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Abstract 
The Job Shop Scheduling Problem is a strongly NP-hard problem of combinatorial 
optimisation and one of the best-known machine scheduling problem. Taboo Search is an 
effective local search algorithm for the job shop scheduling problem, but the quality of 
the best solution found depends on the initial solution. To overcome this problem we 
present a new approach that uses a population of Taboo Search runs in a Genetic 
Algorithm framework: GAs localise good areas of the solution space so that TS can start 
its search with promising initial solutions. The peculiarity of the Genetic Algorithm we 
propose consists in a natural representation which covers all and only the feasible solution 
space and guarantees the transmission of meaningful characteristics. The results show 
that this method outperforms many others producing good quality solutions in less time.   
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1 Introduction 
The Job Shop Scheduling Problem (JSSP) is considered as a particularly hard 
combinatorial optimisation problem. The problem has been studied by many authors and 
several algorithms have been proposed. Only very special cases of the problem can be 
solved in polynomial time, but their immediate generalisations are NP-hard [9]. 
The form of the JSSP may be roughly sketched as follows: we are given a set of jobs and 
a set of machines. Each machine can handle at most one job at a time. Each job consists 
of a chain of operations, each of which needs to be processed during an uninterrupted 
time period of a given length on a given machine. The purpose is to find a schedule, that 
is an allocation of the operations to time intervals on the machines, that has minimum 
length. 
Taboo Search (TS) is a local search method designed to find a near-optimal solution of 
combinatorial optimisation problems [6]. One peculiarity of TS is a short term memory 
used to keep track of recent solutions which are considered forbidden (taboo), thus 
allowing the search to escape from local optima.  
TS has revealed to be an effective local search algorithm for the Job Shop Scheduling 
Problem [13, 16]. However, the best solution found by TS may depend on the initial 
solution used. This is essentially due to the fact that, like any other local search technique, 
TS starts its search from a single solution, which may lead the search to a dead-end 
despite the presence of the taboo mechanism, which would prevent it. This happens 
especially when TS is applied to particularly hard optimisation problem like JSSP.  
Genetic Algorithms (GAs) are stochastic global search methods that mimic the natural 
biological evolution [7]. GAs operate on a population of potential solutions applying the 
principle of survival of the fittest to produce (hopefully) better and better approximations 
to a solution. 
Simple GAs are difficult to apply directly and successfully into many difficult-to-solve 
optimisation problems. Various non-standard implementations have been created for 
particular problems in which genetic algorithms are used as meta-heuristics [3, 10]. In 
this new perspective, Genetic Algorithms are very effective at performing global search 
(in probability) and provide a great flexibility to hybridise with domain-dependent 
heuristics to make an efficient implementation for a specific problem. 
Several authors have proposed variants of local search algorithms, using ideas from 
population genetics [1, 11, 19]. Because of the complementary properties of genetic 
algorithms and conventional heuristics, the hybrid approach often outperforms either 
method operating alone. 
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Previous studies on ordering problems as the travelling salesman problem (TSP) have 
proven that a natural representation is the key-issue for the success of a GA approach 
[17]. 
The JSSP is mainly characterised as being a highly constrained ordering problem. 
Therefore, both aspects have to be considered in order to figure out a natural GAs 
representation. GA representations for JSSP can be found in [4, 8, 12]. 
In section 2, we propose a representation that, coupled with a particular class of 
recombination operators, guarantees the genetic search to represent all and only the 
feasible solutions and that guarantees the transmission of meaningful characteristics to 
the offspring solutions. The definition of a class of recombination operators and the 
choice of an operator showing interesting properties follow. 
In section 3, we propose a genetic local search algorithm (GTS) consisting of a basic 
genetic algorithm with the addition of a taboo search optimisation phase applied to every 
new individual created.  
In section 4, computational experiments show that the combination of GAs and TS 
performs better than the TS alone. Moreover, a wide comparison of GTS with a variety of 
algorithms for JSSP on a set of well-known instances of small and medium sizes shows 
that GTS is very well positioned. Finally, a specific comparison of GTS with a similar 
approach combining Genetic Algorithms and Simulated Annealing (SAGen) [8] on a set 
of large size instances shows that GTS outperforms SAGen both with respect to 
computational time and solutions quality. 
 

2 A Genetic Algorithm for JSSP 
2.1 Appeal to feasibility 
In order to apply GAs to a particular problem we have to encode a generic solution of the 
problem into a chromosome. How to encode a solution is a key-issue for the success of 
GAs [3]. Basic GAs use binary encoding of individuals on fixed-length strings. Such a 
representation is not naturally suited for ordering problems such as the Travelling 
Salesman Problem and the JSSP, because no direct and efficient way has been found to 
map all possible solutions into binary strings [17].  
The main difficulty in choosing a proper representation for highly constrained 
combinatorial optimisation problems such as JSSP is dealing with the infeasibility of the 
solutions produced during the evolutionary process. This problem is typically addressed 
by modifying the breeding operators, associating them with repair methods, or providing 
penalties on infeasible solutions in the fitness function, or discarding infeasible solutions 
when created. However, the use of penalty functions or a rejecting strategy is inefficient 
for JSSP because the space of feasible schedules is very small compared to the space of 
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possible schedules, therefore the GA will waste most of its time producing and/or 
processing infeasible solutions. Repairing techniques are a better choice for many 
combinatorial optimisation problems since they are easy to apply and surpass strategies 
such as rejecting strategies and penalising strategies [14]. However, whereas it is 
possible, the most efficient and direct method remains to embed constraints in the coding 
of individuals. Thus, a very important issue in building a genetic algorithm for JSSP is to 
devise an appropriate representation of solutions together with a problem-specific genetic 
operator so that all chromosomes generated in either the initial phase or the evolutionary 
process will produce feasible schedules. This is a crucial phase that affects all the 
subsequent steps of GAs.  
In this paper we propose a representation and a particular class of recombination 
operators that together guarantee the genetic search to cover all the space of feasible 
solutions, to represent only feasible solutions, and the transmission of meaningful 
characteristics to the offspring solutions. 
Let us first spend few words on the nature of infeasibility. On the basis of what kind of 
solution representation for the JSSP we consider, two different causes of infeasibility may 
occur: 
• schedules non-respecting all job precedence constraints 
• solutions with cycles 
Because of the existence of the precedence constraints of operations on jobs, if we 
consider a solution representation which doesn’t presuppose a fixed order of operations 
on jobs, but rather which can freely dispose operations both on machines and jobs, then 
mismatches between the order of operations encoded in a generic chromosome and the 
prescribed order of operations on jobs may arise. Therefore this is a first cause of 
infeasibility. 
In a schedule, two generic operations are allowed to be either processed in parallel (there 
is no precedence among them) or processed sequentially (in this case, one precedes the 
other one). What is not possible is that one operation both precedes and follows the other 
one. If we consider a representation of solutions which allow to encode precedence 
conflicts between operations like the one just mentioned (i.e. cycling solutions), then we 
encounter the second cause of infeasibility.    
In order to avoid both kinds of infeasibility in our GA, we introduce a class of 
recombination operators that solves the problem with job constraints and a representation 
that solves the problem concerning cycling solutions. More in detail, we will see that only 
solutions without cycles can be represented, thus eliminating the cycling problem. 
Unfortunately the schedules so represented do not necessarily respect job precedence 
constraints. However, to manage this second kind of unfeasibility, it suffices initialising 
the evolutionary process with a population of schedules respecting all job precedence 
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constraints and applying recombination operators that leave the job precedence 
constraints invariant. 
  
2.2 Representation 
In order to apply the GA framework, we need to define an encoding method to map the 
search space of all possible solutions into a set of finite chromosomes.  
In the sequel we introduce the representation we will use. First, we will show, by means 
of an example, the relationship among a problem instance, represented by its disjunctive 
graph, a particular solution for that instance, represented by its solution graph, and our 
string coding for that solution. Afterwards, we will present definitions and theorems that 
assure the validity of the representation proposed.  
 
Problem, Solution and Encoding 
 
 
 
 
 
 
 
 
 
 
 
 
 
The job shop scheduling problem can be represented with a disjunctive graph [15]. A 
disjunctive graph G=(N, A, E) is defined as follows: N is the set of nodes representing all 
operations, A is the set of arcs connecting consecutive operations of the same job, and E 
is the set of disjunctive arcs connecting operations to be processed by the same machine. 
A disjunctive arc can be settled by either of its two possible orientations. The 
construction of a schedule will settle the orientations of all disjunctive arcs so as to 
determine the sequence of operations on the same machine. Once a sequence is 
determined for a machine, the disjunctive arcs connecting operations to be processed by 
the machine will be replaced by the oriented precedence arrow, or conjunctive arc. The 
set of disjunctive arcs E can be decomposed into cliques, one for each machine. The 
processing time for each operation can be seen as a weight attached to the corresponding 
nodes. The JSSP is equivalent to finding the order of the operations on each machine, that 
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Figure 1 – Disjunctive Graph (Elements of A are indicated by arrows and elements of E are 
indicated by dashed lines.) 
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is, to settle the orientation of the disjunctive arcs such that the resulting solution graph is 
acyclic (there are no precedence conflicts between operations) and the length of the 
longest weighted path between the starting and terminal nodes is minimal. This length 
determines the makespan.  
Figure 1 illustrates the disjunctive graph for a three-job four-machine instance. The nodes 
of N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} correspond to operations. Nodes S and T are two 
special nodes, starting node (S) and terminal node (T), representing the beginning and the 
end of the schedule, respectively. The conjunctive arcs (arrows) of A = {(1, 2), (2, 3), (4, 
5), (5, 6), (6, 7), (8, 9), (9, 10)} correspond to precedence constraints on operations on 
same jobs. The disjunctive arcs (dashed lines) of E1 = {(1, 5), (1, 8), (5, 8)} concern 

operations to be performed on machine 1, disjunctive arcs E2 = {(2, 4), (2, 9), (4, 9)} 

concern operations to be performed on machine 2, disjunctive arcs E3 = {(3, 7)} concern 

operations to be performed on machine 3, and disjunctive arcs E4 = {(6, 10)} concern 

operations to be performed on machine 4. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 illustrates the solution graph representing a feasible solution to the given 
instance of the problem. It has been derived from the disjunctive graph described above 
by settling an orientation of all the disjunctive arcs having taken care to avoid the creation 
of cycles. In the solution graph, arrows correspond to precedence constraints among 
operations on jobs or machines. Dashed lines indicate that two operations don’t have any 
precedence constraints (in principle they could be processed in parallel without violating 
any precedence constraints. In fact their actual parallel processing depends only on the 
processing time of operations). The sequences of operations on jobs depend only on the 
instance of the problem and not on the particular solution. In our example they are: 
 

Job1: Op1, Op2, Op3 
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T 

Figure 2 – Solution Graph (Sequential operations are connected by arrows, parallel operations 
are connected by dashed lines) 
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Job2: Op4, Op5, Op6, Op7 
Job3: Op8, Op9, Op10 

 
On the contrary, the sequences of operations on machines also depend on the particular 
solution to the given problem. In our example they are: 
 

Mac1: Op8, Op5, Op1 
Mac2: Op4, Op2, Op9 
Mac3: Op3, Op7 
Mac4: Op6, Op10 

 
Let us see things under a different perspective, emphasising the precedence order 
relationship among operations. The disjunctive graph of Figure 1 represents a particular 
instance of JSSP. We can see it as a partial order relationship among operations. The 
solution graph shown in Figure 2 represents a specific solution of the above JSSP 
instance. We can see it still as a partial order relationship among operations, even if more 
constrained when compared to the relationship associated with the disjunctive graph. We 
can now force a complete order by imposing further precedence constraints so that 
obtaining a linear sequence of operations, the string shown in Figure 3, which is the 
encoding of a solution we will use. 
 
 
 
 
 
In the string is present all information we need to decode it into an actual schedule. Since 
we know a priori (from the problem instance) the machine which a given operation 
belongs to, the sequence of operations on each machine is easily determinable from the 
string. The idea is to scan the string from left to right, extract all the operations of a given 
machine and sequencing them keeping the same order. Considering again our example, if 
we apply the decoding procedure just described to the string of Figure 3, it is easy to see 
that we obtain exactly the same sequences of operations on machines as reported before, 
the same sequences we have extracted from the solution graph.  
A peculiarity of the string representation is that it doesn’t admit cyclic solutions. It is 
therefore not subject to the second kind of infeasibility we have discussed in section 2.1. 
However, we can notice that a string codifies both information about the solution it 
represents (precedence constraints on machines) and information about the instance of the 
problem (precedence constraints on jobs). This implies that a generic string may represent 

Mac2 Mac1 Mac1 Mac1 Mac2 Mac2 Mac4 Mac3 Mac3 Mac4 

7 1 5 4 2 8 6 3 9 10 

Figure 3 – String Representation (Complete precedence order among all operations)  
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a solution which does not respect the precedence constraints on jobs, therefore we still 
have to deal with this kind of infeasibility, that is the first kind discussed in section 2.1. 
 
Formal Definition of String and Coding/Decoding  Theorems 
In the following we give the formal definition of string representation. Then, in order to 
show that the string representation is a valid encoding for schedules, we formulate two 
theorems. 
 
Definition 1. String Representation.  
Let us consider three finite sets, a set J of jobs, a set M of machines and a set O of 
operations. For each operation a there is a job j(a) in J to which it belongs, a machine 
m(a) in M on which it must be processed and a processing time d(a). Furthermore for 
each operation a its successor in the job is given by sj(a), except for the last operation in a 
job. The representation of a solution is a string consisting of a permutation of all 
operations in O, i.e. an element of the set: 

StrRep = { s ∈ nO  | n = |O| and ∀ i, j with 1 ≤ i < j ≤ n: s(i) ≠ s(j) } 
Now we can define legal strings. Formal for s in StrRep: 
Legal(s) = ∀ a, sj(a)∈ O: a ∼< sj(a)  
where a ∼< b means: a occurs before b in the string s. 
 
Theorem 1. (Feasible Solution � Legal String) 
Every feasible solution can be represented by a legal string. More than one legal string 
corresponding to the same feasible solution may exist. 
Proof. 
Every feasible solution can be represented by an acyclic solution graph, say C. 
Every acyclic solution graph S can be transformed in a legal string by means of the 
following construction procedure: 
1. Set S as the current graph C   
2. Calculate the transitive closure graph TC of the current graph C 
3. WHILE the transitive closure TC doesn’t define a total order in O DO 

4. Select two nodes in O still not linked by an arc in TC 
5. Link them by a directed arc obtaining a new acyclic graph that becomes the 

new current graph C 
6. Calculate the transitive closure graph TC of the current graph C 

7. Convert the transitive closure graph TC in its corresponding string Str  
 
The previous procedure: 
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• always produces a total order in O and never a cyclic graph. Therefore the conversion 
of TC in Str in step 7 is immediate 

• is non-deterministic in step 4 and 5 and consequently it may produce different strings 
starting from the same acyclic solution graph S 

• always produces a legal string since the initial solution graph S is still a sub-graph of 
the final transitive closure graph TC 

� 
 
Theorem 2. (Legal String � Feasible Solution) 
Every legal string corresponds exactly to one feasible solution. 
Proof. 
A generic legal string Str can be interpreted as a complete order relationship among 
operations and consequently can be associated with an acyclic graph TC. 
Let us consider the set of (directed) arcs A and the set of (undirected) edges E defined in 
the disjunctive graph. By eliminating from TC every arc not in A ∪ E, we obtain a new 
graph S representing the solution. 
Moreover since arcs of the form [a, sj(a)] are present in the graph TC and these arcs are 
not removed in the elimination process, the resulting solution graph S has the correct job 
arcs, i.e. it corresponds to a feasible solution. 
� 
 
2.3 Recombination 
In order to cope with the unfeasibility regarding job precedence constraints we propose 
the following requirement on the recombination operators that guarantees both the respect 
of job constraints and the transmission of meaningful characteristics. 
 
Definition 2. Feasibility Requirement for Recombination. 
We say that a generic recombination operator for the string representation is feasible, if 
for every generic pair of operations a and b we have a ∼<b in both parent strings then also 
a ∼<b must hold in the child strings produced by its application to the parent strings. 
 
Theorem 3. (Legal String + Legal String � Legal String) 
By recombining legal strings following the feasibility requirement for recombination, we 
still obtain a legal string. 
Proof. 
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Let s and t be two legal parent strings. Let offspring u be obtained by a recombination that 
respects the feasibility requirement. By definition we have to show that a~<sj(a) for all 
operations a in string u. Since s and t are legal strings, this property holds for s and t. 
From the feasibility requirement we immediately conclude that also a~<sj(a) for all 
operations a in string u. 
� 
 
In the following we propose a recombination operator that respects the feasibility 
requirement.  
 
Definition 3. Recombination Operator. 
Let SEQ be a vector of n elements randomly chosen in the set P={1, 2, 3, 4}, where 
n=|O|. Each number in P denotes a pointer. There is one pointer for each extremity of the 
parent strings. Each pointer is allowed to move in a given direction (see also Figure 4). 
The pointers are moved in turn according to their order of appearance in the SEQ vector. 
The following procedure illustrates how to produce a single offspring string from two 
parent strings: 
 
1. Initialise the left scan pointers PT1 and PT2 at the beginning (on the left side) of 

parent strings PAR1 and PAR2. Initialise the right scan pointers PT3 and PT4 at the 
end (on the right side) of the parent strings PAR1 and PAR2. Let the result (son) be a 
string consisting of n blanks. Initialise the left write pointer P1 at the beginning of the 
result string and initialise the right write pointer P2 at the end of the result string. Set 
all operations as unmarked. 

2. Consider the first number appearing in the sequence SEQ 
3. Slide the corresponding scan pointer to the first unmarked operation (left scan 

pointers slide from left to right, right scan pointers slide from right to left) 
4. If the pointer in step 3 was a left pointer, copy the current operation at the left write 

pointer and increase that pointer by 1. Otherwise copy the current operation at the 
right write pointer and decrease it by 1. Mark the current operation in the parents as 
already processed 

5. Take out the number at the beginning of SEQ 
6. If SEQ is empty then stop otherwise go to step 2 
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Theorem 4. Validity of Recombination Operator. 
The recombination operator defined above respects the feasibility requirement. 
Proof. 
Let us consider the two parent strings in Figure 4. To transmit a generic operation from a 
parent to the son, that operation must be reached by one of the four scan pointers 
(indicated in Figure 4 with numbers from 1 to 4). Therefore, to transmit operations A and 
B both must be reached by a pointer, one for each. A pair of pointers (x, y) defines a way 
to transmit operations A and B by means of the following procedure: 
• First, the x pointer slides in its prescribed direction until it reaches operation A or  

operation B and transmits it to the son 
• Then, the y pointer slides in its prescribed direction until it reaches the operation 

which among A and B is not yet assigned to the son 
In Table 1 all possible pairs of pointers are grouped in four classes of equivalence 
following two lines of symmetry.   
 

 Same Parent Different Parent 
Same Side (1, 1) (2, 2) (3, 3) (4, 4) (1, 2) (2, 1) (3, 4) (4, 3) 
Different 

Side 
(1, 3) (3, 1) (2, 4) (4, 2) (1, 4) (4, 1) (2, 3) (3, 2) 

Table 1 – Symmetries of the recombination 

 

Figure 4 – Common order preserving recombination   
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Let us consider only one pair for every class, since the other pair in the same class will 
produce the same result: 
• Case (1, 1). The pointer 1 gets first A and puts it in the son. The same pointer then 

gets B and puts it in the son more to the right respect to A. This is because the pointer 
used in the son slides in the same direction as pointer 1. We obtain in this way A∼<B 
in the son string. 

• Case (1, 2). The pointer 1 gets A and puts it in the son by the left pointer. Later, the 
pointer 2 meets A and skips it, then it gets B and transmits it to the son using the left 
pointer and consequently we obtain A∼<B in the son string. 

• Case (1, 3). The pointer 1 gets A and the pointer 3 gets B. A is posed in the son more 
to the left respect to B because A is inserted using the left pointer in the son, B using 
the right pointer and the write pointers cannot cross each other. Then, we get A∼<B in 
the son string. 

• Case (1, 4). First, the pointer 1 gets A and put it in the son by the left write pointer. 
Then, the pointer 4 gets B and put it in the son by the right write pointer. As the write 
pointers cannot cross each others, then it must be A∼<B in the son string. 

� 
 
The recombination operator proposed is very general indeed. It has four degrees of 
freedom (the four pointers) we can drive following our wishes. We can combine them in 
many different configurations so that obtaining recombination operators with very 
different behaviours. For example, we can think to inhibit a generic combination of two 
pointers letting free to move only the remaining two. We can think also to bias the 
random sequences which drive the pointers in order to obtain something more close to the 
uniform crossover rather than to the one-point crossover or vice versa, biasing in this way 
the destruction capability of the recombination [7]. Yet we can think to combine two 
recombination operators presenting complementary aspects during the evolutionary 
process, applying once the one, once the other, in order to obtain a synergic effect.  
In fact we have studied and compared in practice a set of recombination operators 
selected following the guidelines mentioned above. In this paper we report only one of 
them, the one which has revealed to be the most effective in our computational 
experiments. However it is worth mentioning we have found that different recombination 
operators may affect the success of the GA strongly, especially when the GA is not paired 
with local search. In our genetic algorithm the Merge and Split recombination (MSX) 
operator has been used. Figure 5 illustrates by an example how MSX works in practice, 
its detailed definition follows.    
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Definition 4. Merge and Split Recombination (MSX). 
Let SEQ be a vector of 2·n elements randomly chosen in the set {1, 2} such as both 
elements 1 and 2 occur n times each and where n is the length of strings. We use it as 
input of the following procedure that produces from two parent strings two offspring 
strings: 
 
1. Initialise pointers PT1 and PT2 at the beginning (on the left side) of parent strings 

PAR1 and PAR2. Set all operations as unmarked.  
2. Consider the first number appearing in the sequence SEQ 
3. Slide to the right the corresponding pointer to the first unmarked operation 
4. Copy the current operation in the Merge string in the first position available to the left 

and mark that operation as already processed 
5. Take out the number at the beginning of SEQ 
6. If SEQ is empty then go to step 7 otherwise go to step 2 
7. Scan the Merge string operation by operation from the left-most to the right-most. 

The first time an operation is met it is assigned to Son1, the second time the same 
operation is met it is assigned to Son2 filling them from left to right.  

�� �� �� �� �� �� ��	
���

�� �� �� �� 
� �� ��	
���
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��������������������

�� �� �� �� �� �� ��� ����� �� 
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�� �� �� �� �� �� E ����� �� �� 
� �� �� �� �������

Figure 5 – Merge and Split Recombination (MSX) 
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The main peculiarity of MSX consists in getting two complementary sons by combining 
the precedence characteristics of their parents meanwhile trying to minimise the loss of 
diversity. More precisely, if the generic operations a and b have a different order in the 
parents, such as in parent one a precedes b and in parent two b precedes a, MSX tends as 
much as possible to transmit this diversity to the sons so that in one son a will precede b 
and in the other one b will precede a. It is important to notice that in general this 
requirement may contrast with the requirement regarding cycling solutions. Therefore, 
since the string representation doesn’t allow to encode cycling solutions, it turns out to be 
often impossible to get a perfect preservation of parental characteristics through the 
recombination. 
Intuitively, the preservation of diversity through the recombination is roughly explainable 
by noticing that in the merge phase the precedence characteristics of parents are mixed 
but not destroyed. Then, in the split phase, the characteristics are repartitioned in two sons 
and still not destroyed, so that obtaining the original characteristics preserved but 
combined in a different way.  
A pertinent doubt one may have is whether MSX respects the feasibility requirement for 
recombination stated in Definition 2. After all we have only proven the feasibility for a 
class of recombination operators (Theorem 4) which seems not to include MSX because 
of its way of recombining strings in two phases. However we can imagine an alternative 
definition for MSX such that it results to match the form of the feasible class. The idea is 
to produce the two twin sons separately, each one in one phase, using the same random 
sequence twice, once scanning the input sequence and the parent strings from left to right 
producing one son, once scanning them in the other sense producing the other one.      

 
3 Genetic Local Search 
 
Genetic Local Search Template 
On one hand, problems from combinatorial optimisation are well within the scope of 
genetic algorithms. Nevertheless, compared to conventional heuristics, genetic algorithms 
are not well-suited for fine-tuning structures which are very close to optimal solutions. 
Therefore it is essential to incorporate conventional heuristics into genetic algorithms to 
construct a more competitive algorithm. 
On the other hand, in general the best solution found by a local search algorithm may 
depend on the initial solution used. However, a multi-start scheme may overcome this 
problem.  As a further refinement, the effectiveness of multi-start iterative approach may 
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be improved by using the information available from the solutions obtained in the 
individual cycles. Following this line, several authors have proposed variants of local 
search algorithms, using ideas from population genetics.   
A Genetic Local Search (GLS) algorithm [1] consists of a basic Genetic Algorithm with 
the addition of a local search optimisation phase applied to every new individual created 
either in the initial population or during the evolutionary process. 
We can give to the GLS algorithm a dual interpretation. On one hand, we can see it as a 
Genetic Algorithm where Local Search is intended as a smart mutation mechanism. On 
the other hand, we can see it as structured multi-start mechanism for Local Search where 
the Genetic Algorithm plays the role of the structure. 
However, by seeing the hybrid approach as a whole, Genetic Algorithms are used to 
perform global exploration among population while Local Search is used to perform local 
exploitation around chromosomes. Because of the complementary properties of Genetic 
Algorithms and Local Search which mutually compensate their points of weakness, the 
hybrid approach often outperforms either method operating alone.  
In the following a GLS outline is presented. 
 
GLS Template 
1. Generate initial population  
2. Execute for every individual an initial optimisation by applying local search 
3. Assign fitness to every individual  
4. Select individuals for recombination 
5. Apply the recombination operator producing a new generation of offspring 
6. Optimise every new offspring by applying local search  
7. Insert the offspring in the population and reduce it to the original size  
8. Repeat the steps from 3 to 7 until a stop criterion is met 

 
Let us now fill the Genetic Local Search template presented above with all the 
components we need to implement an actual algorithm for JSSP. First, we will discuss 
about the major components of the Genetic Algorithm framework, then we will focus our 
attention on the specific Local Search algorithm we have used. 
 
Genetic Algorithm Framework  
• POPULATION. The initial population contains a fixed number of chromosomes 

which are generated at random. During all the evolutionary process the population 
size remains constant. 
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• FITNESS FUNCTION. Every chromosome in the population receives a fitness value. 
It biases the probability of the chromosome to reproduce. In our case the fitness value 
of a chromosome is the makespan of its encoded solution.  

• SELECTION SCHEME. A fixed number of chromosomes which will undergo 
recombination are selected. The selection is done via a simple ranking mechanism. 
The population is always kept sorted according to the fitness. The probability of each 
chromosome to be selected depends only on its position in the rank and not on the 
actual fitness value. 

• REINSERTION SCHEME. The set of offspring is merged with the population. Then 
the population is reduced to its original size by eliminating the worst chromosomes.  

• STOP CRITERION. The algorithm stops after a fixed numbers of consecutive 
generations without improvement of the best solution in the population. 

• REPRESENTATION & RECOMBINATION. We use the string representation and 
the MSX recombination operator presented in Section 2. Let us now spend few words 
on the role played by MSX in the GLS framework, focusing again on its behaviour. 
While MSX tends to preserve diversity as much as possible, it tries as well to mix 
parent characteristics a lot. The input sequence is randomly allowed to switch from 
one parent to the other in every step, therefore it behaves like a uniform crossover. 
These two aspects of the recombination taken together are particularly welcome in a 
genetic local search framework. On one hand, MSX transmits the diversity and 
therefore doesn’t trash expensive information present in the parents gathered by local 
search, the most time-consuming GLS component. On the other hand, the role of the 
GA paired with local search is to explore as much as possible the solution space. 
MSX stresses it just shuffling the information present in the parents at most behaving 
like a uniform crossover. 

 
Local Search Optimiser 
The TS algorithm here proposed is an effective local search algorithm for JSSP. We use it 
in the above GLS algorithm as a local search optimisation phase in steps 2 and 6.  
 
TS Algorithm 
1. Current Solution := Initial solution 
2. Best Solution := Initial Solution 
3. Taboo List := Empty 
4. Consider the neighbourhood of the current solution and select one of them not in the 

Taboo List following a Search Strategy 
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5. Insert the current solution in the Taboo List and, if it is full, make room taking out the 
solution ahead of the list 

6. Update the best solution found so far 
7. Take the selected neighbour as the new current solution 
8. Repeat steps 4-7 until a Stop Criterion is met 
 
More in detail, the Taboo Search we use is based on an algorithm proposed by Eikelder et 
al [18]. In the following we discuss the major components of the algorithm. 
• REPRESENTATION. To apply local search to JSSP we use the disjunctive graph 

representation. A feasible solution is obtained by orienting the edges such that there is 
a linear ordering of the operations that have to be processed on one machine, and the 
resulting graph is acyclic. 

• NEIGHBOURHOOD. We use the neighbourhood structure of Nowicki & Smutnicki 
[13]. It is based on reversing machine arcs on a longest path. However, they have 
shown that several types of  neighbours can be omitted since they cannot have lower 
costs. For instance it is not useful to reverse internal arcs of a block of operations 
belonging to a longest path.  

• SEARCHING STRATEGY. The time needed to search a neighbourhood depends on 
the size of the neighbourhood and on the time complexity of the computational cost of 
neighbours. Since the size of a neighbourhood is rather small we use the steepest 
neighbour search strategy. 

• TABOO LIST. We use a taboo list consisting of a FIFO queue of moves of fixed 
length. The length of the taboo list is the average neighbourhood size plus a random 
value. 

• STOP CRITERION. The algorithm stops after a fixed numbers of steps without 
improvement. 

 
Because of the combined use of  Genetic Algorithms and Taboo Search we will denote 
our algorithm with GTS, acronym of Genetic Taboo Search.   

 
4 Computational Results 
Relevant Parameters 
In the sequel, we introduce and discuss the most important parameters of GTS, the ones 
that affect more the performance of the algorithm, and their settings. 
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COMPUTATIONAL EFFORT 
This parameter permits a qualitative control of the computational search effort. More in 
detail, we define the computational effort as the product of two factors, where the first 
factor is the number of consecutive iterations without improvement (TS) after that each 
run of Taboo Search has to stop, and the second factor is the number of  consecutive 
individuals processed by the GA without improvement (GA) after that GTS has to stop. 
Since both TS and GA stop criteria are adaptive to the complexity of the specific problem 
treated, the setting of the computational effort parameter produces different effects 
applied on different instances. However, although roughly, it gives a way to control the 
computational effort. 
We have found convenient to set a different computational effort on the basis of the size 
of the instance treated as shown in Table 2. 
 
TS/GA MIXING RATE  
This is a very important parameter that is used to weigh the relative contribution of TS 
and GA. Knowing the Computational Effort (TS*GA) and the TS/GA ratio we then can 
determine the stop criteria for TS and GA. We have seen that the bigger the problem is 
the better GA performs compared with TS. More in detail we have assigned a TS/GA ratio 
of 10:1 for little and medium size instances and 1:1 for large size instances (see Table 2). 
 

Size of instances TS*GA TS/GA 
Little instances (up to 150 operations) 10000 10:1 
Medium instances (around 200 operations) 100000 10:1 
Medium-large instances (around 300 operations) 500000 10:1 
Large instances (around 500 operations) 1000000 1:1 

Table 2 – Computational Effort and Mixing Rate 

 
GA PARAMETERS  
It is very important to set the GA parameters properly in order to guarantee a good flow 
of information between GA and TS during all the evolutionary process so as to obtain an 
effective co-operation between them. We have found that the following parameters affect 
the quality of the flow of information and therefore we have paid great attention in 
finding a good setting: 
• Population Size. We tuned GTS focusing on meaningful relationship among 

parameters rather than on their absolute values, trying first to find out good ratios 
among relevant parameters and only later deriving indirectly their absolute values.  
Following this approach, we have considered the Population Size being in direct 
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relationship with the Number of Generations, obtaining that a good ratio is 1:1. The 
absolute values we have found for the Population Size parameter vary gradually from 
10 individuals for small size instances up to 50 individuals for large size instances.  

• Generational Gap. This parameter represents the number of offspring to produce 
every generation through recombination. We have found Population Size/2 to be a 
good setting for this parameter.  

• Selection Pressure. This parameter permits to control the competition level in the 
population. It bias the ranking selection mechanism, making the selection probability 
of chromosomes more depending or less depending on their rank in the population on 
the basis of the parameter value. The range of the selection pressure varies from 0 (no 
dependency) to 2 (strong dependency). A weak selection pressure, therefore, gives a 
bad individual almost the same chance to reproduce as a good individual, whereas a 
strong selection pressure strongly favours the reproduction of only good individuals. 
We have found a weak selection pressure of 0.1 being appropriate for our algorithm. 
This should not be so surprising because in our GA we use a reinsertion scheme 
which is already very selective itself, thus making it not necessary to strengthen too 
much further the selection pressure through this parameter. 

 
GTS Vs TS  
In Table 3 a direct comparison between the hybrid algorithm GTS and its TS core is 
presented. This investigation is of crucial importance since we will find out whether the 
hybridisation is worthy or the genetic framework has just an ornamental function rather 
than a real merit. 
In order to effectuate a fair comparison between GTS and TS we have set parameters in 
such a way both algorithms get approximately the same amount of time for the same 
instance. We have applied both algorithms to a set of well-known JSSP instances of 
various sizes. This set includes the benchmark set introduced by Vaessens [20], which 
comprises the hard-to-solve Lawrence instances, two of the easier ones and the famous 
Fisher & Thompson 10×10 instance. Moreover, we test the two algorithms also on three 
bigger instances, the abz-problems from the test library JSPlib (obtainable via ftp from 
mscmga.ms.ic.ac.uk). We report the results we have obtained from 10 runs on a Sparc 
station 5 (110Mhz). The CPU time is expressed in seconds. We can notice that on little 
instances GTS works as well as TS finding the same quality of solutions and using the 
same amount of time. As the size of instances increases the GTS works better than TS 
finding better quality solutions. At first glance TS seems saving time on large instances. 
This is substantially due to the adaptive stop criteria. In order to overcome this premature 
termination, we tried to compensate the time difference setting TS in such a way it takes 
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more time, therefore giving it the chance of getting better solutions. TS gets stuck anyway 
without improving the solution quality, thus wasting all the additional time we gave to it. 
 
A Wide Comparison 
We have done a wide comparison on well-known instances among GTS and the best 
algorithms belonging to a variety of approaches proposed by Vaessens [20]. Table 4 gives 
the best costs found by GTS and other methods. In general we see that GTS behaves very 
well. Again we see that with big instances GTS outperforms all  the other approaches. 
In the following we list the programs we have considered:  
• RGLS-5 – Reiterated Guided Local Search by Balas and Vazacopoulos [2] 
• TS-B – Taboo Search and Backtracking by Nowicki and Smutnicki [13] 
• SA1 – Simulated Annealing by Van Laarhoven, Lenstra and Ulder [1] 
• SB-GLS – Shifting Bottleneck and Guided Local Search by Balas and Vazacopoulos 

[2] 
• GA-SB – Genetic Algorithms and Shifting Bottleneck by Dondorf and Pesch [5] 
 
GTS Vs SAGen 
Finally we have done a specific comparison between our hybrid algorithm (Taboo Search 
Based) and another recent hybrid genetic algorithm based on Simulated Annealing 
proposed by Kolonko [8]. 
As we can see in Table 5, we have compared these two algorithms on the set of difficult 
swv instances from JSPlib, almost all still open, setting the stop criteria preferring quality 
against time. We report the results of 3 runs for both algorithms, on a Sparc station 5 
(110Mhz) for GTS and on Pentium 120/166Mhz for SAGen. The time is expressed in 
seconds. As we can see both on the quality and time GTS strongly outperforms SAGen 
and most of the times GTS breaks the known bound for those instances. 
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Problem OPT 

(UB) 
BEST 
GTS 

AVG 
GTS 

BEST 
TS 

AVG 
TS 

AVG TIME 
GTS 

AVG TIME 
TS 

10 jobs * 5 machines = 50 operations 
la02 655 655 655 655 663 5 9 

10 jobs * 10 machines = 100 operations 
ft10 930 930 933 930 933 67 65 

la19 842 842 842 842 842 41 47 

15 jobs * 10 machines = 150 operations 
la21 1046 1047 1050 1048 1063 117 122 

la24 935 938 943 942 943 85 140 

la25 977 977 978 977 978 91 190 

20 jobs * 10 machines = 200 operations 
la27 1235 1235 1240 1255 1264 257 140 

la29 (1153) 1157 1166 1167 1177 316 233 

15 jobs * 15 machines = 225 operations 
la36 1268 1268 1274 1268 1276 184 197 

la37 1397 1403 1410 1415 1420 229 208 

la38 1196 1201 1202 1199 1204 178 275 

la39 1233 1233 1239 1233 1247 207 220 

la40 1222 1226 1231 1229 1232 192 211 

20 jobs * 15 machines = 300 operations 
abz07 (656) 658 662 666 668 1764 975 

abz08 (669) 670 672 680 681 1518 931 

abz09 (679) 682 687 688 689 1250 1114 

Table 3 – GTS Vs TS 

 
 
 
 

Problem OPT GTS RGLS-5 TS-B SA1 SB-GLS GA-SB 
la02 655 655 655 655 - 666 - 
ft10 930 930 930 930 - 930 - 
la19 842 842 842 842 - 852 848 
la21 1046 1047 1046 1047 1053 1048 1074 
la24 935 938 935 939 935 941 957 
la25 977 977 977 977 983 993 1007 
la36 1268 1268 1268 1268 - 1268 1317 
la37 1397 1403 1397 1407 - 1397 1446 
la38 1196 1201 1196 1196 1208 1208 1241 
la39 1233 1233 1233 1233 - 1249 1277 
la40 1222 1226 1224 1229 1225 1242 1252 
la27 1235 1235 1235 1236 1249 1243 1269 
la29 1142 / 1153 1157 1164 1160 1185 1182 1210 

Table 4 – Wide Comparison  
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Problem OPT 
LB / UB 

BEST 
GTS 

AVG 
GTS 

BEST 
SAGen 

AVG 
SAGen 

AVG TIME 
GTS 

AVG TIME 
SAGen 

20 jobs * 10 machines = 200 operations 
swv01 1392 / 1418 1430 1430 1427 1428 2034 47828 

swv02 1475 / 1491 1481 1484 1487 1490 1851 43089 

swv03 1369 / 1398 1418 1425 1422 1428 2102 40684 

swv04 1450 / 1493 1482 1488 1487 1490 2315 44257 

swv05 1421 / 1448 1441 1447 1449 1453 1924 40045 

20 jobs * 15 machines = 300 operations 
swv06 1591 / 1718 1701 1710 1697 1703 3536 112647 

swv07 1446 / 1652 1625 1626 1627 1630 4394 97504 

swv08 1640 / 1798 1774 1781 1773 1776 4105 56781 

swv09 1604 / 1710 1675 1686 1665 1682 3667 24474 

swv10 1631 / 1794 1775 1780 1791 1794 5556 44467 

50 jobs * 10 machines = 500 operations 
swv11 2983 / 3047 3019 3025 3075 3081 13262 117454 

swv12 2972 / 3045 3040 3071 3108 3115 16029 124549 

swv13 3104 / 3173 3107 3116 3177 3178 14420 92756 

swv14 2968 2968 2971 3010 3013 10951 104088 

swv15 2885 / 3022 2918 2929 3004 3004 16773 161365 

Table 5 – GTS Vs SAGen 

 
5 Conclusions 
This paper describes an hybrid algorithm (GTS) combining Genetic Algorithms and 
Taboo Search for the JSSP. The ingredients of our GA are a natural representation of 
solutions (the string representation) and a recombination capable of transmitting 
meaningful characteristics (the common order relationship) from parents to children. The 
problems of feasibility regarding cycling and job constraints have been discussed and 
solved in that framework. Moreover, the MSX recombination operator that tends to 
preserve the diversity of the parent schedules in the offspring schedules has been 
presented. The Genetic Local Search scheme has been used to hybridise our GA with an 
effective TS algorithm for JSSP. Computational experiments have shown that on large 
size instances the GA counterpart makes indeed the difference. The best mix of TS and 
GA for those instances is half and half (following our mix definition) and therefore GTS 
has to be considered as a real hybrid, neither a modified TS nor a modified GA. GTS has 
been compared with a variety of other approaches and it has revealed to perform very 
well in the comparison. The last experiment has shown that GAs are far more profitably 
hybridised with Taboo Search than with Simulated Annealing. As a matter of fact both on 
time required and solution quality a difference of one order of magnitude has been found. 
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Let us spend some more words on the philosophy underlying the natural approach we use. 
The crucial point is that we see a schedule as a partial order relationship among 
operations. It is not important that the relationship is made of contributes from 
precedence constraints given with the problem instance and those ones given with the 
particular solution to that problem. We see all the constraints uniformly without any 
distinction, all forming the relationship among operations.  
By seeing schedules like relationships, it is natural to think about recombination as a way 
to recombine partial order relationships transmitting to son schedules the common sub-
relationship of parent schedules. This seems a natural requirement as we are considering 
schedules at this level. As a welcome side-effect of this approach, we obtain that in the 
transmission of meaningful characteristics to sons even the feasibility property (intended 
as the job precedence constraints of the problem instance) is transmitted from parents to 
sons without paying special attention to it. We treat it uniformly as a generic 
characteristic of a schedule. This positive side-effect leaves us thinking we are 
approaching the problem at the right level of abstraction without being misled by the 
syntactical details of the representation used. Finally a further consequence of the way we 
approach the problem is that the string representation and the recombination proposed do 
not depend on a particular configuration of the constraints and therefore they can be 
naturally extended to more general scheduling problems. 
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