
Zamora [18] based on the notions of universality and taxon-
omy but it operates at a higher level of abstraction.

The convex search result is significant as it shows that in-
deed there is a common behavioral identity of all evolution-
ary algorithms that goes beyond the underlying representa-
tion. However, this result per se does not show that a mean-
ingful general theory of evolutionary algorithms may be pos-
sible. Indeed, the NFL theorem [21] implies that a search
algorithm must be well-matched with a certain class of fit-
ness landscapes respecting some conditions to perform on
average better than random search. As a consequence, any
non-futile theory which aims at proving performance better
than random search of a class of search algorithms needs
to indicate with respect to what class of fitness landscapes.
Therefore, an important question is: are there general con-

1In this paper, we do not consider mutation, not because we
consider it an unimportant operator, but rather because the
dynamics of the resulting search cannot be described purely
in geometric terms. Mutation requires a more complex the-
oretical framework which combines abstract geometry with
measure-theoretic elements. We leave this as future work.
2This property might be the only one all evolutionary algo-
rithms with geometric crossover have in common. Nonethe-
less, this is an important property as it may be central to
explain their performance in a unified way.

ditions on the fitness landscape that guarantee good perfor-
mances of the convex search for any space/representation?

Interestingly, the abstract convex search of an evolution-
ary algorithm suggests representation/space independent ge-
ometric conditions on the fitness landscape – various forms
of generalized concavity – that guarantee to various extents
that offspring improve over parents for any choice of the par-
ents. This is an important property that links the topogra-
phy of the fitness landscape with the parent/offspring fitness
heritability throughout the evolutionary process. This shows
that the underlying convexity relation between search and
landscape per se may play a key role towards explaining the
performance of evolutionary algorithms in a representation-
independent fashion. In this paper, we consider a number
of generalizations of the notion of concave function and ap-
proximately concave function to general metric spaces and
start investigating their suitability as classes of fitness land-
scapes to employ as a basis for a theory of abstract convex
evolutionary search.

In the long term, this theoretical framework may have in-
teresting links with the theory of convex optimization [3], in
which the notion of convexity of sets and functions is central.
Most of the results in convex optimization pertain to con-
tinuous optimization, but there is ongoing research aimed
at generalizing the results for continuous spaces to discrete
spaces [11]. There are, however, at least two important dif-
ferences between the generalized notion of convexity in con-
vex optimization and that of the present paper: (i) in convex
optimization, the discrete spaces considered for the gener-
alization are restricted to spaces of integer vectors, rather
than being general metric spaces encompassing, as impor-
tant special case, combinatorial spaces based on structured
representations (e.g., trees) as, instead, it is intended in the
present work; (ii) in convex optimization, the generalization
of convex function focuses on preserving and exploiting the
property of traditional convex function of being unimodal,
so that local and global optima always coincide. Instead the
emphasis of the present work is on generalizing the notion
of convex trend in the attempt to provide a formalization
of the well-known notion of global convexity of the fitness
landscape [2] that is known experimentally to be beneficial
for the performance of evolutionary algorithms. This would
make a theory based on the framework started in this paper
of practical relevance because fitness landscapes normally as-
sociated with many important combinatorial problems have
been shown to be globally convex [7].

It is worth mentioning that the results presented in this
paper may look deceptively simple at first. On one hand,
they are perfectly aligned with the geometric intuition ev-
eryone has about the Euclidean space. On the other hand,
they are very general as they apply to general metric spaces
and across representations. The latter aspect is non-trivial
as only very few properties of the Euclidean space hold for
general metric spaces. Many other properties break down,
often in unexpected ways, in the transition from specific
to more general spaces. An important contribution of this
paper is to present results that derive only from those intu-
itive properties of the Euclidean space that hold for general
metric spaces, so that their geometric intuition can be re-
tained in the general context. This is insightful and allows
us, for example, to apply the same geometric reasoning on
continuous spaces and combinatorial spaces, even if in many
respects they are very different types of spaces. The chal-



lenge in this line of theory is choosing appropriate general
definitions that shape the framework and that allow us to
generalize theorems holding for the Euclidean space in a
natural and straightforward way.

2. ABSTRACT CONVEXITY
In this section we introduce two notions of abstract con-

vexity, which are obtained by generalising the traditional
notion of convex set in different directions, and show how
they are related. Both notions of convexity and their rela-
tions are necessary to prove the results in the subsequent
sections.

2.1 Preliminaries: Balls and Segments
A metric is a generalization of the notion of distance. A

metric space is a set X with a distance function d (the met-
ric) that, for every two points x and y in X, gives the dis-
tance between them as a nonnegative real number d(x, y).
A metric space must also satisfy:

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x)

3. d(x, z) + d(z, y) ≥ d(x, y) for all z in X

Given a metric space M = (X, d) the line segment be-
tween x and y, termed extremes, is the set [x, y]d = {z ∈
X|d(x, z) + d(z, y) = d(x, y)}, and the closed ball is the set
Bd(x; r) = {y ∈ S|d(x, y) ≤ r} where r is a positive real
number called the radius of the ball. Examples of balls and
segments for different spaces are shown in Figure 1. Note
how the same set can have different geometries (see Eu-
clidean and Manhattan spaces) and how segments can have
more than one pair of extremes. For instance, in the Ham-
ming space, a segment coincides with a hypercube and the
number of extremes varies with the length of the segment,
while in the Manhattan space, a segment is a rectangle and
it has two pairs of extremes. Also, a segment is not neces-
sarily “slim”, that is, it may include points that are not on
the boundaries. Furthermore, a segment does not coincide
with a shortest path connecting its extremes (geodesic). In
general, there may be more than one geodesic connecting
two extremes.

2.2 Definition of Abstract Convexity
In the Euclidean space, a set is convex iff the line segment

connecting any two points in the set lies entirely in the set. A
natural way of generalizing the notion of convex set to more
general spaces is to generalize the notion of line segment and
define convex sets using the relation above as its defining
property, as follows.

The abstract geodetic convexity [20] C on X induced by M
is the collection of geodetically-convex subsets of X, where
a subset C of X is geodetically-convex provided [x, y]d ⊆ C
for all x, y in C.

Using the definition above together with a specific dis-
tance d, one can, therefore, tell whether a set of points in
the metric space endowed with the distance d is geodetically
convex (with respect to that specific distance d). For exam-
ple, in the Euclidean space, one can apply the definition of
geodetic convexity with the Euclidean distance to see that
the Euclidean ball is geodetically convex (with respect to
the Euclidean distance, i.e., using the Euclidean segment).

Figure 1: Examples of balls and segments

However, one can regard the notion of convex set from an ab-
stract point of view by which a set of points in some fixed but
unspecified metric space is geodetically convex with respect
to the underlying (fixed but unspecified) distance associated
with the metric space. An axiomatic approach to geodeti-
cally convex sets focuses on those properties of the collection
of geodetically-convex sets that are independent on the spe-
cific distance considered and follow solely from the metric
axioms and from the definition of abstract geodetic convex-
ity per se. These properties are therefore valid for all metric
spaces and associated space-specific geodetic convexities.

An alternative approach to generalizing the notion of con-
vex set focuses on the property that the intersection of con-
vex sets is a convex set, as follows. A family X of subsets of
a set X is called convexity on X [20] if:

(C1) the empty set ∅ and the universal set X are in X

(C2) if D ⊆ X is non-empty, then
T

D ∈ X

(C3) D ⊆ X is non-empty and totally ordered by inclusion,
then

S

D ∈ X .

The pair (X,X ) is called convex structure. The members
of X are called convex sets. By the axiom (C1) a subset A of
X of the convex structure is included in at least one convex
set, namely X. From axiom (C2), A is included in a smallest
convex set, the convex hull of A: co(A) =

T

{C|A ⊆ C ∈ X}.
The convex hull of a finite set is called a polytope. The
axiom (C3) requires domain finiteness of the convex hull
operator: a set C is convex iff it includes co(F ) for each
finite subset F of C. The following properties of the convex
hull operator [20] will be useful:



(P1) ∀A ⊆ X, co(co(A)) = co(A)

(P2) ∀A,B ⊆ X, if A ⊆ B then co(A) ⊆ co(B)

(P3) ∀A,B ⊆ X, if A ⊆ co(B) then co(A) ⊆ co(B)

The two notions of convexity above are related as the col-
lection C of geodetically convex sets under any metric d meet
the convexity axioms. Notice, however, that if co denotes the
convex hull operator of C, then ∀a, b ∈ X : [a, b]d ⊆ co{a, b}.
So, there are metric spaces in which metric segments are
not geodetically convex (i.e., in some spaces segments do
not equal their convex hulls). In other words, an abstract
metric segment is not necessarily geodetically convex. Also,
there are metric spaces in which balls are not geodetically
convex (e.g., in the Manhattan space, the Manhattan ball is
not geodetically convex as the Manhattan segment between
some pairs of points of the Manhattan ball is not completely
included in the Manhattan ball). This exemplifies an im-
portant point: whereas the notion of abstract convexity ap-
peals to the geometric intuition we all have for the Euclidean
space, many familiar properties of the convexity in the Eu-
clidean space do not hold across all metric spaces, hence do
not hold for the abstract analogue of familiar shapes.

2.3 Euclidean and Hamming Convexities
When we specify the Euclidean distance in the definition

of abstract geodesic convexity we obtain the traditional con-
vexity for the Euclidean space [20]. However, the convexity
for this space is not normally cast in terms of relations on
distances between points (which we term geometric charac-
terization) as the one obtained directly from the definition
of geodesic convexity. Rather, it is expressed equivalently
in algebraic terms using algebraic operations – sums of vec-
tors and scalar products – which are well-defined on the
Euclidean space but not on general metric spaces (which
we term algebraic characterization). Naturally, this two-
fold characterization is made possible for the case of the Eu-
clidean space as there is a natural one-to-one correspondence
between points in space and real vectors (i.e., their cartesian
coordinates). The algebraic characterization of convex sets
and related notions for the Euclidean space is as follows. A
point p is in the convex hull of a set of points S iff the co-
ordinates of p can be obtained by a convex combination of
the coordinates of the points in S. The segment between
two points is the convex hull of its extremes (i.e., segments
in the Euclidean space are convex).

Analogously to the Euclidean case, when we specify the
Hamming distance on binary strings in the definition of ab-
stract geodesic convexity we obtain the specific convexity
for this space. Also in this case, we can characterize the
convexity equivalently in algebraic terms using operations
and notations which are well-defined on the underlying rep-
resentation of points in space, which is, on binary strings.
The algebraic characterization of convex sets and related no-
tions for the Hamming space is as follows. Let H(a, b) be the
schema obtained from the binary strings a and b by position-
wise inserting a ‘*’ symbol where they mismatch and insert-
ing the common bit otherwise (e.g., H(0101, 1001) = **01).
By abuse of notation, we consider a schema as being both
a template and the set of strings matching the template.
The binary string c is in the Hamming segment between
the binary strings a and b iff c matches the schema H(a, b)
(e.g., 0001 is in the segment [0101, 1001] as it matches the

schema **01 which can be verified using the definition of
segment d(0101, 0001)+d(0001, 1001) = d(0101, 1001)). Ev-
ery segment in the Hamming space is convex, because for
c, d ∈ H(a, b) the schema H(c, d) can be obtained by chang-
ing some of the ‘*’ symbols in H(a, b) to 0 or 1, hence it
is more specific than H(a, b) (i.e., H(c, d) ⊆ H(a, b)). Ev-
ery schema is a convex set as it corresponds to a segment
between some pair of binary strings belonging to it. Every
convex set is a schema because the set of all Hamming seg-
ments form the convexity structure on the Hamming space,
as it is the product convexity of the trivial metric space [20].
Consequently, the intersection of two schemata is a schema
or the empty set (e.g., **101∩ 1**01 = 1*101) and the con-
vex hull of a set of binary strings is the smallest schema (the
schema matching the minimum number of strings) matching
all of them (e.g., co(0101, 1001, 0000) = **0*). In summary,
in the Hamming space, the notions of segment, convex set
and schema essentially coincide.

3. CONVEX EVOLUTIONARY SEARCH

3.1 Geometric operators
Geometric operators are search operators defined using ge-

ometric shapes to characterize the spatial relation between
parents and offspring in the search space. Importantly, the
shapes considered are defined in terms of distances between
points in space. The geometric view of search operators
formalizes and simplifies the relationship between represen-
tations, search operators and associated distance, and it
equates their induced search space and fitness landscape to
the traditional notions of neighbourhood space and fitness
landscape.

Definition 1. (Geometric crossover [10]) A recombina-
tion operator is a geometric crossover under the metric d if
all offspring are in the d-metric segment between its parents.

In a similar vein, geometric mutation is defined geomet-
rically requiring that offspring are in a d-ball of a certain
radius centered in the parent.

Notice that the definition is representation-independent,
hence well-defined for any representation, as it depends on
the underlying specific representation only indirectly via the
metric d which is defined on the representation. This class
of operators is really broad 3 [9]. For vectors of reals, various
types of blend or line crossovers are geometric crossovers un-
der Euclidean distance, and box recombinations and discrete
recombinations are geometric crossovers under Manhattan
distance. For binary and multary strings, all mask-based
crossovers are geometric under Hamming distance. For per-
mutations, PMX and Cycle crossover are geometric under
swap distance and merge crossover is geometric under ad-
jacent swap distance; other crossovers for permutations are
also geometric. For genetic program trees, the family of
homologous crossovers is geometric under structural Ham-
ming distance. For biological sequences, various homologous
recombinations that resemble more closely biological recom-
bination at molecular level (as they align variable-length se-
quences on their contents, rather than position-wise, before

3The class of geometric crossover does not fully exhaust the
range of crossover operators in common use. For example,
sub-tree swap crossover for genetic program trees is provably
not a geometric crossover under any metric.



swapping genetic material) are geometric under Levenshtein
distance. Recombinations for several more complex repre-
sentations are also geometric.

A more fine-grained definition of geometric crossover is
possible by specifying a specific probability distribution of
the offspring on the segment. For example, the uniform ge-
ometric crossover is defined as returning offspring sampled
uniformly at random in the segment between parents. Uni-
form crossover on binary strings is known to be uniform
geometric crossover for the Hamming distance [10]. The
blend crossover on real vectors that samples offspring vec-
tors uniformly at random in the line segment between par-
ents is uniform geometric crossover for the Euclidean dis-
tance. Defining well-behaved probability distributions on
general metric spaces needs a digression into measure theory
and it is out of the scope of this framework. Pragmatically,
uniform geometric crossover is well-defined on those metric
spaces that admit a well-behaved notion of uniform distri-
bution on segments, otherwise it is not definable. For most
of the search spaces of interest uniform geometric crossover
is well-defined.

A special class of probability distributions over the seg-
ment is that in which the probability of sampling an off-
spring z is a function of the distance d(x, z) and d(y, z) from
its parents x and y. In this case, the points in the segment
at the same distance from x are grouped into level sets ac-
cording to the distance to x. This forms a partitioning on
the points in the segment. Notice that any level set contains
at least a point of the segment. So, if there are no points in
the segment for a certain distance from the parent x, then
there is no corresponding level set. Then the probability
distribution specifies the probability of selecting a level set
and then an offspring is sampled uniformly at random from
the selected level set. For example, we could have a proba-
bility distribution that assigns the same probability of being
selected to any level set i.e., one over the number of existing
level sets in the segment. Note that this distribution equals
the uniform geometric crossover in the Euclidean space (by
appropriately considering limits and probability densities)
as there is a single point at each distance level. However, it
does not coincide to the uniform geometric crossover in the
Hamming space as distance sets have different sizes (bino-
mially distributed in the distance to the end-points of the
segment).

Another special class of probability distributions over the
segment is that of symmetric distribution probability in which
the probability of obtaining the offspring z from the (ordered
pair of) parents x and y is the same as when the role of the
parents is reversed, i.e., Pr(z|(x, y)) = Pr(z|(y, x)). In prac-
tice, as the role of the parents as first or second parent is
assigned at random with the same probability, the crossover
operator can be always considered symmetric with proba-
bility distribution f(z|x, y) = f(z|(x, y)) = f(z|(y, x)) =
(Pr(z|(x, y)) + Pr(z|(y, x)))/2.

3.2 Formal evolutionary algorithm and
abstract evolutionary search

Geometric crossover and geometric mutation can be un-
derstood as functional forms taking the distance function d
as a parameter. Therefore, we can see an evolutionary algo-
rithm using these geometric operators as a function of the
metric d too. That is, d can be considered as a parame-
ter of the algorithm like any others, such as the mutation

Figure 2: Evolutionary algorithm at a population
level.

rate. However, notice the difference in the complexity of the
objects passed as parameter: the mutation rate parameter
takes values in the interval [0, 1], that is, it is a simple real
number, whereas the metric parameter takes values in the
set of metrics, that is, it is a whole space.

We can now look at an evolutionary algorithm as a func-
tion of the distance d from an abstract point of view. To
do this, we do not consider any metric in particular and we
treat an evolutionary algorithm using geometric operators
as a formal specification of a representation/space indepen-
dent algorithm with a well-defined formal semantic arising
from the metric axioms only. The transition to this more
general point of view is analogous to the transition from
geodesic convexity with respect to a specific metric space
to the notion of abstract geodesic convexity. We refer to an
evolutionary algorithm seen according to the latter interpre-
tation as a formal evolutionary algorithm. A different notion
of formal search algorithm based on equivalence classes was
introduced by Radcliffe and Surry [19].

Normally, an algorithm can actually be run only when
all its parameters have been assigned a value. We call an
algorithm with all its parameters specified, a fully-specified
algorithm. However, a formal model of the algorithm can be
used to infer the behavior of a partially specified algorithm in
which some parameters are left unspecified. In other words,
using a formal model one can“run”a partially specified algo-
rithm and infer its abstract behavior, i.e., those behavioral
properties common to all specific behaviors obtained by as-
signing all possible specific values to the parameter left un-
specified. We term abstract evolutionary search the behavior
of a formal evolutionary algorithm in which the underlying
metric d is unspecified. As this behavior is inferred from the
formal evolutionary algorithm and the metric axioms only,
it is the behavior of the formal evolutionary algorithm on all
possible search spaces and associated representations.

The abstract behavior of a formal evolutionary algorithm
is an axiomatic object itself based on the metric axioms. In
the following sections, we will show that the behavior of a
formal evolutionary algorithm can be profitably described
axiomatically using the language of abstract convexity.

3.3 Genetic operators at a population level
An evolutionary algorithm can be seen as repeating a loop

of operations at the population level (see Figure 2). The
cycle selection-crossover-mutation-replacement can be seen
as the sequential functional application of these operators to
a population returning another population.



Let S be the search space and N be the set of natural
numbers. A population is a multi-set in which each candi-
date solution can have multiple occurrences. The following
population operators are presented very generally and prob-
ably could virtually cover any conceivable variant of evo-
lutionary algorithm structure. The fitness function f and
distance function d, which are parameters of the population
operators, are fixed but unknown functions:

selection OPSEL : NS → NS : the selection operator is a
possibly stochastic operator that takes in input a pop-
ulation and returns a population in which some of the
elements have been reduced or increased in frequency
and other have been eliminated according to some cri-
teria, possibly fitness-based.

crossover OPXO : NS ×NS → NS : the crossover operator
at a population level is an operator that takes in input
a population and returns a population of offspring ob-
tained by applying any geometric crossover operator
under d (with any probability distribution) to pairs of
elements in the input population any number of times.

mutation OPMUT : NS → NS : the mutation operator at
a population level is an operator that takes in input
a population and returns a population of offspring ob-
tained by applying any geometric mutation operator
under d (with any probability distribution) to any el-
ement in the input population any number of times.
The mutation is non-degenerate when it has non-zero
probability of producing offspring different from par-
ents.

replacement OPREP : NS × NS → 2N : the replacement
operator is the sequential application of a merge opera-
tion, which merges the two population in input (union
of multi-sets) followed by a selection operation.

3.4 Abstract convex search theorem

Definition 2. (Convex operator): let S be the solution
set, an operator OP : 2S → 2S that takes a subset P ⊆ S as
input and returns a subset OP (P ) ⊆ S is a convex operator
iff ∀P ⊆ S : OP (P ) ⊆ co(P )

The notions of abstract convexity and convex operators
naturally extend to multisets and stochastic operators. The
definition of convex operator extends to multisets substitut-
ing multisets with their underlying sets. The definition of
convex operator extends to stochastic operators by substi-
tuting OP (P ), that is a random variable, with its support
set Im(OP (P )) that is the set of elements that have proba-
bility non-zero to be returned by OP (P ).

Theorem 1. The composition of convex operators is a
convex operator.

Proof. Let OP and OP ′ be two convex population oper-
ators and OP ′′ = OP ′ ◦OP . To prove that the composition
of two convex operators is a convex operator we need to
prove that ∀P : OP (P ) ⊆ co(P ) ∧ OP ′(P ) ⊆ co(P ) −→
OP ′′(P ) = OP ′(OP (P )) ⊆ co(P ). By definition of con-
vex population operator, it follows OP (P ) ⊆ co(P ) and
OP ′(OP (P )) ⊆ co(OP (P )). From the property of convex
hull OP (P ) ⊆ co(P ) implies co(OP (P )) ⊆ co(P ). Hence,
OP ′(OP (P )) ⊆ co(P ).

Theorem 2. (Convexity of genetic operators at a popu-
lation level) Selection, Crossover (as in Section 3.3) and Re-
placement (with the offspring population in the convex hull
of the parent population) are convex population operators.
Non-degenerate Mutation is not a convex operator.

Proof. Selection: let P ′ = OPSEL(P ). As P ′ ⊆ P by
selection and P ⊆ co(P ) by a property of the convex hull
then OPSEL(P ) ⊆ co(P ). Selection is a convex operator.
Crossover : let C = OPXO(P ). Every offspring in C is in the
segment between two parents in P . For the geodesic con-
vexity, for any x, y ∈ P we have [x, y] ⊆ co{x, y} ⊆ co(P ),
hence OPXO(P ) = C ⊆ co(P ). The crossover operator is a
convex operator.
Replacement : let P ′ = OPREP (P, C). We say that OPREP

is convex if when C ⊆ co(P ) then OPREP (P, C) ⊆ co(P ).
Since C ⊆ co(P ) then co(P∪C) ⊆ co(P∪co(P )) = co(co(P ))
= co(P ), hence P ′ = OPREP (P, C) ⊆ co(P ). The replace-
ment operator is a convex operator.
Mutation: every convex operator returns points within the
convex hull of the input set. The convex hull of a single point
is the single point itself. So, when the input set includes a
single point, the output set of any convex operator must be
the point itself. Mutation applied to a single point p may
produce points different from p, hence it is not a convex
operator.

Theorem 3. (Abstract convex evolutionary search) Let
Pn be the population at time n. For any evolutionary al-
gorithm repeating the cycle selection, crossover, replacement
we have co(Pn+1) ⊆ co(Pn) ⊆ · · · ⊆ co(P1) ⊆ co(P0)

Proof. The compound operator
OP = OPREP ◦ (OPID, OPXO ◦ OPSEL) that is equivalent
to the sequential application of selection, crossover and re-
placement is a convex operator (OPID is the identity oper-
ator that outputs its own input). This is because OPSEL

and OPXO are convex operators hence OPXO ◦ OPSEL is
a convex operator for the composition of convex operators
theorem. Hence OPREP is also a convex operator because
its second argument OPXO ◦ OPSEL is in the convex hull
of its first argument OPID . Hence, for the composition of
convex operators theorem, OP is a convex operator. Since
Pn+1 = OP (Pn) then Pn+1 ⊆ co(Pn) and consequently
co(Pn+1) ⊆ co(Pn). Then the chain of nested inclusions
is true by induction.

Theorem 3 is very general. An evolutionary algorithm
using geometric crossover with any probability distribution,
any representation, any problem, any selection and replace-
ment mechanism, does the same form of convex search. Pop-
ulation size can vary over time and evolutionary search is
still convex.

3.5 Convex evolutionary search in
Euclidean and Hamming spaces

Theorem 3 applies to all metric spaces. It gives an ab-
stract geometric description of the search that does not de-
pend on any specific distance. In the following, we visualize
the abstract convex search for the specific case of the 2-
dimensional Euclidean space. This leads to a very simple
and useful description of it which illustrates geometrically
why the theorem 3 holds. Indeed, the geometric reason this
theorem holds for the 2-dimensional Euclidean case is the
same as the reason it holds in general metric spaces.



Figure 3: Convex Evolutionary Search.

Figure 3 illustrates the convex search. The hollow circles
represent individuals in the population at time n, solid cir-
cles represent selected individuals (parents), while crosses
represent individuals in the populations at time n + 1. The
thin solid lines connecting hollow circles represent the bound-
aries of the convex hull formed by individuals in the pop-
ulation at time n. The thick solid lines connecting solid
circles represent the boundaries of the convex hull formed
by selected individuals from the population at time n. The
solid lines connecting crosses represent the boundaries of the
convex hull formed by individuals in the population at time
n + 1. The broken lines connecting solid circles include all
possible offspring of the selected individuals from the popu-
lation at time n by applying geometric crossover (offspring
are in the segment).

An evolutionary algorithm with mutation does not do con-
vex search. It is the non-convexity of mutation that can
cause the evolutionary search not to be convex as this al-
lows for the possibility that an offspring can be produced
outside the convex hull of the previous population.

The convex evolutionary search theorem shows that the
convex hulls of the populations at successive iterations form
a nested chain of inclusions. So, the search never diverges.
Since the inclusions in the nested chain are not strict, the
search either (i) converges to a fixed-point, or (ii) stops its
convergence to a single set of points, e.g., for determinis-
tic degenerate forms of selection, crossover and replacement
that do not change the current population; or (iii) stops its
convergence to a (possibly infinite) orbit of sets of points
that have the same convex hull, e.g., when the individuals
at the corners of the convex hull of the current population
are always passed on to the next population, while the other
individuals in the population are changed.

It is interesting to look at an example of the instantiation
of the abstract convex search to the case of Hamming space
on binary strings. Set Pn = {00010, 01100, 01110, 10000}.
Then co(Pn) = ****0. Selection is applied and say that
only the last string is discarded, so the set of parents is
P ′

n = {00010, 01100, 01110}. Then co(P ′

n) = 0***0 which
gives 0***0 ⊆ ****0. Recombination is then applied us-
ing the geometric crossover specified to the Hamming space
(e.g., uniform crossover) and say we have the following re-
combinations: CX(00010, 01100) → 01110, 01000,
CX(00010, 01110) → 01010 and CX(01100, 01110) → 01100.
Let us say we have a generational replacement scheme so

that the population of offspring replaces the population of
parents, so Pn+1 = {01110, 01000, 01010, 01100}.
Then Pn+1 ⊆ co(P ′

n) as all offspring in Pn+1 match the
schema 0***0. Then co(Pn+1) = 01**0 which gives
co(Pn+1) ⊆ co(Pn) as the schema 01**0 is more specific than
the schema ****0.

4. CONVEX SEARCH AND
CONCAVE FITNESS LANDSCAPE

4.1 Matching abstract search and
abstract fitness landscape

The NFL theorem [21] implies that a search algorithm
must be well-matched with a certain class of fitness land-
scapes respecting some conditions to perform on average
better than random search. As a consequence, any non-futile
theory which aims at proving performance better than ran-
dom search of a class of search algorithms needs to indicate
with respect to what class of fitness landscapes. Therefore,
an important question is: are there general conditions on
the fitness landscape that guarantee good performances of
the convex search for any space/representation?

Since, at an abstract level, all evolutionary algorithms
encompassed by the abstract evolutionary search theorem
presents a unique behavior, it is reasonable to put forward
the hypothesis that there should exist a general class of fit-
ness landscapes that is well-matched to the evolutionary
search as a whole. Otherwise stated, as evolutionary al-
gorithms at heart present a common behavior, they should
produce good performance on the same type of fitness land-
scape for essentially the same underlying reason. To make
sense, the level of abstraction of the condition on the fit-
ness landscape characterizing this class of fitness landscapes,
whatever this class could be, must match the level of ab-
straction of the evolutionary search. So, the definition of
the condition must be based on the distance of the search
space, but, like the abstract convex search, it must be mean-
ingful per se without referring to any specific distance. In
other words, it must be a condition that matches convex
search and fitness landscape at an abstract level. Figure
4 illustrates the envisioned functional relationship between
search algorithm (SA), fitness landscape (FL), search be-
havior (SB) and search performance (SP) and their abstract
counter-parts, formal search algorithm (FSA), abstract fit-
ness landscape (AFL), abstract search behavior (ABS) and
abstract search performance (ASP). The horizontal arrows
in the bottom means that the algorithm SA is fed with the
parameter fitness landscape FL which when run together
give rise to the search behavior SB that produces the search
performance SP. The horizontal arrows in the top mirror
those in the bottom and depict analogous relations at an
abstract level in which the underlying distance d is left un-
specified. The vertical arrows relate abstract and concrete
levels by functional application of the functional forms in
the top with a specific distance d.

In the following sections, we will start investigating how
to define classes of abstract fitness landscapes and how they
affect abstract performance when matched with the abstract
convex search. Abstract performance can be constant with
the parameter d and hold across all metric spaces unchanged,
or can be a general expression in which specific character-



Figure 4: Functional relations between search al-
gorithm, fitness landscape, search behavior, search
performance and their abstract counter-parts.

istics of the underlying metric d (e.g., dimensionality) are
used as parameters.

4.2 Concave fitness landscapes
In this and in the following sections, we will explore several

notions of concave fitness landscape progressively improving
the scope of application.

The convex search of an evolutionary algorithm suggests a
class of functions, which suitably generalized, could give rise
to a class of abstract fitness landscapes well-matched with
the abstract convex search for which we may obtain good
performance: concave functions and approximately concave
functions4 (see Figure 5. In this section, we consider concave
functions and in section 4.4 we will consider approximately
convex functions). Note, however, that this intuition arises
from the notion of convexity in the Euclidean space, and
may easily not hold true across all metric spaces i.e., may
not hold at an abstract level. Furthermore, even when the
generalization to general metric spaces is possible, a great
deal of caution is required, as a generalized notion of concave
function which is meaningful when specified to continuous
spaces may lead to only degenerate cases of little interest,
when specified to combinatorial spaces. In this section, we
will start considering candidate generalizations of the no-
tion of concave functions to general metric spaces and show
how the (abstract) performance of (abstract) convex search
is bounded on these classes of (abstract) fitness landscapes.
In the introduction, we have mentioned that we are inter-
ested in generalizing the “concave trend” character of a con-
cave function, rather than its “unimodal” character. This
is because it is known experimentally that, assuming mini-
mization, global convexity of the fitness landscape [2] (i.e.,
a globally convex trend) is beneficial for the performance of
evolutionary algorithms (also known as the “big valley” hy-
pothesis) and many important combinatorial problems have
been shown to be globally convex [7]. In the next section,
we will extend the generalized notion of concave functions
to generalized notion of functions with a concave trend in
the attempt to characterize formally the notion of global
concavity (and convexity).

For the following definitions see e.g. [3]. A real-valued
function f defined on any convex subset C of some vector
space is called concave iff the Jensen’s inequality holds for
any two points x, y ∈ C, i.e., for any t ∈ [0, 1], f(tx + (1 −
t)y) ≥ tf(x)+(1−t)f(y), which is, the chord connecting any
two points of a concave function lies below or on the graph
of the function. A function f is convex iff −f is concave.

4We assume maximization. For minimization problems, the
classes of functions to consider are convex functions and ap-
proximately convex functions.
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Figure 5: Examples of concave function (left) and
function with a concave trend (right).

If a function is convex and concave at the same time it is
an affine function (e.g., any linear function in some vector
space is affine).

There are a number of ways to generalize convex and con-
cave functions to more general spaces than vector spaces to
discrete spaces and to general metric spaces (see e.g., the
monograph [16] on this topic with focus on generalizing re-
sults of convex optimization). We will consider generaliza-
tions which can be used as basis for the generalization of con-
vex and concave trends. A concave function can be general-
ized to a metric space [17] (i.e., a concave fitness landscape)
as follows. Let C be a geodetically convex set on a metric
space endowed with distance d, then f : C → R is concave
if for any two points x, y ∈ C, d(x, y) 6= 0 and bounded, and

for any z ∈ [x, y]d, f(z) ≥ d(y,z)
d(x,y)

f(x) + d(x,z)
d(x,y)

f(y). Analo-

gously, the function is convex if the inequality obtained by
changing ≥ to ≤ holds. This is a proper generalization of
concave function, as when the space considered is a vector
space endowed with the Euclidean distance, the generalized
notion of concavity reduces to the classical notion [17]. Later
in this section, we will illustrate with an example how this
definition applies to combinatorial spaces. However, first we
present a result that makes this definition potentially inter-
esting for our framework.

We first need a condition of regularity of the underlying
space. We say that a metric space (S, d) has symmetric
segments if for any x, y ∈ S the sizes of the distance level
partitions on the segment from x i.e., the collection of sets
[x, y]t = {z : z ∈ [x, y] ∧ d(x, z) = t} indexed by t (the ad-
missible values of t are those which do not return an empty
partition), correspond to the sizes of the distance level par-
titions from y, i.e., for all admissible t [x, y]t = [y, x]t.

Theorem 4. On a concave fitness landscape f endowed
with any distance d with symmetric segments, the expected
fitness of the offspring z obtained by recombining any two
parents x and y using the geometric crossover associated with
the distance d with any symmetric offspring probability dis-
tribution is not less than the average fitness of its parents,

i.e., E[f(z)|x, y] ≥ f(x)+f(y)
2

.

Proof. We prove the theorem for the case of discrete
spaces. The proof for continuous spaces is analogous and
can be obtained by replacing probability mass functions with
probability density functions and summations with integrals.
A geometric crossover, given parents x and y, returns an
offspring z ∈ [x, y] according to a certain probability dis-
tribution over the segment Pr(z|d(x, z) = t) of sampling a
point z at a given distance t from x (first argument of the
crossover). Hence, given the parents x and y the expected



fitness of the offspring is E[f(z)|x, y] ≥
P

t=0...d(x,y) Pr(z|d(x, z) = t)·((1− t
d(x,y)

)f(x)+ t
d(x,y)

f(y)).

Exchanging the parents (x as second argument of the crossover
and y as first argument) the probability distribution over the
segment has origin in y and the expected offspring of the off-
spring becomes

E[f(z)|x, y]′ ≥
X

t=0...d(x,y)

Pr(z|d(x, z) = t)′ ·

((1 −
t

d(x, y)
)f(x) +

t

d(x, y)
f(y))

=
X

t=0...d(x,y)

Pr(z|d(x, z) = d(x, y) − t) ·

((1 −
t

d(x, y)
)f(x) +

t

d(x, y)
f(y))

=
X

t′=0...d(x,y)

Pr(z|d(x, z) = t′) ·

((1 −
d(x, y) − t′

d(x, y)
)f(x) +

d(x, y) − t′

d(x, y)
f(y))

=
X

t′=0...d(x,y)

Pr(z|d(x, z) = t′) ·

(
t′

d(x, y)
f(x) + (1 −

t′

d(x, y)
)f(y)).

E[f(z)|x, y] +E[f(z)|x, y]′ ≥
P

t=0...d(x,y) Pr(z|d(x, z) = t)·

((1 − t
d(x,y)

+ t
d(x,y)

)f(x) + ( t
d(x,y)

+ 1 − t
d(x,y)

)f(y))

=
P

t=0...d(x,y) Pr(z|d(x, z) = t) · (f(x) + f(y))

= f(x) + f(y).
For symmetry of the probability distribution

E[f(z)|x, y]′ = E[f(z)|x, y] then E[f(z)|x, y] ≥ f(x)+f(y)
2

.

When the symmetry condition on the segment does not
hold, the average of the fitness of the parents may be skewed
toward one or the other parent. However, we always have
E[f(z)|x, y] ≥ min{f(x), f(y)}. The theorem above can be
easily extended to populations.

Corollary 1. On a concave landscape, by applying ge-
ometric crossover on pairs of parents sampled uniformly at
random (with replacement) from any population of parents,
the expected average fitness of the offspring population is not
less than the average fitness of the parent population.

Proof. The expected average fitness of the offspring pop-
ulation obtained by sampling at random the parent popula-
tion Pop of size n is

E[f(z)] =
X

x,y∈Pop

1

n2
E[f(z)|x, y]

≥
1

2n2

X

x,y∈Pop

(f(x) + f(y))

=
1

2n2
(

X

x,y∈Pop

f(x) +
X

x,y∈Pop

f(y))

=
1

2n2
(2n

X

x∈Pop

f(x))

=

P

x∈Pop
f(x)

n
.

It is noticeable that the theorem above is a statement
about the one-step performance of the formal evolutionary
algorithm that holds in a very general setting. Notice also
that the formal evolutionary algorithm on concave land-
scapes, on average, makes steady progress or, in the worst-
case, does not get worse, even in lack of selection5 at any
stage of the search process, i.e., ∀n : E[f(Pn+1)] ≥ E[f(Pn)].
This is a rather strong statement about the one-step perfor-
mance because, as a norm, the mean fitness of the offspring
is less than the average fitness of their parents, and selection
(or selective replacement) is a necessary ingredient to obtain
progress 6.

We now illustrate with an example how the definition of
convex function introduced earlier applies to combinatorial
spaces by showing how it can be used to check whether a
fitness landscape with any underlying metric d is convex,
concave, affine or none of them. Let us consider the fitness
landscape obtained by the One-Max function f on the space
of binary strings endowed with the Hamming distance. Let
x = 000111 and y = 001100. So we have f(x) = 3 and
f(y) = 2 and d(x, y) = 3. The points in the segment [x, y]
are those matching the schema H(x, y) = 00*1**. Then,
if f is concave, from the definition of generalized concav-
ity, for each string z matching the schema we must have

f(z) ≥ d(y,z)
d(x,y)

f(x) + d(x,z)
d(x,y)

f(y). Let us consider the point

in the segment z = 000100 we have f(z) = 1, d(x, z) = 2
and d(y, z) = 1. By substituting these values in the in-
equality defining concave function, we obtain that it does
not hold true. So, One-Max is not a concave function in
the above sense. It is also possible to show that One-Max is
not a convex function either as for the point in the segment
z = 001111 the defining inequality for convex function does
not hold. Unfortunately, the above scenario recurs over and
over. It turns out that the only fitness landscapes based on
binary strings endowed with the Hamming distance which
are concave (and convex) in the above sense are constant
landscapes. So, this makes the above definition of concav-
ity unsuitable for our framework as it does not encompass
interesting functions on the Hamming space.

So, are there alternative definitions of generalized concave
function which encompass interesting fitness landscapes on
the Hamming space? One possibility is to relax suitably the
definition of concave function retaining the results of theo-
rem 4 and its corollary. Interestingly, the theorem 4 holds
when the average fitness of each distance level partition of
the segment – rather than the fitness of any point in each
distance level partition – is greater than the corresponding

5When parents are selected independently and with the
same distribution increasing the selection pressure can lead
to an increase of the average population fitness. In case
of adversary selection schemes, in which worse individuals
are preferred to better individuals, the one-step performance
can decrease due to selection. Naturally, adversary selection
is never used.
6On the general class of concave landscapes, this is the
strongest lower bound one can obtain. Clearly, such a re-
sult does not lead to interesting lower-bounds for the n-step
performance. However, one could consider restricted classes
of concave landscapes with given curvature (e.g., concave
landscapes which are also bi-Lipschitz with constant k), and
derive stronger bounds for the one-step performance as a
function of the degree of curvature that could lead to inter-
esting bounds for the n-step performance. We will consider
this possibility in future work.



linear combination of the fitness of the endpoints for that
distance level. Therefore this weaker condition can be used
to characterize a larger class of generalized concave functions
for which theorem 4 and its corollary hold. In this weaker
sense, the One-Max landscape turns out to be affine. So,
the theorem 4 and its corollary apply to it with an equality
sign rather than a greater and equal. In the next section, we
consider a weaker form of concave functions – quasi-concave
functions – which can be generalized to general metric spaces
more naturally than concave functions.

4.3 Quasi-concave fitness landscapes
For the following definitions see e.g. [3]. A real-valued

function f defined on any convex subset C of some vector
space is called quasi-concave iff for any real number a the in-
verse image of the set of the form (a,+∞) is a convex set (no-
tice that this implies that sets corresponding to larger values
of a are included in the sets corresponding to smaller values
of a), and quasi-convex iff the inverse image of any set of the
form (−∞, a) is a convex set. A function that is both quasi-
convex and quasi-concave is quasi-linear. All convex func-
tions are also quasi-convex, but not all quasi-convex func-
tions are convex, so quasi-convexity is a weak form of con-
vexity. An analogous relation between concave and quasi-
concave functions hold. Quasi-concave and quasi-convex
functions can be equivalently characterized using inequal-
ities. A real-valued function f defined on any convex subset
C of some vector space is quasi-concave iff for any two points
x, y ∈ C for any t ∈ [0, 1], f(tx+(1−t)y) ≥ min(f(x), f(y)),
and quasi-convex iff for any two points x, y ∈ C for any
t ∈ [0, 1], f(tx + (1 − t)y) ≤ max(f(x), f(y)).

We can readily generalize quasi-concave functions to met-
ric spaces by requiring that the inverse image of any set of
the form (a, +∞) is a geodetically convex set. As geodeti-
cally convex sets for the Euclidean distance reduce to tradi-
tional convex sets, the one above is a proper generalization
of quasi-concave function. As the level sets are geodetically
convex and form a nested chain of inclusions for increasing
values of a, the function value at any point of a segment
cannot be lower than the minimum of the function value
of its endpoints. So, analogously to the traditional case
we have that for generalized quasi-concave functions hold:
f(z) ≥ min(f(x), f(y)) for any z ∈ [x, y]. Quasi-convex and
quasi-linear functions can be generalized to metric spaces
analogously.

As for the case of the generalization of concave functions,
also for the generalization of quasi-concave functions we can
bound the expected fitness of the offspring population on the
average fitness of the parent population. From the definition
of quasi-concave landscape, it is clear that the fitness of any
offspring cannot be less than the the minimum fitness in
the parent population. However, it is possible to have a
stronger result considering order statistics, which involve the
distribution of the min, second-to-last, . . ., median, . . . max
in a fixed set of samples. The line of reasoning is as follows.
As parents that undergo geometric crossover can be thought
as of being selected independently from the mating-pool, the
fitnesses of the two parents are i.i.d. random variables with
distribution equalling the fitness distribution of the mating-
pool. The expected fitness of the offspring is then larger
than the expected fitness of the first order statistics of the
two random variables. To form an understanding of how
the lower bound of the expected fitness offspring population

is less than the average fitness of the parent population,
we can linearly rank the parents in the mating-pool in the
interval [0, 1] so that rank 1 is the best, rank 0 is the worst,
and rank 0.5 is the median. Then the expected rank of
the offspring population is lower-bounded by the expected
value of the first order statistic of the uniform distribution
on [0, 1], which is 1/3. An analogous result holds for the
generalization of quasi-convex function. Notice also that on
quasi-linear functions the maximum fitness of the offspring
population is upper-bounded by the maximum fitness of the
parent population, so in this case, evolution will not take
place because there is no chance for offspring to improve over
the parents. So, assuming maximization, for improvement
to be possible we need to have a quasi-concave landscape
which is not quasi-linear.

Quasi-concave landscapes are interesting when considered
together with combinatorial spaces because they give rise to
discrete sets of fitness values, in other words, fitness func-
tions on combinatorial spaces are quantized functions. This
property allows us to check quasi-concavity of a landscape
by checking directly one by one the convexity of all level
sets. Also, we can use this property to easily construct
quasi-concave functions for any representation and metric
space once we have determined the specific form of geodeti-
cally convex sets. In the following, we illustrate this for the
case of the Hamming space on binary strings. The idea for
the construction procedure of a quasi-convex landscape is
to build directly a nested chain of convex level sets starting
from the largest level set with the minimum fitness value
which is then recursively partitioned in two parts: (i) a con-
vex set containing the next fitness level or fitness levels with
higher values, and (ii) the complement of that set with re-
spect to the convex set at the current level containing points
whose fitness values are matching the current fitness level.
Let us assign fitness equal or greater than zero to all points
in space. So, for any x0 matching the schema ******, which
is the current level set, we have f(x0) >= 0. Let us consider
the convex subset 0***** of ****** and let us assign to any
x1 matching this schema fitness values of one or greater,
i.e., f(x1) >= 1. The complement set of 0***** with re-
spect to ****** is 1***** for which all matching strings
keep the fitness of the current level set, which is zero. So,
the quasi-concave function we will obtain has fitness zero for
any string starting with 1 and fitness strictly larger than 1
for any string starting with 0. Let us now consider 0*****

which is the current level set which we need to partition.
We chose the convex subset 01**** of 0***** to have fit-
ness values equal or larger than 1, and its complement set in
0*****, which is 00****, to have fitness values at the current
level, which is 1. So, the quasi-convex function will return
fitness 1 for all strings starting with 00. Then the proce-
dure continues so forth and so on partitioning the current
sets until a convex set is reached which contains a single
element, or at any time if one decides to assign the cur-
rent fitness level also to the chosen convex set, so obtaining
a landscape with a plateau. For example, continuing the
procedure above we could construct the following function:
f(1*****) = 0, f(00****) = 1, f(011***) = 2, f(0101**) =
3, f(01000*) = 4, f(010010) = 5, f(010011) = 6. As the
Leading-One landscape can be built in this way, it is a quasi-
concave landscape. It is possible to show that One-Max is
not a quasi-concave landscape because its level sets are Ham-



ming balls, which unlike Euclidean balls, are not geodetically
convex.

Analogously to traditional quasi-concave functions, also
for quasi-concave landscapes a number of combinations and
transformations on quasi-concave landscapes produce quasi-
concave landscapes. For example, if f, g are quasi-convex
defined on the same domain, the following landscapes are
quasi-convex: αf + β with α, β real numbers, min[f, g], and
h(f) with h monotonic increasing.

4.4 Fitness landscapes with concave trend
As we mentioned in the introduction, there is a well-

known notion of global convexity of the fitness landscape
[2] that is known experimentally to be beneficial for the per-
formance of evolutionary algorithms. Interestingly, fitness
landscapes normally associated with many important com-
binatorial problems have been shown to be globally con-
vex [7]. Therefore, a theory which characterizes the per-
formance of evolutionary search on this class of fitness land-
scapes would be very relevant to practice. In this section, we
will start characterizing the notion of globally convex land-
scape formally and in a general way, by suitably extending
the notions of convex and quasi-convex landscapes presented
earlier. Naturally, the practical utility of the formalization
proposed is bound to the extent to which fitness landscapes
arising in practice fit nicely these formal notions. In future
work, we will investigate this issue thoroughly and, if nec-
essary, propose a refined definition of concave trend which
suits better these landscapes.

In the literature, there are a number of ways of weak-
ening the concavity/convexity requirement of a function to
approximate concavity/convexity. A simple approach to
defining approximately concave functions [5] (see Figure 5
(right)) is as follows. Let ε ≥ 0. A real-valued function f de-
fined on any convex subset C of some vector space is called
ε-concave if for any two points x, y ∈ C, for any t ∈ [0, 1],
f(tx+(1−t)y) ≥ tf(x)+(1−t)f(y)−ε. This is a well-studied
and interesting class of functions whose concavity approxi-
mation is controlled by the parameter ε, the smaller the bet-
ter the approximation. Interestingly, a function f = g + h
obtained from a concave function g and a bounded perturb-
ing function h such that ∀x : |h(x)| ≤ ε is 2ε-concave [5].

A ε-concave function can be generalized to a metric space
analogously to the case of concave functions, as follows.
Let C be a convex set on a metric space endowed with
distance d, then f : C → R is ε-concave if for any two
points x, y ∈ C, x 6= y and for any z ∈ [x, y], f(z) ≥
d(y,z)
d(x,y)

f(x) + d(x,z)
d(x,y)

f(y) − ε. As for the Euclidean case, an

analogous result on the sum of a concave landscape with a
bounded perturbing landscape is a 2ε approximately concave
landscape. Also, the following result which extends theorem
4 to ε-concave landscape holds (as the constant ε can be
pulled out from all summations).

Theorem 5. On a ε-concave fitness landscape, the ex-
pected fitness of the offspring E[f(z)] obtained by recombin-
ing randomly selected parents using geometric crossover from
a population with average fitness f̄ is E[f(z)] ≥ f̄ − ε.

It is noticeable that the parameter controlling the con-
cavity of the landscape has a straightforward impact on the
one-step performance and, inductively, on the overall per-
formance of the formal evolutionary algorithm: the less the

concavity approximation, the lower the performance can be-
come.

Whereas the above class of approximately concave land-
scapes may not be interesting for combinatorial spaces, as it
is based on a class which is not interesting on the Hamming
space, weaker versions on this class may encompass inter-
esting classes of fitness landscapes. For example, theorem 5
may well hold for the average version of concave landscapes,
so that the theorem would give a lower-bound on the fitness
of the offspring for perturbed One-Max landscapes.

We can also define a class of approximately quasi-concave
fitness landscapes, as follows. Let C be a convex set on
a metric space endowed with distance d, then f : C → R
is ε-quasi-concave if for any two points x, y ∈ C : f(z) ≥
min(f(x), f(y)) − ε for any z ∈ [x, y]. The level sets of
this class of functions are not convex, however they form a
nested chain of inclusions, as level sets do so for any func-
tion. For a ≤ b, denoting the corresponding level sets ls(a)
and ls(b), in general we have ls(a) ⊇ ls(b) but the relation
ls(a) ⊇ co(ls(b)) does not necessarily hold in general, but
it always holds for quasi-concave landscapes. However, this
holds also for ε-quasi-concave landscapes when b − a ≥ ε.
Analogously to the case of quasi-concave landscapes, this
characterization in terms of level sets can be used to con-
struct ε-quasi-concave landscapes based on combinatorial
spaces or to check for what ε a landscape is ε-quasi-concave.
Also, notice that a result relating the expected fitness of the
offspring population with the fitness of the parent popula-
tion as a function of ε holds on this class of landscapes.

Interestingly, the classes of ε-concave landscapes and ε-
quasi-concave landscapes are flexible classes as any fitness
landscape is ε-concave and ε-quasi-concave for ε large enough.
The practical relevance of these classes is therefore bound
to the extent to which fitness landscapes arising in practice
fit these classes for small values of ε.

Another interesting consequence of the flexibility of these
classes of fitness landscapes is that to some extent any fitness
landscape is both approximately concave and approximately
convex, with in general different degrees for concavity and
convexity. Since for the case of convexity one can determine
an upper-bound of the expected fitness of the offspring pop-
ulation with respect to of the average fitness of the parent
population, from the knowledge of the degrees of convexity
and concavity of a landscape, one can obtain a range for the
expected fitness of the offspring population. This may allow
us to characterize the performance for n-steps rather than
for a single-step of the evolution, perhaps in the average
case.

Finally, it would be interesting to consider approximated
concave landscapes with ε being a random variable rather
than a constant. This would define a statistical model of
fitness landscapes which may be more suitable to study
average-case performance rather than worst-case.

5. CONCLUSIONS
It is not at all clear that a unified theory of evolutionary

algorithms across representations is possible. This is an im-
portant open research question. The main contribution of
this paper is to start shaping the foundational concepts of a
possible approach towards such a theory.

We have started developing the theory by making use of
mathematical abstraction in the form of an axiomatic ge-
ometric language, based on the notion of geometric search



operators, that encompasses all representations. We have
defined the notion of abstract search behavior and used it
to prove that all evolutionary algorithms with geometric
crossover across representations do a form of abstract con-
vex search. This is a significant result as it elicits a common
behavioral identity of all evolutionary algorithms (without
mutation) across representations.

The unity in behavior of evolutionary algorithms calls for
the existence of a unique abstract underlying condition on
the fitness landscape for which all evolutionary algorithms
perform well. Convex search naturally suggests that the
concavity of the fitness landscape may be the key condition
for obtaining good performance of evolutionary algorithms.
We have generalized to general metric spaces a number of
notions of concave functions and considered their suitability
for the framework. We have shown that quasi-concave func-
tions may be a natural choice for fitness landscapes based
on combinatorial spaces. However, further study is required
to confirm the suitability of this notion.

We have proved a general result showing a direct relation-
ship between the degree of concavity of a fitness landscape
and its impact on the one-step performance of evolutionary
algorithms. This may be of direct relevance to combinatorial
problems as many are known to be associated with fitness
landscapes which are globally convex. However, it remains
to be seen if the formalized notion of concavity aligns well
with the empirical notion of global convexity. Investigating
this and refining the formal definitions is an important piece
of future work.

At the moment is still unclear how far the theory can be
brought forward at this level of abstraction. In future work,
we will investigate to what extent results about convergence
to the optimum, convergence rate and run-time analysis can
be obtained at this level of abstraction. Finally, as an im-
portant piece of future work, we will study the effect of mu-
tation on convex search and how to accommodate it within
this general framework.
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