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ABSTRACT
The smoothness of a fitness landscape, to date still an elusive
notion, is considered to be a fundamental empirical require-
ment to obtain good performance for many existing meta-
heuristics. In this paper, we suggest that a theory of smooth
fitness landscapes is central to bridge the gap between theory
and practice in EC. As a first step towards this theory, we
formalize the notion of smooth fitness landscapes in a gen-
eral setting using a Gaussian random field model on metric
spaces. Then, for the specific case of the Hamming space,
we show experimentally that traditional search algorithms
with search operators based on this space reach better per-
formance on smoother fitness landscapes. This shows that
the formalized notion of smoothness captures the important
heuristic property of its informal counterpart.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Op-
timization; F.2 [Analysis of Algorithms and Problem
Complexity]

General Terms
Theory

1. INTRODUCTION
For the No Free Lunch (NFL) theorems [25] (see also

[22] [9] for recent developments), the expected performance
of any black-box search algorithm averaged over all func-
tions is the same as random search. However, in practice
the scenario of the NFL theorem is not realistic because
search algorithms are hardly applied as black-box search
algorithms. Rather, they are used as meta-heuristics (in-
tended as algorithmic templates as opposed to ready-made
search algorithms) and are adapted to the problem at hand
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at design time. Hence, they incorporate problem knowledge.
It is not clear, however, what accounts for problem knowl-
edge and what is the link between problem knowledge and
better-than-random-search performance. In the following,
we depict a scenario which links problem knowledge, solu-
tion representations, search operators, smoothness of fitness
landscape, and performance. This scenario forms the con-
text for the focus of the present paper.

A well-known general empirical heuristic to obtain good
performance for existing meta-heuristics is to choose search
operators associated with a neighborhood structure, or a
distance, that gives rise to a fitness landscape with a smooth
trend in which closer solutions are more likely to have similar
fitness values [18].

The above heuristic presupposes the notion of association
between distance, or neighbourhood structure, and corre-
sponding search operator being well-defined. In previous
work within the scope of evolutionary algorithms [15], we
made precise this notion for mutation and crossover oper-
ators for the most frequently used solution representations
using simple, representation-independent geometric defini-
tions. We then showed experimentally that this way of as-
sociating distances and search operators is consistent with
the above heuristics. This method is very general and it can
be used to link distances to a variety of other search opera-
tors. For example, we have extended it to search operators
used in particle swarm optimization [16].

When the designer of the algorithm knows the objective
function of the problem at hand, the smoothness of the fit-
ness landscape can be controlled. This could be done, for
example, by choosing moves as a base for a local search
algorithm which are associated to fitness landscapes which
are Lipschitz continuous with a small Lipschitz constant by
construction. When the problem at hand is unknown to the
designer, however, the NFL theorem applies because there is
no a priori choice of search operator which would be prefer-
able in terms of giving rise to a smooth landscape. This
perspective casts light on the nature of problem knowledge
and the role of the designer. It equates problem knowledge
passed by the designer to the search algorithm with the re-
quirement of smoothness of the fitness landscape to obtain
good performance for evolutionary algorithms.

This line of thinking allows us to depict a scenario which
bridges the gap between theory and practice in evolutionary
computation as follows. Ideally, a theory of smooth fitness
landscapes would be representation-independent. It would
express the performances of search algorithms as a function



of important and controllable design elements such as so-
lution representation and search operators. These elements
would be able to be expressed in the theory as variables,
rather than fixed elements, in an indirect way using variable
metrics associated with them. This theory could be used
by the designer to make an informed choice on the solution
representation and search operators choosing those combi-
nations which are guaranteed by the theory to be a priori
good. The good combinations of solution representation and
search operators would be those whose associated distance
gives rise to a smooth fitness landscape, in a well-defined
sense, for the problem at hand. So, the theory would be
able to predict the performances of a search algorithm with
a given combination of solution representation and search
operators from the level of smoothness of fitness landscape
they induce, without the need to run any experiment.

Translating the scenario outlined above in an actual the-
ory is, naturally, a long term project, which builds upon the
geometric unification of evolutionary algorithms [15] which
associates solution representation and geometric operators
with the distances of the search space they induce. The un-
derlying assumption behind the above scenario is that the
smoothness of the fitness landscape is what ultimately de-
termines good performance of traditional search algorithms.
In this paper, we present a step towards this theory. We for-
malize the notion of smooth fitness landscape in a general
way using a Gaussian Random Field (GRF) model and show
experimentally that this notion of smoothness can alone de-
termine average-case performance much better than random
search for a number of traditional search algorithms. The
GRF model is a natural choice to formalize the notion of
smoothness as outlined above because it relates distance be-
tween solutions in the search space with the correlation of
their fitness values.

There is some previous work on using statistical models of
fitness landscapes in the context of evolutionary algorithms.
Their use is quite heterogeneous. Perhaps, the first statisti-
cal model of random landscapes used in evolutionary com-
putation is the NK-landscapes introduced by Kauffman [12].
This family of fitness landscapes is based on binary strings
and the model has a parameter to tune the ruggedness of the
fitness landscapes generated. Stadler has introduced a gen-
eral mathematical theory for the analysis of random fitness
landscapes based on algebraic combinatorics [20] [23]. There
are empirical statistical measures of hardness of fitness land-
scapes based on correlation, such as random walk autocorre-
lation [24] and fitness-distance correlation [11] which, how-
ever, do not consider explicitly any underlaying statistical
model. Estimation of distribution of algorithms [14] search
alternating sampling and re-calibrating a statistical model
of the fitness landscape. The specific model used depends
heavily on the underlying solution representation. In con-
tinuous global optimization, GRF models are used to do
statistical inference and determine the location of solutions
whose fitness values are most likely to improve on the fitness
values of already sampled solutions [10].

There is much work on GRFs in literature. However, most
of the pre-existing work focuses on continuous spaces en-
dowed with the Euclidean distance. See, for example, the
book [5] for their use in geostatistics which is the major
field of application of these models. GRFs can be read-
ily generalized to general metric spaces. In this paper, we
consider GRFs at this level of generality and we study the

issues arising in this general setting. In particular, we show
that GRFs suit combinatorial spaces as good as they suit
continuous spaces.

In the experiments, we concentrate on GRFs on the Ham-
ming space. We sample the GRF model and produce ran-
dom fitness landscapes with varying level of smoothness. We
then test a number of search algorithms and show that, on
average, the smoother the fitness landscape, the better the
performance of these algorithms. This validates experimen-
tally the consistency of our formalized model of smooth-
ness with the expected performance of search algorithms
in full agreement with the heuristic that smoother fitness
landscapes lead to better performances. This is an inter-
esting result because it shows that, in the average-case, the
smoothness of the fitness landscape is ultimately what is
needed to allow the traditional search algorithms considered
to perform much better than random search.

These results are average-case. We discuss how these
results relate with result on a single typical fitness land-
scape. This will allow us to clarify the interpretation of
existing empirical statistical measure of smoothness of a fit-
ness landscape to predict its hardness and explain the origin
of counter-examples to these measures.

In summary, the remainder of this paper is organized as
follows. In section 2, we briefly review the geometric frame-
work. In section 3, we present preliminary definitions and re-
sults about gaussian random fields on general metric spaces
and, in section 4, we focus on the specific case of the Ham-
ming space which is associated with the traditional crossover
and mutation operators for binary strings. In section 5,
we define smoothness for fitness landscapes under any met-
ric space. In section 6, we present experimental results for
varying level of smoothness. In section 7, we discuss the con-
nection between GRFs and statistical measures hardness of
fitness landscape. In section 8, we present conclusions and
future work.

2. GEOMETRIC FRAMEWORK

2.1 Geometric preliminaries
In the following we give necessary preliminary geometric

definitions. For more details on these definitions see [7].
The terms distance and metric denote any real valued

function that conforms to the axioms of identity, symme-
try and triangular inequality. A simple connected graph is
naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length
of a shortest path between the nodes. Distances arising
from graphs via their path metric are called graphic dis-
tances. Similarly, an edge-weighted graph with strictly pos-
itive weights is naturally associated to a metric space via a
weighted path metric.

In a metric space (S, d) a closed ball is a set of the form
Bd(x; r) = {y ∈ S|d(x, y) ≤ r} where x ∈ S and r is a
positive real number called the radius of the ball. A line
segment (or closed interval) is a set of the form [x; y]d =
{z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called
extremes of the segment. Metric ball and metric segment
generalize the familiar notions of ball and segment in the
Euclidean space to any metric space through distance redef-
inition. These generalized objects look quite different under
different metrics. Notice that the notions of metric segment
and shortest path connecting its extremes (geodesic) do not



coincide as it happens in the specific case of an Euclidean
space. In general, there may be more than one geodesic con-
necting two extremes; the metric segment is the union of all
geodesics.

We assign a structure to the solution set S by endowing
it with a notion of distance d. M = (S, d) is therefore a
solution space (or search space) and L = (M, g) is the cor-
responding fitness landscape where g : S → R is the fitness
function. Notice that in principle d could be arbitrary and
need not have any particular connection or affinity with the
search problem at hand.

2.2 Geometric crossover
The geometric framework [15] defines search operators in

a representation-independent way expressing search opera-
tors entirely as functions of the metric d associated with the
search space, using simple geometric definitions. In the fol-
lowing, as an example, we briefly review one of these search
operators, the geometric crossover [17], which is based on
the notion of metric segment.

A recombination operator OP takes parents p1, p2 and
produces one offspring c according to a given conditional
probability distribution:

Pr{OP (p1, p2) = c} = Pr{OP = c|P1 = p1, P2 = p2} =
fOP (c|p1, p2)

Definition 1. (Image set) The image set Im[OP (p1, p2)]
of a genetic operator OP is the set of all possible offspring
produced by OP with non-zero probability when parents are
p1 and p2.

Definition 2. (Geometric crossover) A recombination op-
erator CX is a geometric crossover under the metric d if all
offspring are in the segment between its parents: ∀p1, p2 ∈
S : Im[CX(p1, p2)] ⊆ [p1, p2]d

Definition 3. (Uniform geometric crossover) The uni-
form geometric crossover UX under d is a geometric crossover
under d where all z laying between parents x and y have the
same probability of being the offspring:

∀x, y ∈ S : fUX(z|x, y) =
δ(z ∈ [x; y]d)

|[x; y]d|
Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y]d

where δ is a function that returns 1 if the argument is true,
0 otherwise.

A number of general properties for geometric crossover
and mutation have been derived in [17].

Many pre-existing recombination operators are geometric
crossovers [15], under a suitable metric. Some recombina-
tion operators are provably not geometric crossovers (under
any metric). For vectors of reals, various types of blend
or line crossovers, box recombinations, and discrete recom-
binations are geometric crossovers. For binary and multary
strings (fixed-length strings based on a n symbols alphabet),
all mask-based crossovers (one point, two points, n-points,
uniform) are geometric crossovers. For permutations, PMX,
Cycle crossover, merge crossover and others are geomet-
ric crossovers. For Syntactic trees, the family of Homolo-
gous crossovers (one-point, uniform crossover) are geomet-
ric crossovers. Recombinations for other more complicated
representations such as variable length sequences, graphs,
permutations with repetitions, circular permutations, sets,
multisets partitions are geometric crossovers.

3. GAUSSIAN RANDOM FIELDS
ON METRIC SPACES

Most of the known results on GRF are about Euclidean
spaces. In this section, we will consider GRFs on general
metric spaces. The reader already familiar with both sub-
jects may move on to section 4 that presents new results for
GRFs on Hamming spaces. By no means this section treats
exhaustively the generalization of GRFs to metric spaces.
Very important uses of GRFs are left out such as, for ex-
ample, statistical spatial inference, also known as Kriging
[5], and GRFs model fitting to spatial data using maximum
likelihood. We will consider these aspects of GRFs in fu-
ture work. The message of this section is that, ultimately
GRFs are special cases of Multivariate Gaussian distribu-
tions, and therefore all methods and theory developed for
them can be readily specialized for GRFs with any under-
lying metric. The most peculiar characteristic of the GRFs
is the correlation function, which requires special attention.

3.1 Basic definitions
A random field (see [13] for an introduction) is a family

{Xt, t ∈ T} of random variables. The set T is called the
index set of the field. No restriction is placed on the nature
of T . However, important special cases are when T is the
set of natural numbers (discrete random process), when T
is the set of positive real numbers (continuous random pro-
cess) and when T is the space of n-dimensional real vectors
(continuous random field). In this paper, we will embrace a
more general approach and we will consider T as a metric
space endowed with a metric d. To the authors’s knowl-
edge, in literature there is no comprehensive reference on
this topic. However, Adler [2] surveys some aspects of GRFs
on metric spaces. The type of index set, although at first
seemingly arbitrary assigned, is important because it casts
an interpretation on the object the random field models and
it shapes the choice of what particular families of random
field to study and what properties of the random field are
relevant under the specific interpretation.

A random field is completely specified by the joint prob-
ability distribution of the n random variables Xt1 , . . . , Xtn

where T = {t1, . . . , tn}. Its mean value function, denoted
by m(t), is defined for all t ∈ T by m(t) = E(Xt), its
covariance function, denoted by C(s, t), is defined for all
s, t ∈ T by C(s, t) = Cov(Xs, Xt), and its correlation func-
tion, denoted by ρ(s, t), is defined for all s, t ∈ T by ρ(s, t) =
Corr(Xs, Xt).

A Gaussian random field (GRF) is a random field in which
the joint probability distribution of the random variables
{Xt} is a multivariate Gaussian distribution. A GRF is
completely specified by its mean value function and its co-
variance function. A standardized GRF is a GRF with mean
function m(t) = 0 and covariance function C(t, t) = 1 for
all t ∈ T . In this case, the correlation function coincides
with the covariance function and it fully characterizes the
random field.

A standardized GRF is a isotropic GRF if its correla-
tion function depends on the distance alone, i.e. ρ(s, t) =
ρ(d(s, t)). The corresponding correlation function is called
isotropic correlation function. Therefore, in a isotropic GRF
the correlation between any two random variables of the field
depends exclusively on the distance between their locations
in the field.

Above, we have defined a GRF as a family of random vari-



ables. A GRF can be equivalently interpreted as a probabil-
ity distribution over the space of functions whose domain is
the index set T and codomain is the domain of the random
variables Xt. This view is particularly suited when doing
inference on GRF [19].

3.2 Correlation functions
A function f : R → R must be positive semi-definite and

have f(0) = 1 to be a valid isotropic correlation function.
These conditions together guarantee that for non-negative
input the function f returns values in the range [−1, 1]. Pos-
itive semi-definiteness of the correlation function is required
to guarantee that every random variable of the field has
non-negative variance.

Let k be a positive integer, and let ti ∈ T and ci ∈ R
for i = 1, . . . , k. Then a function f : R → R is said to be
positive semi-definite on the metric space (T, d) if

k∑
i=1

k∑
j=1

cicjf(d(ti, tj)) ≥ 0

for any choice of k, {t1, . . . , tk} and {c1, . . . , ck}.
Most of the existing theory on correlation functions deals

with the special case of the Euclidean distance in Rn, for
which various families of valid correlation functions are known.
When using this distance the verification of positive semi-
definiteness is relatively simple in principle [1]. However,
there is no guarantees that the correlation functions which
are valid for the Euclidean distance remain positive semi-
definite, hence valid, for other distances (see [6] for a coun-
terexample). Verifying positive semi-definiteness of func-
tions on families of metric spaces other than the Euclidean
or even for general metric spaces is non-trivial and it is a
research field with a number of open questions (see [21]). In
section 4, we will introduce a method to derive valid corre-
lation functions for GRFs based on the Hamming distance.

Perhaps the most well-known family of isotropic correla-
tion functions is the exponential [19] in which the correlation
between random variables in the field is always positive and
it decreases with their distance r:

ρE(r) = exp(−3 · (r/l)v)

with the positive real parameter l defining the correlation
length, which is the distance at which there is practically no
correlation and with 0 < v ≤ 2, which specifies the shape
of the curve. The scaling factor ’-3’ is chosen so that the
correlation at the correlation length is e−3 ≈ 0.05.

Two important special cases of correlation functions are
the white noise, which has correlation 1 for distance 0 and
correlation 0 at any other distance, and the everywhere con-
stant, which has correlation 1 for any distance. Realizations
of the GRF with the white noise correlation function have
no spatial dependency. Realizations of the GRF with the
everywhere constant correlation function are flat and their
height is determined by a single random number.

3.3 Sampling a GRF
Generating realizations of a GRF on any metric space is

analogous to generating realizations for the specific case of
the Euclidean space. Since a GRF is a special type of mul-
tivariate Gaussian distribution described by a correlation
function, it is, therefore, sufficient to derive the covariance
matrix of the multivariate Gaussian distribution from the

(A) smooth (B) less smooth

Figure 1: Two realizations of an isotropic GRF with
exponential correlation function

correlation function of the random field applied to the dis-
tances between the points in the field using the specific met-
ric, instead of using the Euclidean metric. It is then possible
to use a standard method to sample the multivariate Gaus-
sian distribution with this covariance matrix to generate a
realization of the random field.

The most common method to sample a multivariate Gaus-
sian distribution is the one based on the Cholesky decompo-
sition of the covariance matrix (see, for example [3]) which
consists of obtaining a sample of an uncorrelated multivari-
ate Gaussian distribution and then transforming it to en-
force the correlation structure dictated by the covariance
matrix.

Figure 1 shows two realizations of isotropic GRF on a
two-dimensional grid with exponential correlation function
with different correlation lengths. The colors correspond to
thresholds based on three classes. The points whose values
belong to the classes of the smallest, medium, largest third
of all values are in orange, yellow and red, respectively. In-
tuition may suggest that realizations of isotropic random
fields should be spatially uniform. This is incorrect. Figure
1 (A) shows clearly that, because of the stronger spatial cor-
relation between closer points, closer points are more likely
to belong to the same class of values so giving rise to a
landscape with “mountain ranges” (red) and “large valleys”
(orange). Figure 1 (B) shows the effect of a reduced spa-
tial correlation: few large “mountain ranges” are replaced
by many “mounts” which are separated from each other by
smaller and numerous “valleys”.

4. CORRELATION FUNCTIONS FOR THE
HAMMING SPACE

In this section, we derive a general method to transform
all valid correlation functions on the Euclidean space to valid
correlation functions on the Hamming space.

A valid covariance matrix must be positive semi-definite.
We say that a correlation function for a given metric space is
valid if produces always a valid covariance matrix associated
with any choice of points in the metric space.

There is an interesting link between Euclidean distance,
positive semi-definite correlation function and positive semi-
definite covariance matrix that shed light on how to obtain
valid correlation functions for metric spaces other than Eu-
clidean. We illustrate this in the following.

Let x1, . . . , xn ∈ Rk. The matrix D defined by Dij =
ed(xi, xj) where ed denotes the Euclidean distance between



two vectors is called a Euclidean distance matrix. Since the
Euclidean distance is a metric, the matrix D satisfies some
obvious properties such as Dij = Dji, Dii = 0, Dij ≥ 0, and
(from the triangle inequality) Dik ≤ Dij + Djk. However,
these properties do not characterize completely a Euclidean
distance matrix. When then is a matrix D a Euclidean
distance matrix (for some points in Rk, for some k)? A
famous result [21] answers this question: D is a Euclidean
distance matrix if and only if D′

ii = 0 and xT D′x ≤ 0 for all
vectors x with 1T x = 0 where D′

ij = D2
ij .

From the definition of positive semi-definite correlation
function for Euclidean GRF, by applying element-wise a
positive semi-definite correlation function to the Euclidean
distance matrix, we obtain the corresponding covariance ma-
trix, which is a positive semi-definite matrix. Importantly,
when the distance matrix is not Euclidean or the correla-
tion function is not positive semi-definite on the Euclidean
space, the resulting covariance matrix is not necessarily pos-
itive semi-definite, hence, not guaranteed to be valid.

Definition 4. (Isometry) Two metric spaces M = (S, d)
and M ′ = (S′, d′) are isometric if there exists a bijective
function g : S → S′ which is distance-preserving: so ∀x, y ∈
S : d(x, y) = d′(g(x), g(y)). The mapping g is called isome-
try.

From the definitions of isometry, of Euclidean distance
matrix and of positive semi-defined function, it is clear that
if a metric space M is isometric to any subspace of the Eu-
clidean space, the distances between any set of points in
M , will give rise to an Euclidean distance matrix, and con-
sequently any valid correlation function for the Euclidean
space is a valid correlation function for M . This was first
noted by Schoenberg [21].

This is an interesting result because it extends the scope of
the Euclidean correlation functions. In particular, any valid
correlation function on the Euclidean space is a valid cor-
relation function for any discrete space which is a subspace
of the Euclidean space, like for example a two-dimensional
grid.

However, this result does not extend to the Hamming
space because it is known that, in the general case, the
Hamming space cannot be isometrically embedded in the
Euclidean space [8]. So, it is not guaranteed that if a cor-
relation function is valid for a GRF on a Euclidean space
it will also be valid for the Hamming space. To find valid
correlation functions for the Hamming space we take an al-
ternative route.

Proposition 1. The Euclidean distance between binary
strings equals the square root of their Hamming distance [4].

This fact allows us to state the next theorem.

Theorem 1. If f(x) is a valid correlation function on
the Euclidean space, g(x) = f(

√
x) is a valid correlation

function on the Hamming space.

Proof. Let S be a set of binary strings of the same
size and D = {ed(si, sj)} their Euclidean distance matrix.
Therefore, the covariance matrix associated with S under
Euclidean distance via the correlation function f is C =
{f(ed(si, sj))}. C is positive semi-definite, hence valid, by
construction. Now, let DH = {hd(si, sj)} be the Hamming
distance matrix of S. The covariance matrix associated

with S under Hamming distance via the correlation func-
tion g is CH = {g(hd(si, sj))}. CH is always positive semi-
definite because, since DH = {ed(si, sj)

2}, we have that

CH = {f(
√

hd(si, sj))} = {f(
√

ed(si, sj)2)} = C. There-
fore, g must be a valid correlation function for the Hamming
space because it always gives rise to a valid covariance ma-
trix.

Notice that the converse of this result may not be true,
since there may be correlation functions for the Hamming
space that do not correspond to any valid correlation func-
tions for the Euclidean space. This is because, whereas any
adequately transformed Hamming space can be isometri-
cally embedded in the Euclidean space, the vice versa is
not true.

This theorem can be easily generalized to any metric space
d obtained by an invertible distance transform t of the Eu-
clidean distance or of a space isometric to any subspace
of the Euclidean space, i.e. d(a, b) = t(ed(a, b)). So, if
f(x) is a valid correlation function on the Euclidean space,
g(x) = f(t−1(x)) is a valid correlation function of under the
metric d.

Analogously to the result for the Euclidean space, a valid
correlation function for the Hamming space is also a valid
correlation function for any space that can be isometrically
embedded in the Hamming space. A number of interesting
discrete spaces have this property [4], such as, for example,
the metric between sets equalling the size of their symmetric
difference, the Hamming distance for strings based on non-
binary alphabets, the Manhattan distance on integer vectors
and the adjacent swap distance between permutations.

Corollary 1. The family of the exponential correlation
functions on the Euclidean space gives rise to the following
family of exponential correlation functions on the Hamming
space.

ρE(r) = exp(−3 · (r/l)v)

with the positive real parameter l defining the correlation
length, which is the Hamming distance at which there is
practically no correlation with 0 < v ≤ 1.

Proof. Let us consider the family of correlation func-

tions for the Euclidean space f(r) = exp(−3 · (r/l′)v′) with
v′ ∈ [0, 2]. Applying proposition 1 we obtain the following
family of correlation functions for Hamming space: g(r) =

exp(−3 · (rv′/2/l′v
′
)). Now, if we substitute v = v′/2 with

v ∈ [0, 1] and l = l′2, we obtain g(r) = exp(−3 · (rv/lv)).
The parameter l can be interpreted as correlation length for
the Hamming space because for Hamming distance r = l
the correlation is practically zero, g(l) = e−3 ≈ 0.05.

Notice that the family of exponential functions valid for
the Hamming space is a subset of the family of exponential
functions valid for the Euclidean space.

5. SMOOTHNESS OF FITNESS
LANDSCAPES

In this section, we use the GRF model to define a no-
tion of smooth fitness landscape which is independent from
the specific underlying space and solution representation. In
order to avoid subtle errors related to the interpretation of



smoothness, it is important to differentiate between smooth-
ness as a parameter of the statistical model, hence charac-
terizing a probability distribution over the space of fitness
landscapes, and smoothness as empirical measure obtained
from a single fitness landscape. In this section, we refer to
the former notion of smoothness. In section 7, we will con-
sider the relation between the two notions and show how this
distinction clarifies the origin of known problems with sta-
tistical empirical measures of hardness of fitness landscapes.

5.1 Smoothness
An isotropic GRF is completely characterized by its cor-

relation function. If we consider two correlation functions ρ1

and ρ2, if ρ1 is always above ρ2, (i.e., ∀r ≥ 0 : ρ1(r) ≥ ρ2(r))
we can certainly say that the GRF G1 characterized by ρ1 is
smoother (more precisely, it models smoother fitness land-
scapes) than the GRF G2 characterized by ρ2 because, at
each distance, the correlation between fitness at that dis-
tance dictated by G1 is stronger than the one dictated by
G2. However, when neither of the correlation functions is
dominant, none of them corresponds to a smoother GRF.

In special circumstances, it is possible to characterize ex-
actly the smoothness of a GRF by a single number 1. The
best candidate to this end is the correlation length of the
correlation function,2 as we explain in the following.

The most common families of correlation functions are
continuous positive monotonic decreasing functions, like the
exponential family. However, other types of correlation func-
tions exist, which are non-monotonic and can take negative
values (for an overview on correlation functions see [1]).

Different families of correlation functions are character-
ized by a different set of parameters. However, the correla-
tion length parameter can be defined for all families of cor-
relation functions which reach correlation zero or near-zero
for some distance (which is the case for almost all correla-
tion functions) and it can be always adequately re-scaled to
have the same interpretation for any function, which is, to
be the smallest distance at which the correlation function is
zero (or approximatively zero).

For decreasing correlation functions, once we fix the fam-
ily of correlation functions and all its parameters other than
the correlation length parameter, the correlation length can
be used to characterize exactly the level of smoothness of
the field. This is because a smaller correlation length cor-
responds to a correlation curve that reduces more rapidly
for increasing distance and reaches zero earlier (see figure
2, for the case of the exponential family of correlation func-
tions with parameter v = 1). In formula, let ρ(r, l) be a
decreasing correlation function with distance r and correla-
tion length l. Then, l1 ≤ l2 ⇒ ∀r : ρ(r, l1) ≤ ρ(r, l2) thereby
for smaller correlation length the field becomes less smooth.

1Although it may be easier in practice to formalize the no-
tion of smoothness using a single number to characterize the
smoothness level of a GRF, in general, this cannot be done
without introducing an error, because the comparison be-
tween two numbers produces always a well-defined outcome
(smoother, equally smooth or less smooth) and the situation
of incomparable smoothness cannot be modeled.
2The parameter of smoothness suggested in this paper is
closely related to the measure of smoothness proposed by
Weinberger [24], which, however, is an empirical measure of
smoothness and not intended as a smoothness parameter of
a GRF.
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Figure 2: Exponential correlation function with cor-
relation lengths 5, 10 and 20.

5.2 Distance re-scaling
To give a proper interpretation to the correlation length

parameter in terms of its effect on the realizations of a GRF,
it is important to realize that the correlation length is not
invariant with respect to the re-scaling of the underlying
metric space, whereas the overall smoothness of the realiza-
tion it is invariant with respect to this transformation. We
will illustrate this with an example.

Let us consider a realization of a GRF with exponential
correlation function ρ(r, l) with v = 1 on a two-dimensional
square with side length 10 endowed with Euclidean distance
generated with correlation length l = 5. If we re-scale of
a factor 3 this realization, we obtain a new realization on
a square with side length 30, which overall looks identical,
except for the size, to the original realization. In particular,
both realizations have the same level of smoothness. There-
fore, the smoothness of the realization is invariant with dis-
tance re-scaling.

However, the re-scaling of the size of the square of a fac-
tor 3 has affected the distances between points in the square
of the same factor, so that the points that before re-scaling
were at a distance d after the re-scaling are at a distance 3·d.
This, in turn, has implicitly affected the correlation length
of the re-scaled realization, since the correlation length is
defined in terms of underlying distance, so that when the
distance is re-scaled also the correlation length is re-scaled.
So, the effective correlation length of the re-scaled realiza-
tion is 3 · l = 15. This means that two realizations with the
same level of smoothness are associated to different correla-
tion lengths. So, the correlation length is not invariant with
distance re-scaling.

This example shows that the interpretation of the correla-
tion length in terms of overall smoothness of the realization
has to keep into account the size of the underlying metric
space. This can be done, for example, by relating correla-
tion length with the diameter of the space (dmax) or alterna-
tively with the average distance of the space. Alternatively,
a notion of normalized correlation length l̂ = l/dmax can be
introduced, which is distance re-scaling invariant.

5.3 Separation between algorithm, search
space and correlation structure

The same correlation function can be used for different
underlying metric spaces provided it always produces posi-



tive semi-definite covariance matrices when used with these
spaces. For example, the exponential correlation function
with parameter v = 1 is a valid correlation function for Eu-
clidean spaces of any dimension. The same function is also
a valid correlation function for the Hamming space of any
dimension. Validity consideration apart, the polymorphism
of correlation functions with respect to their applicability to
underlying spaces with very heterogeneous characteristics
(for example, different dimensions and different underlying
representation) is made possible by the interface between the
underlying metric space and the correlation function. This
interface is completely independent from the specific charac-
teristics of the space and it is exclusively based on distance
values, which are common to all metric spaces. This prop-
erty is interesting because it leads to a natural modularity, or
separation, of the correlation function C from the underly-
ing metric space M . This connects well with the abstraction
provided by the geometric framework, as follows.

The geometric framework allows us to define a formal
search algorithm A which can be seen as a function of a
generic metric space M . When the metric space is specified
by formal composition of the formal algorithm A and the
metric space M , we obtain AM , which is a concrete search
algorithm for the specific space.

We can now express, in a functional form P (A, M, C), the
average-case performance of a formal algorithm A specified
to the metric space M on the distribution probability of the
input fitness landscapes specified by the GRF with correla-
tion function C specified to the metric space M . Notice that
the performance P is a random variable with two sources of
randomness since it is a function of the algorithm A, which
is a randomized algorithm, and a function of the GRF speci-
fied by C, which is a random variable defined over the space
of fitness landscapes.

This functional form, which separates search algorithm,
space searched, and correlation profile of the fitness land-
scape, allows us to selectively fix two input variables and
change the third one and make rigorous comparisons on the
performance. So, for example, we could fix the correlation
function C to, say, exponential with parameters v = 1 and
l = 3, the algorithm A to a formal genetic algorithm with
uniform geometric crossover, and vary the underlying metric
space from Euclidean to Hamming.

6. EXPERIMENTS
In this section, we test experimentally, for the case of the

Hamming space, the consistency of our formalized model
of smoothness with the performance of traditional search
algorithms as to whether smoother fitness landscapes lead
to better average-case performances. The search algorithms
considered are Local Search (LS), Randomised Local Search
(RLS), a simple Genetic Algorithm (GA) and, for reference,
Random Search (RS) (see Table 1).

We sampled fitness landscapes from a GRF on Hamming
space with n dimensions (bit string length) as follows. Firstly,
a vector containing 2n samples of standard normally dis-
tributed values was generated. Then, a deterministic trans-
formation was applied to it to enforce the correlation struc-
ture dictated by the correlation function of the GRF. The
transformation consists of 3 steps: 1) generating the covari-
ance matrix from the correlation function and the distance
matrix between all points; 2) performing the Cholesky de-
composition of the covariance matrix (that has time com-

Table 1: The algorithms used in the experiment.
Type Algorithm
Random Random Search: At time step t the so-

lution xt is selected uniformly at random
from {0, 1}n

Local
Local Search: The first solution is sam-
pled uniformly at random. Then at time
step t, xt+1 = arg maxx{f(x) | d(x, xt) ≤
1}. If xt+1 = xt the algorithm restarts.

Randomised Local Search: The first
solution is sampled uniformly at random.
Then at time step t, the algorithm chooses
uniformly at random x′ ∈ {x | d(x, xt) =
1}. xt+1 = arg maxx∈{xt,x′} f(x). The al-
gorithm restarts if there is no improvement
(in fitness) within 2n steps.

Population
GA, uniform crossover: We used pop-
ulation size of 6, tournament of size 2,
crossover applied with probability 1 and
mutation with probability 1/n. The algo-
rithm was restarted every 20 generations.

plexity O(k3) with k = 2n); and 3) multiplying the vector
of independent samples by decomposed matrix. This pro-
cess grows exponentially slow with n. For this reason, we
restrict the experiments to bit-strings of length 12 3. As cor-
relation function family, we used the exponential with shape
parameter v = 1.

The Hamming distance between two strings, in this case,
varies from 0 to 12. In order to study the effect of varying
levels of smoothness of the landscape on the performance,
we generated, for each correlation length l ∈ {1, · · · , 12},
50 different landscapes for a total of 12 ∗ 50 = 600 land-
scapes. For each landscape, we run each algorithm until the
optimum was found (note that as the fitness values of the
landscapes are sampled from a continuous distribution, each
of the landscapes has only one global optimum). This was
repeated 100 times. Figures 3, 4 and 5 show the average
number of fitness evaluations (including repetitions) it took
GA, RLS and LS to sample the optimum for the first time.
Table 2 gives the results of a pairwise t-test which tests the
significance of the performance gain for adjacent correlation
lengths.

We can note a clear trend for all the search algorithms: the
performance becomes better as the value of the correlation
length increases. We can also see that for low correlation
lengths (1 and 2), RLS and GA perform worse than random
search. This is mainly the effect of resampling. For larger
correlation lengths, LS outperforms the other two search
algorithms.

Interestingly, the curve of the average performance be-
comes flatter for l > 7, which is, for values of l larger than
the average distance between solutions. Also, Table 2 shows
that the difference in performance for successive values of l
after this threshold becomes less statistically significant. We
do not yet understand clearly why the performance almost

3However, it may become feasible to sample larger fitness
landscapes employing statistical inference on GRFs and
sparse approximation of GRFs. We briefly discuss this pos-
sibility in section 8



Table 2: Pairwise significance test for the exper-
iment. t(i, j) denotes the significance test for the
results obtained for correlations i and j. The check
mark denotes that t(i, j) < 0.001. Otherwise, the ac-
tual value is given.

t(1, 2) t(2, 3) t(3, 4) t(4, 5) t(5, 6) t(6, 7)
RLS X X X X X 0.04
LS X X X X 0.02 0.08
GA X X 0.01 X X 0.31

t(7, 8) t(8, 9) t(9, 10) t(10, 11) t(11, 12)
RLS X 0.68 0.15 0.68 0.16
LS 0.01 0.23 0.05 0.86 0.1
GA 0.01 0.87 0.41 0.79 0.24

stops getting better when the correlation length reaches the
average distance between solutions. We plan to investigate
this in future research.

6.1 Decomposition of performance variance
Note that the standard deviation of the performance for

each correlation length (the error bars in Figures 3, 4 and
5) is the result of two distinct sources of randomness: the
randomization of the search algorithm and the probabilistic
sampling of the input fitness landscape from the GRF. Inter-
estingly, it is possible to determine the relative contributions
of these two sources of randomness on the variability of the
performance, as follows.

Let us fix an algorithm A and let L be a random vari-
able over the space of fitness landscapes, which is a GRF
with a fixed correlation function (in our specific experimen-
tal setting, we simply need to fix the correlation length l).
The performance of A on L, PA(L), is a random variable
PA function of the random variable L. Notice that PA is
not simply a deterministic function of r.v., but it is a r.v.
piloted by the outcome of another r.v. because of the ran-
domization in the search algorithm A. There are two well-
known statistical laws of general applicability that can be
used to characterize the expectation and variance of PA by
decomposing them conditionally on the values of the pilot-
ing variable L. For the law of conditional expectations, the
expected value of PA is:

EPA [PA] = EL[EPA [PA|L]].

For the law of total variance, the variance of PA is:

V arPA(PA) = EL[V arPA(PA|L)] + V arL(EPA [PA|L]).

Interestingly, the summands in the formula of the variance
can be interpreted as follows. The first summand is the part
of variance not caused by the variability of L (unexplained
variance) and the second summand is the part of variance
caused by the variability of L (explained variance). The only
other source of variability of the performance, in our case,
is the randomization of A, so the first summand is the part
of variance caused by the variability of A.

Table 3 gives the fraction of the total variance of PA which
is caused by the variability of L. That is, for algorithm A
and GRF with correlation length l, Table 3 reports the value
V arL(EPA [PA|L])/V arPA(PA) where EPA [PA|L] is the av-
erage performance of the 100 runs of A on the same fitness

Table 3: The variance in performance of Random
Search (RS), Randomised Local Search (RLS), Local
Search (LS) and GA which can be explained by the
distribution induced by the GRF with correlation
length l = i.

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
RS 0.01 0.01 0.01 0.01 0.01 0.01
RLS 0.08 0.10 0.12 0.13 0.12 0.12
LS 0.16 0.18 0.16 0.17 0.16 0.24
GA 0.01 0.04 0.05 0.07 0.07 0.08

l = 7 l = 8 l = 9 l = 10 l = 11 l = 12
RS 0.01 0.01 0.01 0.01 0.01 0.01
RLS 0.09 0.12 0.17 0.12 0.13 0.16
LS 0.17 0.14 0.22 0.17 0.16 0.22
GA 0.09 0.08 0.11 0.10 0.10 0.11

Figure 3: The average number of fitness evaluation
as a function of the correlation length. The error
bars represent the standard deviation of the 50 dif-
ferent instances.

landscape, V arL(EPA [PA|L]) is the variance of the averages
over 50 landscapes sampled at random from GRF with cor-
relation length l and V arPA(PA) is the total variance of the
performance.

For example, the value 0.01 (Random Search, l = 1)
should be interpreted as follows: 99% of the variability in
the performance of random search in our experiments can be
attributed to A, the randomization of the search algorithm,
and only 1% to the actual landscape sampled from L. This
is not surprising for random search, which is invariant to any
property of the fitness landscape other than the number of
optima (the theoretical value for random search is 0).

For the other search algorithms, the variance of the per-
formance that is caused by the variability of L does not
exceed 0.25. This means that most of the variability in the
performance is caused by the search algorithms. Compar-
ing the three, the variance due to the algorithm is more
dominant in the case of GA. This seems reasonable as there
are more sources of randomness in GA than in the other
search algorithms. The difference between RLS and LS can
be explained in a similar way. Finally, note that in these
experiments, the more randomized the algorithm the less
efficient it is.



Figure 4: The average number of fitness evaluation
as a function of the correlation length. The error
bars represent the standard deviation of the 50 dif-
ferent instances.

Figure 5: The average number of fitness evaluation
as a function of the correlation length. The error
bars represent the standard deviation of the 50 dif-
ferent instances.

7. EMPIRICAL SMOOTHNESS AND
LANDSCAPE HARDNESS

In section 6, we have seen that there is consistency be-
tween the value of the correlation length parameter of the
GRF and the average-case performance of traditional search
algorithms: larger correlation length corresponds to bet-
ter performance. It is well-known, however, that there are
counter-examples on using empirical measures of smooth-
ness as measures of hardness of a fitness landscape. In
this section, we will point out the origin of these counter-
examples.

From an instance of fitness landscape we can derive the
empirical correlation function, also known as correlogram
[5]. The correlogram can be used to estimate (maximum
likelihood estimation) the correlation function of the most
likely isotropic GRF model of which the landscape at hand
can be considered a realization. The empirical correlation
length obtained from the correlogram can be then used to
estimate the correlation length parameter of the GRF. Now
the question is: can we reliably use the estimated correlation
function and correlation length as measure of hardness of the
fitness landscape for traditional search algorithms? This is

a legitimate question which seems consistent with the claim
that the correlation length parameter of the GRF is the
main determinant of average-case performance. However, if
we do so, we make three assumptions, which, if not satisfied,
will be the cause of counter-examples to the use of empirical
correlation length as a measure of hardness:

1. we assume that there is consistency between the corre-
lation length parameter and performance. Although,
our experiments corroborated this claim, there is no
proof yet.

2. we assume good-fit of the fitness landscape at hand to
the isotropic GRF estimated from it. However, this
may not be always the case.

3. we assume that the average-case performance of a tra-
ditional search algorithm on the GRF can be used as
an estimation of the performance of the search algo-
rithm on a “typical” fitness landscape drawn from that
GRF.

We believe that assumptions 1 and 3 are essentially cor-
rect. However, they need proofs or, at least, further exper-
imental study. In the following, we will show what can go
wrong with assumption 2.

Firstly, we need a goodness-of-fit test that indicates the
probability that a fitness landscape can be thought of as
being a realization of a given GRF. The outcome of the
goodness-of-fit test can be fit, mis-fit (probability < 0.05), or
over-fit (probability > 0.95). Only fitness landscapes which
fit the GRF model can be considered as valid realizations of
the model. Mis-fitting landscapes are not consistent with the
GRF model. Over-fitting landscapes are too consistent and
hence lack of necessary variability to be considered typical
outcomes of random sampling of the GRF.

In geo-statistics, there are a number of statistical tests
that checks whether various “geographical” features of a
given landscape are compatible with the features required
by the GRF [5]. However, we would like to have a more
general test which does not consider individually various as-
pects of a landscape, but rather tells us whether the entire
landscape fit the GRF model, and to what degree. To do
so, we propose the following test.

The test is based on reversing the construction of a cor-
related realization L of a GRF G by filtering from L the
correlation structure dictated by G and then test whether
the filtered realization L′ can be seen as a sample of an un-
correlated GRF, test which can be done in a simple way.
This test relies on the fact that, since the transformation
TG that enforces the correlation structure dictated by G on
an uncorrelated realization L′ to construct a correlated re-
alization L is deterministic and bijective, the goodness-of-fit
of L with respect to G is the same as the goodness-of-fit
of L′ with respect to an uncorrelated GRF. Then, to test
whether L′ is a realization of an uncorrelated GRF is suffi-
cient to test whether the set of values of L′, irrespectively
of their locations, can be thought as a set of values obtained
by sampling a standardized Gaussian distribution. To do so,
we can use any of the many statistical tests available for this
task. We used the Pearson chi-square normality test. The
reason we are allowed to neglect altogether the locations of
the values of L′ in the test is that any spatial arrangement
of the values, including those which present regularities, has



the same probability (density) of being generated as the out-
come of the sampling of an uncorrelated GRF as any other
configuration.

In the following, we describe an experiment that shows
what may happen when assumption 2 above is not met,
which is, when the empirical correlation length is used as a
predictor of performance of a mis-fitting fitness landscape.

Firstly, we sample a fitness landscape L from a smooth
GRF model G. In our experiment, we use the exponential
correlation function with v = 1 and correlation length l = 12
on the Hamming space on 12 dimensions (associated with
binary strings of 12 bits).

If we measure the goodness-of-fit of the landscape L with
respect to the model G, we should obtain a good-fit, since
the fitness landscape L is a typical instance of the GRF G
by construction. In our experiment, we have obtained a p-
value = 0.5553 (P = 50.9258), which denotes a good-fit as
expected.

Next, we run a traditional search algorithm on the fit-
ness landscape L and measure its performance in terms of
number of fitness evaluations taken to find the optimum.
Since with our settings the fitness landscape is very smooth
(l = 12), we expect the search algorithm to perform much
better than random search on this fitness landscape. This
expectation is based on the assumption that the average-
case performance of a given GRF estimates well the perfor-
mance of a traditional search algorithm on a typical instance
of fitness landscape of that GRF (we assume assumption 3
above being correct). In our experiment, we run three search
algorithms – Randomised Local Search, Local Search and
GA – on the fitness landscape L. Their performance (av-
erage on 100 runs) are reported in figure 6 on the left side
(regular landscape). As a reference, random search would
require in average 4096 fitness evaluations to find the opti-
mum.

At this point, we could compute the empirical correlo-
gram of the fitness landscape L (and its empirical correla-
tion length) and derive the maximum likelihood isotropic

GRF model Ĝ that best-fits the fitness landscape L. Since
L is a typical instance of G, the GRF Ĝ will be identical or
a very good approximation of the original GRF G used to
generate the fitness landscape L.

Let us now consider a new fitness landscape L′ obtained
by swapping the locations of the maximum and minimum
in L.

The empirical correlogram of the new fitness landscape
L′ is the same or imperceptibly different from the one of
the original fitness landscape L because, by construction,
the empirical correlogram is not affected from changes to
only few points in the fitness landscapes. Therefore, the
maximum likelihood isotropic GRF model Ĝ′ that best-fits
the new fitness landscape L′ will be the same as Ĝ since it
is derived using the the same empirical correlation function.
In turn, Ĝ′ will be identical or a very good approximation
of the original GRF G.

At this point, we might be tempted to conclude that, since
both fitness landscapes L and L′ are associated with the
same maximum likelihood GRF model G, the performance
of traditional search algorithms on both fitness landscapes
should be similar or equal, and in particular, the average-
case performance of traditional search algorithms on the
GRF model G should be a good estimate of their perfor-

mance on both landscapes L and L′ (assuming assumption
3 above being correct).

However, while drawing this conclusion, we are implicitly
assuming that the fitness landscape L′ fits well the GRF
G (we are implicitly assuming assumption 2). We are not
considering the possibility that, even if G is the isotropic
GRF which fits best L′, the fit could still be an arbitrarily
bad mis-fit because, in fact, L′ may be not compatible with
the statistical regularities characterizing any isotropic GRF
model. To find out whether this is the case, we can measure
the goodness-of-fit of the fitness landscape L′ to the GRF
G. We have tested the goodness-of-fit of the new fitness
landscape with respect to the GRF and obtained a p-value
< 2.210−16 (P = 201.7988). This is an extremely small
p-value which can be interpreted as the probability of the
fitness landscape L′ of being sampled from the GRF G. So,
we have an extremely clear mis-fitting.

The intuitive reason behind the clear mis-fit is that, in
a strongly correlated GRF, the maximum, with very high
probability, is close to points with near-maximal fitness or
very high fitness, and, analogously, the minimum is close to
points with near-minimal fitness. By swapping the location
of the extreme points, whereas the fitness of all other points
in the landscape are consistent with a strongly correlated
GRF, the fitness of the extreme points are strongly incon-
sistent with it. Importantly, there is no choice of correlation
function that can make an isotropic GRF to be consistent
with such an arrangement of fitness. So, even the best pos-
sible fit, it is, in fact, a mis-fit.

The fitness landscape L′ by construction should be highly
deceptive for traditional search algorithms. To test this,
we run on L′ the same three search algorithms we run on
L. Their performance (average on 100 runs) are reported
in figure 6 on the right side (deceptive landscape). The
performance obtained by these algorithms are worse than
random search.

Since the landscapes L and L′ have the same empiri-
cal correlogram but very different hardness for traditional
search algorithms, this experiment tells us that the empir-
ical correlogram cannot be used as a reliable performance
predictor. Importantly, the experiment elicits the reason
behind this counter-example, which is, that the GRF model
from which the landscape L′ is most likely to be drawn from
cannot be used reliably as a basis to estimate the perfor-
mance of traditional search algorithms on L′ when L′ does
not fit well any GRF model. There is also another type
of counter-examples to using the empirical correlogram to
estimate the hardness of a fitness landscape for traditional
search algorithms which are caused by the over-fitting of a
fitness landscape to the GRF model from which it is most
likely to be drawn from.

Importantly, the counter-examples to using the empirical
correlogram as a measure of hardness of a fitness landscape
are not counter-examples to the consistency between corre-
lation length as determinant of average-case performance of
a GRF (assumption 1).

Perhaps, a valuable lesson that we can learn from this
section is that naked empirical statistical measures on a fit-
ness landscape used to predict performance are doomed to
fail (to have counter-examples) if they are not considered
within the context of an underlying statistical model of fit-
ness landscapes which defines their scope of applicability.

It might be argued that the isotropic GRF model is too



Figure 6: The performance of RLS, Local Search
and GA on a regular GRF with l = 12 and on a
deceptive landscape which was obtained by swapping
the maximum and minimum fitness values of the
original landscape.

restrictive to encompass all those fitness landscapes which
could be reasonably understood as “smooth”. There are
two points to make on this issue. Firstly, the isotropic GRF
model is actually more expressive than what intuition may
suggest at first. Only further research will be able to reveal
the extent to which isotropic GRFs are adequate to model
“smooth” fitness landscapes arising from real optimisation
problems. Secondly, if the isotropic GRF model turns out to
be too restrictive, more general random field models will be
considered. This, however, does not make the idea of con-
sidering hardness measures in the context of an underlying
statistical model any less valid.

8. CONCLUSIONS AND
PLAN OF FUTURE WORK

We have put forward that a general theory of smooth fit-
ness landscapes is the key to bridge the gap between the-
ory and practice in EC because it would allow the designer
of the search algorithm to use the knowledge of the prob-
lem at hand to do an informed choice of design elements,
such as solution representation and relative search operators,
to induce a smooth fitness landscape which, by the theory,
would guarantee good performance. Importantly, this the-
ory should be very expressive and should allow us to specify
solution representation and search operators as parameters
and see how changing the values of these parameters impact
the performance. A theory, at this level of abstraction, could
be built by using as starting point the geometric framework
which associates distances to search operators for any so-
lution representation and that treats specific distances as
parameters.

As a first step towards this theory, we have used a GRF
model to define formally the notion of smooth fitness land-
scape in a very general setting, without making any reference
to the specific underlying space or solution representation.
On the way, we have also shown that GRF can be readily
generalized to general metric spaces and, in particular, that
they can be used for combinatorial spaces as good as they
are being used in continuous spaces. For the specific case
of the Hamming space, we have derived a general method
to obtain valid correlation functions from Euclidean corre-
lation functions. In the experiments, we have shown that
the formalized notion of smoothness captures the heuris-
tic property of its informal counterpart, so that traditional

search algorithms perform better on smoother fitness land-
scapes. We have also discussed the relation between mea-
sure of hardness of the fitness landscape and our notion of
smoothness.

Much work has to be done, if we are to make the proposed
theory a reality.

An important practical requirement is to verify to what
extent fitness landscapes associated to well-known real-world
problems fit the GRF model, in other words, to verify whether
they can be treated as if they were realizations of GRF.

A natural continuation of the work presented in this paper
is to consider GRFs on more challenging solution represen-
tations such as permutations or even Genetic Programming
trees, derive valid correlation functions for these spaces, and
verifying empirically if our notion of smoothness is consis-
tent with performances.

The notion of smoothness introduced in this paper is de-
coupled from the specific metric space, in particular it does
not depend on its dimension. This would allow us to study
experimentally how traditional search algorithms scale on
fitness landscapes of increasing dimension with fixed smooth
correlation structure. This is interesting because it would
link smoothness of fitness landscapes with the average-case
computational complexity associated with it.

Initially, we are planning to make more experiments for
the Hamming space with more than 12 dimensions. Unfortu-
nately, the computational complexity of generating smooth
fitness landscapes grows exponentially with the number of
dimensions. This makes it practically infeasible to generate
larger fitness landscapes. However, we have preliminary ex-
periments on using spatial statistical inference on GRF to
generate fitness landscapes dynamically while being visited
by the search algorithms. This makes it possible to run ex-
periments on larger landscapes because only a fractions of
all solutions are in fact generated.

In this paper, we have put forward the view of a statistical
model of fitness landscape as an abstraction, in which the
only relevant characteristic affecting the average-case per-
formance of traditional search algorithms is the smoothness
of a fitness landscape. All the other “geographic” charac-
teristics of a fitness landscape, such as multi-modality, neu-
trality, barriers, and so forth and so on, are not explicitly
taken into account in the model and are either subsumed in
the notion of smoothness (for example, smoother landscapes
have larger mountain ranges) or averaged out of existence
and may manifest themselves only as deviation from the av-
erage in the form of noise. This is a methodological choice,
not a rough simplification. It could be seen as a form of
statistical coarse graining grounded on the assumption that
the smoothness of a landscape is the most relevant charac-
teristic for the expected performance of traditional search
algorithms. Importantly, smoothness can be controlled at
the time of design of the search algorithm, when the problem
is known. This is what ultimately would make the theory-
to-come relevant to practice. Clarified the methodological
aspect of focusing on smoothness only, it would be interest-
ing, however, to study the geographic characteristics of this
class of fitness landscapes to have a more concrete grasp on
them.

The above mentioned points are preliminary to the theory.
The most challenging task will be to derive the theory itself,
which is, a close formula that relates a formal algorithm A, a
metric space M and a correlation function C to the average-



case performance obtained with these parameters. As a first
step towards this theory, we will derive such a result for
the specific case of the (1+1)-Evolutionary algorithm on the
Hamming space with the family of exponential correlation
functions. We will then attempt to generalize this result to
general metric spaces by replacing the Hamming distance
with a generic metric.

There is an alternative and very attractive use of an ex-
plicit GRF model of fitness landscapes. Using spatial statis-
tical inference, given the specific class of problems consid-
ered as a prior distribution, it would be possible to induce
the most rational search algorithm to find the optimum with
the minimum number of fitness evaluations. This is already
a reality for the case of continuous optimization using an
Euclidean GRF models [10] (response surface methods). We
will extend this method to combinatorial spaces and attempt
a generalization to generic metric spaces.
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