
Genetic Local Search for
Job Shop Scheduling Problem

A. MORAGLIO (*), H.M.M. TEN EIKELDER(**), R. TADEI (***)

(*) University of Essex, Department of Computer Science, Wivenhoe Park, Colchester
CO4 3SQ, United Kingdom, e-mail: amoragn@essex.ac.uk

(**) Eindhoven University of Technology, Department of Mathematics and Computing

Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, Tel. +31-40-2475153, fax
+31-40-2451733, e-mail: h.m.m.t.eikelder@tue.nl

(***) Politecnico di Torino, Dipartimento di Automatica e Informatica, Corso Duca degli

Abruzzi 24, 10129 Torino, Italy, Tel. +39-11-5647032, fax +39-11-5647099, e-mail:
tadei@polito.it

Abstract
The Job Shop Scheduling Problem is a strongly NP-hard problem of combinatorial
optimisation and one of the best-known machine scheduling problem. Taboo Search is an
effective local search algorithm for the job shop scheduling problem, but the quality of
the best solution found depends on the initial solution. To overcome this problem we
present a new approach that uses a population of Taboo Search runs in a Genetic
Algorithm framework: GAs localise good areas of the solution space so that TS can start
its search with promising initial solutions. The peculiarity of the Genetic Algorithm we
propose consists in a natural representation which covers all and only the feasible solution
space and guarantees the transmission of meaningful characteristics. The results show
that this method outperforms many others producing good quality solutions in less time.

Keywords: Job Shop, Taboo Search, Genetic Algorithms, Hybrid Optimisation

Technical R
eport C

S
M

-435 IS
S

N
 1744-8050

 2

1 Introduction
The Job Shop Scheduling Problem (JSSP) is considered as a particularly hard
combinatorial optimisation problem. The problem has been studied by many authors and
several algorithms have been proposed. Only very special cases of the problem can be
solved in polynomial time, but their immediate generalisations are NP-hard [9].
The form of the JSSP may be roughly sketched as follows: we are given a set of jobs and
a set of machines. Each machine can handle at most one job at a time. Each job consists
of a chain of operations, each of which needs to be processed during an uninterrupted
time period of a given length on a given machine. The purpose is to find a schedule, that
is an allocation of the operations to time intervals on the machines, that has minimum
length.
Taboo Search (TS) is a local search method designed to find a near-optimal solution of
combinatorial optimisation problems [6]. One peculiarity of TS is a short term memory
used to keep track of recent solutions which are considered forbidden (taboo), thus
allowing the search to escape from local optima.
TS has revealed to be an effective local search algorithm for the Job Shop Scheduling
Problem [13, 16]. However, the best solution found by TS may depend on the initial
solution used. This is essentially due to the fact that, like any other local search technique,
TS starts its search from a single solution, which may lead the search to a dead-end
despite the presence of the taboo mechanism, which would prevent it. This happens
especially when TS is applied to particularly hard optimisation problem like JSSP.
Genetic Algorithms (GAs) are stochastic global search methods that mimic the natural
biological evolution [7]. GAs operate on a population of potential solutions applying the
principle of survival of the fittest to produce (hopefully) better and better approximations
to a solution.
Simple GAs are difficult to apply directly and successfully into many difficult-to-solve
optimisation problems. Various non-standard implementations have been created for
particular problems in which genetic algorithms are used as meta-heuristics [3, 10]. In
this new perspective, Genetic Algorithms are very effective at performing global search
(in probability) and provide a great flexibility to hybridise with domain-dependent
heuristics to make an efficient implementation for a specific problem.
Several authors have proposed variants of local search algorithms, using ideas from
population genetics [1, 11, 19]. Because of the complementary properties of genetic
algorithms and conventional heuristics, the hybrid approach often outperforms either
method operating alone.

 3

Previous studies on ordering problems as the travelling salesman problem (TSP) have
proven that a natural representation is the key-issue for the success of a GA approach
[17].
The JSSP is mainly characterised as being a highly constrained ordering problem.
Therefore, both aspects have to be considered in order to figure out a natural GAs
representation. GA representations for JSSP can be found in [4, 8, 12].
In section 2, we propose a representation that, coupled with a particular class of
recombination operators, guarantees the genetic search to represent all and only the
feasible solutions and that guarantees the transmission of meaningful characteristics to
the offspring solutions. The definition of a class of recombination operators and the
choice of an operator showing interesting properties follow.
In section 3, we propose a genetic local search algorithm (GTS) consisting of a basic
genetic algorithm with the addition of a taboo search optimisation phase applied to every
new individual created.
In section 4, computational experiments show that the combination of GAs and TS
performs better than the TS alone. Moreover, a wide comparison of GTS with a variety of
algorithms for JSSP on a set of well-known instances of small and medium sizes shows
that GTS is very well positioned. Finally, a specific comparison of GTS with a similar
approach combining Genetic Algorithms and Simulated Annealing (SAGen) [8] on a set
of large size instances shows that GTS outperforms SAGen both with respect to
computational time and solutions quality.

2 A Genetic Algorithm for JSSP
2.1 Appeal to feasibility
In order to apply GAs to a particular problem we have to encode a generic solution of the
problem into a chromosome. How to encode a solution is a key-issue for the success of
GAs [3]. Basic GAs use binary encoding of individuals on fixed-length strings. Such a
representation is not naturally suited for ordering problems such as the Travelling
Salesman Problem and the JSSP, because no direct and efficient way has been found to
map all possible solutions into binary strings [17].
The main difficulty in choosing a proper representation for highly constrained
combinatorial optimisation problems such as JSSP is dealing with the infeasibility of the
solutions produced during the evolutionary process. This problem is typically addressed
by modifying the breeding operators, associating them with repair methods, or providing
penalties on infeasible solutions in the fitness function, or discarding infeasible solutions
when created. However, the use of penalty functions or a rejecting strategy is inefficient
for JSSP because the space of feasible schedules is very small compared to the space of

 4

possible schedules, therefore the GA will waste most of its time producing and/or
processing infeasible solutions. Repairing techniques are a better choice for many
combinatorial optimisation problems since they are easy to apply and surpass strategies
such as rejecting strategies and penalising strategies [14]. However, whereas it is
possible, the most efficient and direct method remains to embed constraints in the coding
of individuals. Thus, a very important issue in building a genetic algorithm for JSSP is to
devise an appropriate representation of solutions together with a problem-specific genetic
operator so that all chromosomes generated in either the initial phase or the evolutionary
process will produce feasible schedules. This is a crucial phase that affects all the
subsequent steps of GAs.
In this paper we propose a representation and a particular class of recombination
operators that together guarantee the genetic search to cover all the space of feasible
solutions, to represent only feasible solutions, and the transmission of meaningful
characteristics to the offspring solutions.
Let us first spend few words on the nature of infeasibility. On the basis of what kind of
solution representation for the JSSP we consider, two different causes of infeasibility may
occur:
• schedules non-respecting all job precedence constraints
• solutions with cycles
Because of the existence of the precedence constraints of operations on jobs, if we
consider a solution representation which doesn’t presuppose a fixed order of operations
on jobs, but rather which can freely dispose operations both on machines and jobs, then
mismatches between the order of operations encoded in a generic chromosome and the
prescribed order of operations on jobs may arise. Therefore this is a first cause of
infeasibility.
In a schedule, two generic operations are allowed to be either processed in parallel (there
is no precedence among them) or processed sequentially (in this case, one precedes the
other one). What is not possible is that one operation both precedes and follows the other
one. If we consider a representation of solutions which allow to encode precedence
conflicts between operations like the one just mentioned (i.e. cycling solutions), then we
encounter the second cause of infeasibility.
In order to avoid both kinds of infeasibility in our GA, we introduce a class of
recombination operators that solves the problem with job constraints and a representation
that solves the problem concerning cycling solutions. More in detail, we will see that only
solutions without cycles can be represented, thus eliminating the cycling problem.
Unfortunately the schedules so represented do not necessarily respect job precedence
constraints. However, to manage this second kind of unfeasibility, it suffices initialising
the evolutionary process with a population of schedules respecting all job precedence

 5

constraints and applying recombination operators that leave the job precedence
constraints invariant.

2.2 Representation
In order to apply the GA framework, we need to define an encoding method to map the
search space of all possible solutions into a set of finite chromosomes.
In the sequel we introduce the representation we will use. First, we will show, by means
of an example, the relationship among a problem instance, represented by its disjunctive
graph, a particular solution for that instance, represented by its solution graph, and our
string coding for that solution. Afterwards, we will present definitions and theorems that
assure the validity of the representation proposed.

Problem, Solution and Encoding

The job shop scheduling problem can be represented with a disjunctive graph [15]. A
disjunctive graph G=(N, A, E) is defined as follows: N is the set of nodes representing all
operations, A is the set of arcs connecting consecutive operations of the same job, and E
is the set of disjunctive arcs connecting operations to be processed by the same machine.
A disjunctive arc can be settled by either of its two possible orientations. The
construction of a schedule will settle the orientations of all disjunctive arcs so as to
determine the sequence of operations on the same machine. Once a sequence is
determined for a machine, the disjunctive arcs connecting operations to be processed by
the machine will be replaced by the oriented precedence arrow, or conjunctive arc. The
set of disjunctive arcs E can be decomposed into cliques, one for each machine. The
processing time for each operation can be seen as a weight attached to the corresponding
nodes. The JSSP is equivalent to finding the order of the operations on each machine, that

7

1

5 S 4

2

8

6

3

9 10

T

Figure 1 – Disjunctive Graph (Elements of A are indicated by arrows and elements of E are
indicated by dashed lines.)

 6

is, to settle the orientation of the disjunctive arcs such that the resulting solution graph is
acyclic (there are no precedence conflicts between operations) and the length of the
longest weighted path between the starting and terminal nodes is minimal. This length
determines the makespan.
Figure 1 illustrates the disjunctive graph for a three-job four-machine instance. The nodes
of N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} correspond to operations. Nodes S and T are two
special nodes, starting node (S) and terminal node (T), representing the beginning and the
end of the schedule, respectively. The conjunctive arcs (arrows) of A = {(1, 2), (2, 3), (4,
5), (5, 6), (6, 7), (8, 9), (9, 10)} correspond to precedence constraints on operations on
same jobs. The disjunctive arcs (dashed lines) of E1 = {(1, 5), (1, 8), (5, 8)} concern

operations to be performed on machine 1, disjunctive arcs E2 = {(2, 4), (2, 9), (4, 9)}

concern operations to be performed on machine 2, disjunctive arcs E3 = {(3, 7)} concern

operations to be performed on machine 3, and disjunctive arcs E4 = {(6, 10)} concern

operations to be performed on machine 4.

Figure 2 illustrates the solution graph representing a feasible solution to the given
instance of the problem. It has been derived from the disjunctive graph described above
by settling an orientation of all the disjunctive arcs having taken care to avoid the creation
of cycles. In the solution graph, arrows correspond to precedence constraints among
operations on jobs or machines. Dashed lines indicate that two operations don’t have any
precedence constraints (in principle they could be processed in parallel without violating
any precedence constraints. In fact their actual parallel processing depends only on the
processing time of operations). The sequences of operations on jobs depend only on the
instance of the problem and not on the particular solution. In our example they are:

Job1: Op1, Op2, Op3

7

1

5 S 4

2

8

6

3

9 10

T

Figure 2 – Solution Graph (Sequential operations are connected by arrows, parallel operations
are connected by dashed lines)

 7

Job2: Op4, Op5, Op6, Op7
Job3: Op8, Op9, Op10

On the contrary, the sequences of operations on machines also depend on the particular
solution to the given problem. In our example they are:

Mac1: Op8, Op5, Op1
Mac2: Op4, Op2, Op9
Mac3: Op3, Op7
Mac4: Op6, Op10

Let us see things under a different perspective, emphasising the precedence order
relationship among operations. The disjunctive graph of Figure 1 represents a particular
instance of JSSP. We can see it as a partial order relationship among operations. The
solution graph shown in Figure 2 represents a specific solution of the above JSSP
instance. We can see it still as a partial order relationship among operations, even if more
constrained when compared to the relationship associated with the disjunctive graph. We
can now force a complete order by imposing further precedence constraints so that
obtaining a linear sequence of operations, the string shown in Figure 3, which is the
encoding of a solution we will use.

In the string is present all information we need to decode it into an actual schedule. Since
we know a priori (from the problem instance) the machine which a given operation
belongs to, the sequence of operations on each machine is easily determinable from the
string. The idea is to scan the string from left to right, extract all the operations of a given
machine and sequencing them keeping the same order. Considering again our example, if
we apply the decoding procedure just described to the string of Figure 3, it is easy to see
that we obtain exactly the same sequences of operations on machines as reported before,
the same sequences we have extracted from the solution graph.
A peculiarity of the string representation is that it doesn’t admit cyclic solutions. It is
therefore not subject to the second kind of infeasibility we have discussed in section 2.1.
However, we can notice that a string codifies both information about the solution it
represents (precedence constraints on machines) and information about the instance of the
problem (precedence constraints on jobs). This implies that a generic string may represent

Mac2 Mac1 Mac1 Mac1 Mac2 Mac2 Mac4 Mac3 Mac3 Mac4

7 1 5 4 2 8 6 3 9 10

Figure 3 – String Representation (Complete precedence order among all operations)

 8

a solution which does not respect the precedence constraints on jobs, therefore we still
have to deal with this kind of infeasibility, that is the first kind discussed in section 2.1.

Formal Definition of String and Coding/Decoding Theorems
In the following we give the formal definition of string representation. Then, in order to
show that the string representation is a valid encoding for schedules, we formulate two
theorems.

Definition 1. String Representation.
Let us consider three finite sets, a set J of jobs, a set M of machines and a set O of
operations. For each operation a there is a job j(a) in J to which it belongs, a machine
m(a) in M on which it must be processed and a processing time d(a). Furthermore for
each operation a its successor in the job is given by sj(a), except for the last operation in a
job. The representation of a solution is a string consisting of a permutation of all
operations in O, i.e. an element of the set:

StrRep = { s ∈ nO | n = |O| and ∀ i, j with 1 ≤ i < j ≤ n: s(i) ≠ s(j) }
Now we can define legal strings. Formal for s in StrRep:
Legal(s) = ∀ a, sj(a)∈ O: a ∼< sj(a)
where a ∼< b means: a occurs before b in the string s.

Theorem 1. (Feasible Solution � Legal String)
Every feasible solution can be represented by a legal string. More than one legal string
corresponding to the same feasible solution may exist.
Proof.
Every feasible solution can be represented by an acyclic solution graph, say C.
Every acyclic solution graph S can be transformed in a legal string by means of the
following construction procedure:
1. Set S as the current graph C
2. Calculate the transitive closure graph TC of the current graph C
3. WHILE the transitive closure TC doesn’t define a total order in O DO

4. Select two nodes in O still not linked by an arc in TC
5. Link them by a directed arc obtaining a new acyclic graph that becomes the

new current graph C
6. Calculate the transitive closure graph TC of the current graph C

7. Convert the transitive closure graph TC in its corresponding string Str

The previous procedure:

 9

• always produces a total order in O and never a cyclic graph. Therefore the conversion
of TC in Str in step 7 is immediate

• is non-deterministic in step 4 and 5 and consequently it may produce different strings
starting from the same acyclic solution graph S

• always produces a legal string since the initial solution graph S is still a sub-graph of
the final transitive closure graph TC

�

Theorem 2. (Legal String � Feasible Solution)
Every legal string corresponds exactly to one feasible solution.
Proof.
A generic legal string Str can be interpreted as a complete order relationship among
operations and consequently can be associated with an acyclic graph TC.
Let us consider the set of (directed) arcs A and the set of (undirected) edges E defined in
the disjunctive graph. By eliminating from TC every arc not in A ∪ E, we obtain a new
graph S representing the solution.
Moreover since arcs of the form [a, sj(a)] are present in the graph TC and these arcs are
not removed in the elimination process, the resulting solution graph S has the correct job
arcs, i.e. it corresponds to a feasible solution.
�

2.3 Recombination
In order to cope with the unfeasibility regarding job precedence constraints we propose
the following requirement on the recombination operators that guarantees both the respect
of job constraints and the transmission of meaningful characteristics.

Definition 2. Feasibility Requirement for Recombination.
We say that a generic recombination operator for the string representation is feasible, if
for every generic pair of operations a and b we have a ∼<b in both parent strings then also
a ∼<b must hold in the child strings produced by its application to the parent strings.

Theorem 3. (Legal String + Legal String � Legal String)
By recombining legal strings following the feasibility requirement for recombination, we
still obtain a legal string.
Proof.

 10

Let s and t be two legal parent strings. Let offspring u be obtained by a recombination that
respects the feasibility requirement. By definition we have to show that a~<sj(a) for all
operations a in string u. Since s and t are legal strings, this property holds for s and t.
From the feasibility requirement we immediately conclude that also a~<sj(a) for all
operations a in string u.
�

In the following we propose a recombination operator that respects the feasibility
requirement.

Definition 3. Recombination Operator.
Let SEQ be a vector of n elements randomly chosen in the set P={1, 2, 3, 4}, where
n=|O|. Each number in P denotes a pointer. There is one pointer for each extremity of the
parent strings. Each pointer is allowed to move in a given direction (see also Figure 4).
The pointers are moved in turn according to their order of appearance in the SEQ vector.
The following procedure illustrates how to produce a single offspring string from two
parent strings:

1. Initialise the left scan pointers PT1 and PT2 at the beginning (on the left side) of

parent strings PAR1 and PAR2. Initialise the right scan pointers PT3 and PT4 at the
end (on the right side) of the parent strings PAR1 and PAR2. Let the result (son) be a
string consisting of n blanks. Initialise the left write pointer P1 at the beginning of the
result string and initialise the right write pointer P2 at the end of the result string. Set
all operations as unmarked.

2. Consider the first number appearing in the sequence SEQ
3. Slide the corresponding scan pointer to the first unmarked operation (left scan

pointers slide from left to right, right scan pointers slide from right to left)
4. If the pointer in step 3 was a left pointer, copy the current operation at the left write

pointer and increase that pointer by 1. Otherwise copy the current operation at the
right write pointer and decrease it by 1. Mark the current operation in the parents as
already processed

5. Take out the number at the beginning of SEQ
6. If SEQ is empty then stop otherwise go to step 2

 11

Theorem 4. Validity of Recombination Operator.
The recombination operator defined above respects the feasibility requirement.
Proof.
Let us consider the two parent strings in Figure 4. To transmit a generic operation from a
parent to the son, that operation must be reached by one of the four scan pointers
(indicated in Figure 4 with numbers from 1 to 4). Therefore, to transmit operations A and
B both must be reached by a pointer, one for each. A pair of pointers (x, y) defines a way
to transmit operations A and B by means of the following procedure:
• First, the x pointer slides in its prescribed direction until it reaches operation A or

operation B and transmits it to the son
• Then, the y pointer slides in its prescribed direction until it reaches the operation

which among A and B is not yet assigned to the son
In Table 1 all possible pairs of pointers are grouped in four classes of equivalence
following two lines of symmetry.

 Same Parent Different Parent
Same Side (1, 1) (2, 2) (3, 3) (4, 4) (1, 2) (2, 1) (3, 4) (4, 3)
Different

Side
(1, 3) (3, 1) (2, 4) (4, 2) (1, 4) (4, 1) (2, 3) (3, 2)

Table 1 – Symmetries of the recombination

Figure 4 – Common order preserving recombination

�� ��

�� ��

1 3

2 4

�� ��

Par1:

Par2:

Son:

 12

Let us consider only one pair for every class, since the other pair in the same class will
produce the same result:
• Case (1, 1). The pointer 1 gets first A and puts it in the son. The same pointer then

gets B and puts it in the son more to the right respect to A. This is because the pointer
used in the son slides in the same direction as pointer 1. We obtain in this way A∼<B
in the son string.

• Case (1, 2). The pointer 1 gets A and puts it in the son by the left pointer. Later, the
pointer 2 meets A and skips it, then it gets B and transmits it to the son using the left
pointer and consequently we obtain A∼<B in the son string.

• Case (1, 3). The pointer 1 gets A and the pointer 3 gets B. A is posed in the son more
to the left respect to B because A is inserted using the left pointer in the son, B using
the right pointer and the write pointers cannot cross each other. Then, we get A∼<B in
the son string.

• Case (1, 4). First, the pointer 1 gets A and put it in the son by the left write pointer.
Then, the pointer 4 gets B and put it in the son by the right write pointer. As the write
pointers cannot cross each others, then it must be A∼<B in the son string.

�

The recombination operator proposed is very general indeed. It has four degrees of
freedom (the four pointers) we can drive following our wishes. We can combine them in
many different configurations so that obtaining recombination operators with very
different behaviours. For example, we can think to inhibit a generic combination of two
pointers letting free to move only the remaining two. We can think also to bias the
random sequences which drive the pointers in order to obtain something more close to the
uniform crossover rather than to the one-point crossover or vice versa, biasing in this way
the destruction capability of the recombination [7]. Yet we can think to combine two
recombination operators presenting complementary aspects during the evolutionary
process, applying once the one, once the other, in order to obtain a synergic effect.
In fact we have studied and compared in practice a set of recombination operators
selected following the guidelines mentioned above. In this paper we report only one of
them, the one which has revealed to be the most effective in our computational
experiments. However it is worth mentioning we have found that different recombination
operators may affect the success of the GA strongly, especially when the GA is not paired
with local search. In our genetic algorithm the Merge and Split recombination (MSX)
operator has been used. Figure 5 illustrates by an example how MSX works in practice,
its detailed definition follows.

 13

Definition 4. Merge and Split Recombination (MSX).
Let SEQ be a vector of 2·n elements randomly chosen in the set {1, 2} such as both
elements 1 and 2 occur n times each and where n is the length of strings. We use it as
input of the following procedure that produces from two parent strings two offspring
strings:

1. Initialise pointers PT1 and PT2 at the beginning (on the left side) of parent strings

PAR1 and PAR2. Set all operations as unmarked.
2. Consider the first number appearing in the sequence SEQ
3. Slide to the right the corresponding pointer to the first unmarked operation
4. Copy the current operation in the Merge string in the first position available to the left

and mark that operation as already processed
5. Take out the number at the beginning of SEQ
6. If SEQ is empty then go to step 7 otherwise go to step 2
7. Scan the Merge string operation by operation from the left-most to the right-most.

The first time an operation is met it is assigned to Son1, the second time the same
operation is met it is assigned to Son2 filling them from left to right.

�� �� �� �� �� �� ��	
��
�

�� �� �� ��
� �� ��	
��
�

1

2

��������������������

�� �� �� �� �� �� ��� ����
� ��
� �� �� �� �� ��

�� �� �� �� �� �� E ����
� �� ��
� �� �� �� ������
�

Figure 5 – Merge and Split Recombination (MSX)

 14

The main peculiarity of MSX consists in getting two complementary sons by combining
the precedence characteristics of their parents meanwhile trying to minimise the loss of
diversity. More precisely, if the generic operations a and b have a different order in the
parents, such as in parent one a precedes b and in parent two b precedes a, MSX tends as
much as possible to transmit this diversity to the sons so that in one son a will precede b
and in the other one b will precede a. It is important to notice that in general this
requirement may contrast with the requirement regarding cycling solutions. Therefore,
since the string representation doesn’t allow to encode cycling solutions, it turns out to be
often impossible to get a perfect preservation of parental characteristics through the
recombination.
Intuitively, the preservation of diversity through the recombination is roughly explainable
by noticing that in the merge phase the precedence characteristics of parents are mixed
but not destroyed. Then, in the split phase, the characteristics are repartitioned in two sons
and still not destroyed, so that obtaining the original characteristics preserved but
combined in a different way.
A pertinent doubt one may have is whether MSX respects the feasibility requirement for
recombination stated in Definition 2. After all we have only proven the feasibility for a
class of recombination operators (Theorem 4) which seems not to include MSX because
of its way of recombining strings in two phases. However we can imagine an alternative
definition for MSX such that it results to match the form of the feasible class. The idea is
to produce the two twin sons separately, each one in one phase, using the same random
sequence twice, once scanning the input sequence and the parent strings from left to right
producing one son, once scanning them in the other sense producing the other one.

3 Genetic Local Search

Genetic Local Search Template
On one hand, problems from combinatorial optimisation are well within the scope of
genetic algorithms. Nevertheless, compared to conventional heuristics, genetic algorithms
are not well-suited for fine-tuning structures which are very close to optimal solutions.
Therefore it is essential to incorporate conventional heuristics into genetic algorithms to
construct a more competitive algorithm.
On the other hand, in general the best solution found by a local search algorithm may
depend on the initial solution used. However, a multi-start scheme may overcome this
problem. As a further refinement, the effectiveness of multi-start iterative approach may

 15

be improved by using the information available from the solutions obtained in the
individual cycles. Following this line, several authors have proposed variants of local
search algorithms, using ideas from population genetics.
A Genetic Local Search (GLS) algorithm [1] consists of a basic Genetic Algorithm with
the addition of a local search optimisation phase applied to every new individual created
either in the initial population or during the evolutionary process.
We can give to the GLS algorithm a dual interpretation. On one hand, we can see it as a
Genetic Algorithm where Local Search is intended as a smart mutation mechanism. On
the other hand, we can see it as structured multi-start mechanism for Local Search where
the Genetic Algorithm plays the role of the structure.
However, by seeing the hybrid approach as a whole, Genetic Algorithms are used to
perform global exploration among population while Local Search is used to perform local
exploitation around chromosomes. Because of the complementary properties of Genetic
Algorithms and Local Search which mutually compensate their points of weakness, the
hybrid approach often outperforms either method operating alone.
In the following a GLS outline is presented.

GLS Template
1. Generate initial population
2. Execute for every individual an initial optimisation by applying local search
3. Assign fitness to every individual
4. Select individuals for recombination
5. Apply the recombination operator producing a new generation of offspring
6. Optimise every new offspring by applying local search
7. Insert the offspring in the population and reduce it to the original size
8. Repeat the steps from 3 to 7 until a stop criterion is met

Let us now fill the Genetic Local Search template presented above with all the
components we need to implement an actual algorithm for JSSP. First, we will discuss
about the major components of the Genetic Algorithm framework, then we will focus our
attention on the specific Local Search algorithm we have used.

Genetic Algorithm Framework
• POPULATION. The initial population contains a fixed number of chromosomes

which are generated at random. During all the evolutionary process the population
size remains constant.

 16

• FITNESS FUNCTION. Every chromosome in the population receives a fitness value.
It biases the probability of the chromosome to reproduce. In our case the fitness value
of a chromosome is the makespan of its encoded solution.

• SELECTION SCHEME. A fixed number of chromosomes which will undergo
recombination are selected. The selection is done via a simple ranking mechanism.
The population is always kept sorted according to the fitness. The probability of each
chromosome to be selected depends only on its position in the rank and not on the
actual fitness value.

• REINSERTION SCHEME. The set of offspring is merged with the population. Then
the population is reduced to its original size by eliminating the worst chromosomes.

• STOP CRITERION. The algorithm stops after a fixed numbers of consecutive
generations without improvement of the best solution in the population.

• REPRESENTATION & RECOMBINATION. We use the string representation and
the MSX recombination operator presented in Section 2. Let us now spend few words
on the role played by MSX in the GLS framework, focusing again on its behaviour.
While MSX tends to preserve diversity as much as possible, it tries as well to mix
parent characteristics a lot. The input sequence is randomly allowed to switch from
one parent to the other in every step, therefore it behaves like a uniform crossover.
These two aspects of the recombination taken together are particularly welcome in a
genetic local search framework. On one hand, MSX transmits the diversity and
therefore doesn’t trash expensive information present in the parents gathered by local
search, the most time-consuming GLS component. On the other hand, the role of the
GA paired with local search is to explore as much as possible the solution space.
MSX stresses it just shuffling the information present in the parents at most behaving
like a uniform crossover.

Local Search Optimiser
The TS algorithm here proposed is an effective local search algorithm for JSSP. We use it
in the above GLS algorithm as a local search optimisation phase in steps 2 and 6.

TS Algorithm
1. Current Solution := Initial solution
2. Best Solution := Initial Solution
3. Taboo List := Empty
4. Consider the neighbourhood of the current solution and select one of them not in the

Taboo List following a Search Strategy

 17

5. Insert the current solution in the Taboo List and, if it is full, make room taking out the
solution ahead of the list

6. Update the best solution found so far
7. Take the selected neighbour as the new current solution
8. Repeat steps 4-7 until a Stop Criterion is met

More in detail, the Taboo Search we use is based on an algorithm proposed by Eikelder et
al [18]. In the following we discuss the major components of the algorithm.
• REPRESENTATION. To apply local search to JSSP we use the disjunctive graph

representation. A feasible solution is obtained by orienting the edges such that there is
a linear ordering of the operations that have to be processed on one machine, and the
resulting graph is acyclic.

• NEIGHBOURHOOD. We use the neighbourhood structure of Nowicki & Smutnicki
[13]. It is based on reversing machine arcs on a longest path. However, they have
shown that several types of neighbours can be omitted since they cannot have lower
costs. For instance it is not useful to reverse internal arcs of a block of operations
belonging to a longest path.

• SEARCHING STRATEGY. The time needed to search a neighbourhood depends on
the size of the neighbourhood and on the time complexity of the computational cost of
neighbours. Since the size of a neighbourhood is rather small we use the steepest
neighbour search strategy.

• TABOO LIST. We use a taboo list consisting of a FIFO queue of moves of fixed
length. The length of the taboo list is the average neighbourhood size plus a random
value.

• STOP CRITERION. The algorithm stops after a fixed numbers of steps without
improvement.

Because of the combined use of Genetic Algorithms and Taboo Search we will denote
our algorithm with GTS, acronym of Genetic Taboo Search.

4 Computational Results
Relevant Parameters
In the sequel, we introduce and discuss the most important parameters of GTS, the ones
that affect more the performance of the algorithm, and their settings.

 18

COMPUTATIONAL EFFORT
This parameter permits a qualitative control of the computational search effort. More in
detail, we define the computational effort as the product of two factors, where the first
factor is the number of consecutive iterations without improvement (TS) after that each
run of Taboo Search has to stop, and the second factor is the number of consecutive
individuals processed by the GA without improvement (GA) after that GTS has to stop.
Since both TS and GA stop criteria are adaptive to the complexity of the specific problem
treated, the setting of the computational effort parameter produces different effects
applied on different instances. However, although roughly, it gives a way to control the
computational effort.
We have found convenient to set a different computational effort on the basis of the size
of the instance treated as shown in Table 2.

TS/GA MIXING RATE
This is a very important parameter that is used to weigh the relative contribution of TS
and GA. Knowing the Computational Effort (TS*GA) and the TS/GA ratio we then can
determine the stop criteria for TS and GA. We have seen that the bigger the problem is
the better GA performs compared with TS. More in detail we have assigned a TS/GA ratio
of 10:1 for little and medium size instances and 1:1 for large size instances (see Table 2).

Size of instances TS*GA TS/GA
Little instances (up to 150 operations) 10000 10:1
Medium instances (around 200 operations) 100000 10:1
Medium-large instances (around 300 operations) 500000 10:1
Large instances (around 500 operations) 1000000 1:1

Table 2 – Computational Effort and Mixing Rate

GA PARAMETERS
It is very important to set the GA parameters properly in order to guarantee a good flow
of information between GA and TS during all the evolutionary process so as to obtain an
effective co-operation between them. We have found that the following parameters affect
the quality of the flow of information and therefore we have paid great attention in
finding a good setting:
• Population Size. We tuned GTS focusing on meaningful relationship among

parameters rather than on their absolute values, trying first to find out good ratios
among relevant parameters and only later deriving indirectly their absolute values.
Following this approach, we have considered the Population Size being in direct

 19

relationship with the Number of Generations, obtaining that a good ratio is 1:1. The
absolute values we have found for the Population Size parameter vary gradually from
10 individuals for small size instances up to 50 individuals for large size instances.

• Generational Gap. This parameter represents the number of offspring to produce
every generation through recombination. We have found Population Size/2 to be a
good setting for this parameter.

• Selection Pressure. This parameter permits to control the competition level in the
population. It bias the ranking selection mechanism, making the selection probability
of chromosomes more depending or less depending on their rank in the population on
the basis of the parameter value. The range of the selection pressure varies from 0 (no
dependency) to 2 (strong dependency). A weak selection pressure, therefore, gives a
bad individual almost the same chance to reproduce as a good individual, whereas a
strong selection pressure strongly favours the reproduction of only good individuals.
We have found a weak selection pressure of 0.1 being appropriate for our algorithm.
This should not be so surprising because in our GA we use a reinsertion scheme
which is already very selective itself, thus making it not necessary to strengthen too
much further the selection pressure through this parameter.

GTS Vs TS
In Table 3 a direct comparison between the hybrid algorithm GTS and its TS core is
presented. This investigation is of crucial importance since we will find out whether the
hybridisation is worthy or the genetic framework has just an ornamental function rather
than a real merit.
In order to effectuate a fair comparison between GTS and TS we have set parameters in
such a way both algorithms get approximately the same amount of time for the same
instance. We have applied both algorithms to a set of well-known JSSP instances of
various sizes. This set includes the benchmark set introduced by Vaessens [20], which
comprises the hard-to-solve Lawrence instances, two of the easier ones and the famous
Fisher & Thompson 10×10 instance. Moreover, we test the two algorithms also on three
bigger instances, the abz-problems from the test library JSPlib (obtainable via ftp from
mscmga.ms.ic.ac.uk). We report the results we have obtained from 10 runs on a Sparc
station 5 (110Mhz). The CPU time is expressed in seconds. We can notice that on little
instances GTS works as well as TS finding the same quality of solutions and using the
same amount of time. As the size of instances increases the GTS works better than TS
finding better quality solutions. At first glance TS seems saving time on large instances.
This is substantially due to the adaptive stop criteria. In order to overcome this premature
termination, we tried to compensate the time difference setting TS in such a way it takes

 20

more time, therefore giving it the chance of getting better solutions. TS gets stuck anyway
without improving the solution quality, thus wasting all the additional time we gave to it.

A Wide Comparison
We have done a wide comparison on well-known instances among GTS and the best
algorithms belonging to a variety of approaches proposed by Vaessens [20]. Table 4 gives
the best costs found by GTS and other methods. In general we see that GTS behaves very
well. Again we see that with big instances GTS outperforms all the other approaches.
In the following we list the programs we have considered:
• RGLS-5 – Reiterated Guided Local Search by Balas and Vazacopoulos [2]
• TS-B – Taboo Search and Backtracking by Nowicki and Smutnicki [13]
• SA1 – Simulated Annealing by Van Laarhoven, Lenstra and Ulder [1]
• SB-GLS – Shifting Bottleneck and Guided Local Search by Balas and Vazacopoulos

[2]
• GA-SB – Genetic Algorithms and Shifting Bottleneck by Dondorf and Pesch [5]

GTS Vs SAGen
Finally we have done a specific comparison between our hybrid algorithm (Taboo Search
Based) and another recent hybrid genetic algorithm based on Simulated Annealing
proposed by Kolonko [8].
As we can see in Table 5, we have compared these two algorithms on the set of difficult
swv instances from JSPlib, almost all still open, setting the stop criteria preferring quality
against time. We report the results of 3 runs for both algorithms, on a Sparc station 5
(110Mhz) for GTS and on Pentium 120/166Mhz for SAGen. The time is expressed in
seconds. As we can see both on the quality and time GTS strongly outperforms SAGen
and most of the times GTS breaks the known bound for those instances.

 21

Problem OPT

(UB)
BEST
GTS

AVG
GTS

BEST
TS

AVG
TS

AVG TIME
GTS

AVG TIME
TS

10 jobs * 5 machines = 50 operations
la02 655 655 655 655 663 5 9

10 jobs * 10 machines = 100 operations
ft10 930 930 933 930 933 67 65

la19 842 842 842 842 842 41 47

15 jobs * 10 machines = 150 operations
la21 1046 1047 1050 1048 1063 117 122

la24 935 938 943 942 943 85 140

la25 977 977 978 977 978 91 190

20 jobs * 10 machines = 200 operations
la27 1235 1235 1240 1255 1264 257 140

la29 (1153) 1157 1166 1167 1177 316 233

15 jobs * 15 machines = 225 operations
la36 1268 1268 1274 1268 1276 184 197

la37 1397 1403 1410 1415 1420 229 208

la38 1196 1201 1202 1199 1204 178 275

la39 1233 1233 1239 1233 1247 207 220

la40 1222 1226 1231 1229 1232 192 211

20 jobs * 15 machines = 300 operations
abz07 (656) 658 662 666 668 1764 975

abz08 (669) 670 672 680 681 1518 931

abz09 (679) 682 687 688 689 1250 1114

Table 3 – GTS Vs TS

Problem OPT GTS RGLS-5 TS-B SA1 SB-GLS GA-SB
la02 655 655 655 655 - 666 -
ft10 930 930 930 930 - 930 -
la19 842 842 842 842 - 852 848
la21 1046 1047 1046 1047 1053 1048 1074
la24 935 938 935 939 935 941 957
la25 977 977 977 977 983 993 1007
la36 1268 1268 1268 1268 - 1268 1317
la37 1397 1403 1397 1407 - 1397 1446
la38 1196 1201 1196 1196 1208 1208 1241
la39 1233 1233 1233 1233 - 1249 1277
la40 1222 1226 1224 1229 1225 1242 1252
la27 1235 1235 1235 1236 1249 1243 1269
la29 1142 / 1153 1157 1164 1160 1185 1182 1210

Table 4 – Wide Comparison

 22

Problem OPT
LB / UB

BEST
GTS

AVG
GTS

BEST
SAGen

AVG
SAGen

AVG TIME
GTS

AVG TIME
SAGen

20 jobs * 10 machines = 200 operations
swv01 1392 / 1418 1430 1430 1427 1428 2034 47828

swv02 1475 / 1491 1481 1484 1487 1490 1851 43089

swv03 1369 / 1398 1418 1425 1422 1428 2102 40684

swv04 1450 / 1493 1482 1488 1487 1490 2315 44257

swv05 1421 / 1448 1441 1447 1449 1453 1924 40045

20 jobs * 15 machines = 300 operations
swv06 1591 / 1718 1701 1710 1697 1703 3536 112647

swv07 1446 / 1652 1625 1626 1627 1630 4394 97504

swv08 1640 / 1798 1774 1781 1773 1776 4105 56781

swv09 1604 / 1710 1675 1686 1665 1682 3667 24474

swv10 1631 / 1794 1775 1780 1791 1794 5556 44467

50 jobs * 10 machines = 500 operations
swv11 2983 / 3047 3019 3025 3075 3081 13262 117454

swv12 2972 / 3045 3040 3071 3108 3115 16029 124549

swv13 3104 / 3173 3107 3116 3177 3178 14420 92756

swv14 2968 2968 2971 3010 3013 10951 104088

swv15 2885 / 3022 2918 2929 3004 3004 16773 161365

Table 5 – GTS Vs SAGen

5 Conclusions
This paper describes an hybrid algorithm (GTS) combining Genetic Algorithms and
Taboo Search for the JSSP. The ingredients of our GA are a natural representation of
solutions (the string representation) and a recombination capable of transmitting
meaningful characteristics (the common order relationship) from parents to children. The
problems of feasibility regarding cycling and job constraints have been discussed and
solved in that framework. Moreover, the MSX recombination operator that tends to
preserve the diversity of the parent schedules in the offspring schedules has been
presented. The Genetic Local Search scheme has been used to hybridise our GA with an
effective TS algorithm for JSSP. Computational experiments have shown that on large
size instances the GA counterpart makes indeed the difference. The best mix of TS and
GA for those instances is half and half (following our mix definition) and therefore GTS
has to be considered as a real hybrid, neither a modified TS nor a modified GA. GTS has
been compared with a variety of other approaches and it has revealed to perform very
well in the comparison. The last experiment has shown that GAs are far more profitably
hybridised with Taboo Search than with Simulated Annealing. As a matter of fact both on
time required and solution quality a difference of one order of magnitude has been found.

 23

Let us spend some more words on the philosophy underlying the natural approach we use.
The crucial point is that we see a schedule as a partial order relationship among
operations. It is not important that the relationship is made of contributes from
precedence constraints given with the problem instance and those ones given with the
particular solution to that problem. We see all the constraints uniformly without any
distinction, all forming the relationship among operations.
By seeing schedules like relationships, it is natural to think about recombination as a way
to recombine partial order relationships transmitting to son schedules the common sub-
relationship of parent schedules. This seems a natural requirement as we are considering
schedules at this level. As a welcome side-effect of this approach, we obtain that in the
transmission of meaningful characteristics to sons even the feasibility property (intended
as the job precedence constraints of the problem instance) is transmitted from parents to
sons without paying special attention to it. We treat it uniformly as a generic
characteristic of a schedule. This positive side-effect leaves us thinking we are
approaching the problem at the right level of abstraction without being misled by the
syntactical details of the representation used. Finally a further consequence of the way we
approach the problem is that the string representation and the recombination proposed do
not depend on a particular configuration of the constraints and therefore they can be
naturally extended to more general scheduling problems.

References
[1] E. H. L. Aarts, P. J. M. van Laarhoven, J. K. Lenstra, N. L. J. Ulder – A
computational study of local search algorithms for job shop scheduling – In: ORSA
Journal on Computing Vol. 6, No. 2, Spring 1994.
[2] E. Balas and A. Vazacopoulos – Guided Local Search with Shifting Bottleneck for
Job Shop Scheduling – In: Management Science Research Report #MSRR-609, Graduate
School of Industrial Administration, Carnegie Mellon University, Pittsburgh,
Pennsylvania.
[3] L.D. Davis – Handbook of Genetic Algorithms – Van Nostrand Reinhold, 1991.
[4] F. Della Croce, R. Tadei, G. Volta – A Genetic Algorithm for the Job Shop Problem –
In: Computers and Operations Research Vol. 22, No. 1, 1995, pp. 15-24.
[5] U. Dorndorf and E. Pesch – Evolution Based Learning in a Job Shop Scheduling
Environment – Computer and Operations Research 22, 1995, pp. 25-40.
[6] F. Glover, C. McMilan and B. Novick – Tabu Search, Part I – ORSA J. Computing, 1,
3, 1989, pp. 190-206.
[7] D.E. Goldberg – Genetic Algorithms in Search, Optimisation and Machine Learning
– Addison Wesley Publishing Company, January 1989.

 24

[8] M. Kolonko - Some new results on simulated annealing applied to the job shop
scheduling problem – In: European Journal of Operational Research Vol. 113, No. 1,
1999, pp. 123-136.
[9] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys. – Sequencing and
scheduling: Algorithms and complexity. – In: S.C. Graves, A.H.G. Rinnoy Kan and P.
Zipkin, editors, Handbooks in Operations Research and Management Science 4, North-
Holland, 1993.
[10] Z. Michalewicz – Genetic Algorithms + Data Structures = Evolution Programs –
Springer-Verlag, AI Series, New York, 1996.
[11] H. Mühlenbein, M. Gorges-Schleuter and O. Krämer – Evolution Algorithms in
Combinatorial Optimisation – In: Parallel Computing 7, 1988, pp. 65-85.
[12] R. Nakano, T. Yamada – Conventional genetic algorithm for job shop problems –
Proceedings of 4th ICGA, 1991, pp. 474-479.
[13] E. Nowicky and C. Smutnicki - A fast taboo search algorithm for the job shop
problem – In: Management Science Vol. 42, 6, June 1996.
[14] J.T. Richardson, M.R. Palmer, G.E. Liepins, M.R. Hilliard – Some guidelines for
genetic algorithms with penalty functions – In: J.D. Shaffer editor, Proceedings of the
third international conference on genetic algorithms, Morgan Kaufmann, 1989, pp. 191-
197.
[15] B. Roy, B. Sussmann – Les problèmes d’ordonnancement avec contraints
disjonctives – Note DS 9 bis, SEMA, 1964, Paris, France.
[16] E. Taillard – Parallel taboo search techniques for the job shop scheduling problem –
ORSA J. Computation, 6, 1994, pp. 108-177.
[17] A.Y.C. Tang and K.S. Leung – A Modified Edge Recombination Operator for the
Travelling Salesman Problem – In: H.-P. Schwefel and Manner editors, Parallel Problem
Solving from Nature III, Springer-Verlag, 1994, pp. 180-188.
[18] H.M.M. ten Eikelder, B.J.M. Aarts, M.G.A. Verhoeven, E.H.L. Aarts – Sequential
and Parallel Local Search Algorithms for Job Shop Scheduling – In: S. Voss, S. Martello,
I.H. Osman and C. Roucairol, editors: Meta-Heuristics, Advances and Trends in Local
Search Paradigms for Optimization, Kluwer, 1999, pp. 359-371.
[19] N.L.J. Ulder, E.H.L. Aarts, H-J. Bandelt, P.J.M. van Laarhoven and E. Pesch –
Genetic Local Search for the Travelling Salesman Problem – In: Lecture Notes in
Computer Science 496, Springler, 1990, Berlin, pp. 109-116.
[20] R.J.M. Vaessens, E.H.L. Aarts and J.K. Lenstra - Job shop scheduling by local
search – In: INFORMS Journal on Computing Vol. 8, No. 3, Summer 1996, pp. 302-317.

