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Abstract. This paper extends a geometric framework for interpreting
crossover and mutation [5] to the case of sets and related representations.
We show that a deep geometric duality exists between the set represen-
tation and the vector representation. This duality reveals the equivalence
of geometric crossovers for these representations.

1 Introduction

Sets, multisets and partitions are natural representations for many important
combinatorial optimization problems such as grouping problems, graph coloring
and so on. The set representation for evolutionary algorithms was theoretically
studied by Radcliffe [10] within his forma analysis framework.

Geometric crossover and geometric mutation are representation-independent
search operators that generalize many pre-existing search operators for the major
representations used in evolutionary algorithms, such as binary strings [5], real
vectors [5], permutations [7], syntactic trees [6] and sequences [8]. They are
defined in geometric terms using the notions of line segment and ball. These
notions and the corresponding genetic operators are well-defined once a notion
of distance in the search space is defined. Defining search operators as functions
of the search space is opposite to the standard way [3] in which the search space
is seen as a function of the search operators employed. This viewpoint greatly
simplifies the relationship between search operators and fitness landscape and
has allowed us to give simple rules-of-thumb to build crossover operators that
are likely to perform well.

In this paper we use the geometric framework [5] to study and design
crossover operators for the set representation and related representations such
as multi-sets and partitions for the fixed-size and variable-size variants. We also
show an illuminating isometric duality between the spaces associated to the set
representation and the vector representation that enables us to prove the equiv-
alence of geometric crossovers for these representations.

The paper is organised as follows. In section 2 we present the geometric
framework. In section 3, we extend it to sets, multisets and partitions of variable-
size. In section 4, we consider the fixed-size case. In section 5, we illustrate the
duality between sets and vectors. In section 6, we draw some conclusions.



2 Geometric framework

2.1 Geometric preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [5] and [6]. The following definitions are taken from [2].

The terms distance and metric denote any real valued function that con-
forms to the axioms of identity, symmetry and triangular inequality. A simple
connected graph is naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length of a shortest path
between the nodes.

In a metric space (S, d) a line segment (or closed interval) is the set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called extremes
of the segment. Metric segment generalises the familiar notion of segment in
the Euclidean space to any metric space through distance redefinition. Notice
that a metric segment does not coincide with the shortest path connecting its
extremes (geodesic) as in an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is the union of
all geodesics.

We assign a structure to the solution set S by endowing it with a notion
of distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape.

2.2 Geometric crossover definition

The following definitions are representation-independent and, therefore, applica-
ble to any representation.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
is a geometric crossover where all z laying between parents x and y have the same
probability of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])
|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been
derived in [5] where we also showed that traditional crossover is geometric under
Hamming distance. In previous work we have also studied various crossovers for
permutations, revealing that PMX, a well-known crossover for permutations, is
geometric under swap distance. Also, we found that Cycle crossover, another
traditional crossover for permutations, is geometric under swap distance and
under Hamming distance.



3 Geometric crossover for variable-size sets, multi-sets
and partitions

We consider problems where solutions are naturally represented as sets of objects
taken from a reference set (universal set). We also consider the simple extension
to multi-sets, sets that are allowed to contain repetitions of the same object. A
set can be seen also as a bipartition of the universal set (objects in the set and
remaining objects in the universal set). A natural extension of the notion of set
in this sense is to consider generic multi-partitions of the universal set. We will
study this case too.

There is a further aspect of the set representation that has a major impact
on the associated geometric crossovers: the search being restricted to fixed-size
sets versus the variable-size case. In this section, we study sets, multi-sets and
partitions for the easier variable-size case. In section 4, we consider the fixed-size
case.

3.1 Distances and crossover for sets

Let U be the universal set and A,B ⊆ U . The symmetric distance between sets
is d(A,B) = |A∆B| where A∆B = A ∪ B \ A ∩ B is the symmetric difference
between sets. The symmetric distance is a metric [2]. When A = B, d(A,B)=0;
when A ∩ B = ∅, A and B are at maximum distance and d(A, B) = |A| + |B|.
The ins/del edit distance between A and B is the minimum number of elements
that need to be deleted or inserted for A to be transformed into B (and vice
versa).

Theorem 1. The symmetric distance is the same as the ins/del edit distance.

Proof. The edit distance corresponds to the symmetric distance because the
minimum number of elements that need to be deleted from A are |A \B| and of
those that need to be added are |B\A|. It is easy to see that d(A, B) = |A∆B| =
|A \B|+ |B \A|.
Corollary: since any edit distance is a metric [1], theorem 1 proves also that
the symmetric distance is a metric.

Theorem 2. Given two parent sets A and B any recombination operator OP
that returns offspring O such as A ∩ B ⊆ O ⊆ A ∪ B is geometric crossover
under symmetric distance.

Proof. Proving geometricity under symmetric distance is equivalent to proving
geometricity under ins/del edit distance. Any intermediate set C on the minimal
ins/del move path to transform A into B is between A and B (in the segment
[A, B]) under ins/del edit distance (see Fig. 1). Every O such that A ∩ B ⊆
O ⊆ A ∪ B belongs to such a path because: A can be transformed into B by
inserting in A the elements O \A, removing from A the elements A\O and then
by inserting in B the elements B \O, and removing from B the elements O \B.
So d(A,O) = |O \A|+ |A \O| and d(B, O) = |O \B|+ |B \O|



Fig. 1. Venn diagram linking offspring set and parent sets.

Example Let U = {a, b, c, d} be the universal set and A = {a, b} and B = {b, c}
two parent sets such that A, B ⊆ U . The symmetric distance between A and B is
d∆(A,B) = |A\B|+|B\A| = 1+1 = 2. Let GX∆ be a geometric crossover under
symmetric distance. Any offspring O of A and B, O = GX∆(A,B), respects the
condition A ∩B ⊆ O ⊆ A ∪B. So, in our example we have: {b} ⊆ O ⊆ {a, b, c}.
These are the sets: {b}, {a, b}, {b, c}, {a, b, c}. It is easy to verify that every O is in
the segment between A and B under d∆. For example if we consider O = {a, b, c}
we have d∆(A,O) + d∆(O, B) = (0 + 1) + (1 + 0) = 2 = d∆(A,B).

3.2 Distances and crossover for multi-sets

A multi-set (sometimes also called a bag) differs from a set in that each member
has a multiplicity, which is a natural number indicating how many times it
occurs in the multi-set. A multi-set can be formally defined as a pair (A, m)
where A is some set and m : A → N is a function from A to the set of natural
numbers N. The set A is called the underlying set of elements. The size of the
multi-set (A,m) is the sum of all multiplicities for each element of A: |(A, m)| =∑

a∈A m(a). A submultiset (B, n) of a multiset (A,m) is a subset B ⊆ A and a
function n : B → N such that ∀b ∈ B : n(b) ≤ m(b). The usual operations of
union and intersection for sets can easily be generalized to multisets. Suppose
(A,m) and (B, n) are multisets. The union can be defined as (A ∪ B, f) where
f(x) = max{m(x), n(x)}. The intersection can be defined as (A ∩ B, f) where
f(x) = min{m(x), n(x)}.

Hence we can define the symmetric difference between multisets as (A∆B, f)
where f(x) = max{m(x), n(x)} − min{m(x), n(x)} = |m(x) − n(x)|. The sym-
metric distance for multisets becomes d((A,m), (B, n)) = |(A,m)∆(B, n)| =∑

x∈A∆B |m(x)− n(x)|. The symmetric distance between multisets can be seen
as a simple generalization of the ins/del edit distance for sets in which the edit
move becomes the insertion or deletion of a single occurrence of an element.

The geometricity theorem for sets under symmetric distance can be extended
to the case of multisets. Given two parent multisets (A, m) and (B, n) any re-
combination operator OP that returns offspring (O, f) such as (A,m)∩(B, n) ⊆
(O, f) ⊆ (A,m) ∪ (B,n) is geometric crossover under symmetric distance.

Example Let U = {a, b, c, d} be the universal set, A = {a, b} and B = {b, c} be
two sets such as A,B ⊆ U . Let us consider the parent multiset MA = {a, a, b} =



(A,m) where m(a) = 2 and m(b) = 1 and the parent multiset MB = {b, b, c, c} =
(B,n) where n(b) = 2 and n(c) = 2. Their sizes are |MA| = 3 and |MB | = 4.
Their union is MA∪MB = (A,m)∪(B, n) = (A∪B, f) where f = max(m,n). In
our example we have MA∪MB = {a, a, b, b, c, c}. Their intersection is MA∩MB =
(A,m) ∩ (B,n) = (A ∩ B, f) where f = min(m,n). In our example we have
MA ∩ MB = {b}. Their symmetric difference is MA∆MB = (A∆B, f) where
f = max(m,n)−min(m,n). In our example we have MA∆MB = {a, a, b, c, c}.
The symmetric distance between MA and MB is, therefore, d∆(MA, MB) =
|MA∆MB | = 5. Let GX∆ be a geometric crossover under symmetric distance for
multisets. Any offspring MO of MA and MB , MO = GX∆(MA,MB), respects
the condition MA ∩ MB ⊆ MO ⊆ MA ∪ MB . So, in our example we have:
{b} ⊆ MO ⊆ {a, a, b, b, c, c}. Thus, any multiset MO = (O, f) such as 0 ≤
f(a) ≤ 2, 1 ≤ f(b) ≤ 2, 0 ≤ f(c) ≤ 2 is a possible offspring of MA and MB .

3.3 Distances and crossover for partitions

In this paper we restrict our focus on partitioning problems with labeled parti-
tions and a fixed number of partitions. In this section we consider the case where
the same partition may have different size in different solutions. In section 4 we
will consider the case in which all solutions are required to have the same size
for the same partition.

A partition of a set X is a division of X into non-overlapping subsets that
cover all of X. When the set X is partitioned into n subsets we say that they
form a n-partition of X. A n-partition generalizes the notion of set A seen as
partitioning the universal set U in two subsets A and A (bipartition).

The symmetric distance between two n-partitions A = {A1, . . . , An} and
B = {B1, . . . , Bn} of a set X is a simple generalization of the symmetric distance
for sets: d(A,B) =

∑ |Ai∆Bi|.
The edit distance between two n-partitions is a natural generalization of

the ins/del edit distance for sets. We define the edit distance between two n-
partitions as the minimum number of edit moves to transform one partition into
the other where the edit move considered is moving one element from one subset
to another. This edit move transforms a partition of X into another partition of
X for which the conditions of full coverage of X and mutual exclusivity of subsets
are respected. This edit distance is a generalization of the ins/del edit distance
for sets in that when one considers a set A as a bipartition of the universal set
U into A and A, inserting or deleting one element from A implies respectively
deleting or inserting the same element in A. So, this is equivalent of moving one
element from A to A. The symmetric distance between partitions does not equal
their ins/del edit distance (although these distances are related).

Example Let X = {a, b, c, d} be the universal set (the set to be parti-
tioned), and be A = ({a, b}, {c, d}) and B = ({b, c, d}, {a}) two ordered (or
labeled) bipartitions of X. Since we consider ordered partitions, ({a, b}, {c, d}) 6=
({c, d}, {a, b}). The edit distance between A and B is the minimum number of



elements that need to be transferred from one subset to another to transform
A into B (or viceversa). In our case, in order to transform A into B, we need
to transfer c and d from the second subset to the first subset and transfer a
from the first subset to the second for a total of 3 edit moves. So the edit dis-
tance ed(A,B) = 3. The geometric crossover under edit distance requires the
offspring partition O = (O1, . . . , On) to satisfy ∀i : Ai ∩ Bi ⊆ Oi ⊆ Ai ∪ Bi.
Notice that the sets Oi needs to form a partition of X hence need to be chosen
so as to be non-overlapping and covering X completely (so their choices cannot
be made independently). In our example we have {b} ⊆ O1 ⊆ {a, b, c, d} and
∅ ⊆ O2 ⊆ {a, c, d}. Considered independently, O1 can be any subset of X in-
cluding b (8 possible subsets) and O2 can be any subset of {a, c, d} (8 possible
subsets). However since O1 and O2 need to form a partition of X, we have only
8 choices (and not 82) which are O = (O1, O1) where {b} ⊆ O1 ⊆ {a, b, c, d}.

4 Geometric crossover for fixed-size sets, multi-sets and
partitions

Substitution edit distance Let U be the universal set and Xn the set of all
subsets of U of size n, Xn = {A : A ⊆ U, |A| = n}, and let A,B ∈ Xn.

The edit distance between sets under element substitution move between A
and B is the minimum number of elements of A that need to be substituted with
an element in U \A to be transformed into B (or vice versa). Since this distance
is an edit distance it is a metric.

For any two sets of the same size, their ins/del edit distance is twice their
substitution edit distance because every substitution is equivalent to one deletion
and one insertion operation and there are no shorter ways to transform one set
into another of the same size using deletions and insertions. The substitution edit
distance is well-defined only for sets of the same size because sets of different
size cannot be transformed into each other by substitutions only.

Geometric crossover under substitution edit distance Given two parent
sets A, B ∈ Xn any recombination operator OP that returns offspring O ∈ Xn

such that A ∩ B ⊆ O ⊆ A ∪ B is geometric crossover under substitution edit
distance. So, this geometric crossover is a geometric crossover under ins/del edit
distance restricted to sets of size n.
Proof: if we restrict the image set of a geometric crossover from X to S ⊆ X
we obtain a new geometric crossover that for any two parents a, b ∈ S returns
offspring in [a, b]∩S. So, restricting the geometric crossover associated to ins/del
edit distance from the set 2U to the set Xn ⊆ 2U , we obtain a new geometric
crossover based on the ins/del distance that returns offspring of the same size of
the parents.

This restricted crossover is also geometric crossover under substitution edit
distance because given A,B ∈ Xn, O ∈ [A,B] under ins/del edit distance iff
O ∈ [A,B] under substitution edit distance because ins/del edit distance is



twice of substitution edit distance and proportional metrics have the same metric
intervals.

Example Let U = {a, b, c, d} be the universal set and A = {a, b} and B = {b, c}
two parent sets such as A,B ⊆ U . The substitution edit distance between A and
B is dsub(A,B) = 1: A can be transformed into B by substituting a single
element in A, the element b with c. Their ins/del edit distance, which equals
their symmetric distance, is d∆(A,B) = 2 · dsub(A,B) = 2.

Any offspring O of A and B by geometric crossover under ins/del edit distance
GX∆, O = GX∆(A,B), respects the condition A ∩ B ⊆ O ⊆ A ∪ B. These are
the sets: {b}, {a, b}, {b, c}, {a, b, c}. The offspring obtained by geometric crossover
under substitution edit distance are those that have the same parent size, size
2 in this case: {a, b}, {b, c}. They are in the segment between parents A and B
under substitution edit distance (in this case the only offspring are the parents
themselves).

5 Geometric duality of sets and vectors

In this section we show that the same metric spaces considered in section 3
and 4, arising from the set and related representations, arise from the vector
representation and permutations with repetitions. In other words, set spaces
and vector spaces are isometric. This enables us to show that the geometric
crossovers considered in section 3 and 4 for sets, multi-sets and partitions all
have equivalent dual geometric crossovers based on vectors in the variable-size
case and on permutations with repetitions in the fixed-size case (see Table 1).

5.1 Dual equivalence of geometric crossovers for sets and vectors

Geometric crossovers based on isometric spaces are equivalent. The space of sets
endowed with the symmetric distance is isometric to the space of vectors endowed
with Hamming distance. Hence, symmetric crossover for sets is equivalent to
the traditional crossover for vectors. In the following, we prove the duality and
illustrate it with an example.

Definition 4. (Indicator function) The indicator function of a subset A of a

set U is a function IA : U → {0, 1} defined as IA(x) =
{

1 if x ∈ A,
0 if x /∈ A.

Definition 5. (Isometry) Let X and Y be metric spaces with metrics dX and
dY . A map f : X → Y is called distance preserving if for any x, y ∈ X one has
dY (f(x), f(y)) = dX(x, y). A distance preserving map is automatically injective.
A global isometry is a bijective distance preserving map. Two metric spaces X
and Y are called isometric if there is a global isometry from X to Y .



Let U be the universal set, d∆ the symmetric distance between sets and
M = (2U , d∆) the metric space based on the set of all subsets of U together with
the symmetric distance.

Let IA be the indicator function of A ⊆ U where U = {x1, · · · , xn} and VA

be the vector (IA(x1), · · · , IA(xn)). The map V : A → VA mapping a set A and
its indicator values vector VA is bijective.

Let M ′ = ({0, 1}n, dH) be the metric space of the binary vectors of size n
endowed with the Hamming distance dH .

Theorem 3. The metric spaces M = (2U , d∆) and M ′ = ({0, 1}n, dH) are
isometric.

Proof. It is sufficient to prove that the the map V : A → VA is a dis-
tance preserving map. It is immediate to see that for any A,B ⊆ U we have
d∆(A,B) = dH(VA, VB). To transform A into B with the minimum number of
ins/del operations, the elements that need to be inserted into A are those xi

for which VA(i) = 0 and VB(i) = 1 and the elements that need to be deleted
from A are those xj for which VA(j) = 1 and VB(j) = 0. These are the only
positions in which VA and VB differ. Since V is bijective, the opposite implica-
tion, VA, VB ∈ {0, 1}n : d∆(V −1(VA), V −1(VB)) = dH(VA, VB), is also true. This
completes the proof.

Example Let A = {a, b} and B = {b, c, d}. Their offspring O obtained by
geometric crossover under symmetric distance are {b} ⊆ O ⊆ {a, b, c, d}. Dually,
for the set A the vector of the values of the indicator function is VA = (1, 1, 0, 0)
and for B is VB = (0, 1, 1, 1). The set of their offspring under traditional crossover
is the schema (∗, 1, ∗, ∗). For the duality, these offspring vectors correspond to
the offspring sets above via their indicator functions as it is easy to verify.

5.2 Interesting uses of the duality

Thanks to these results we can use the two representations interchangeably. In
particular, we can use the most convenient representation, knowing that the
search done in one space is equivalent to the search in the other. For example,
it is more convenient to work with partitions of both variable structure or fixed
structure in their dual spaces based on permutations with repetitions because
the constraints of mutual exclusion, full covering and structure preserving are
much easier to deal with in operators defined on this space. We have exploited
this property in previous work on the graph partitioning problem [4]. On the
other hand, it may be more convenient to work with sets of small size (small
compared to the size of the universal set) rather than on their dual vectors of
fixed size (all the same size of the universal set).

6 Conclusions

We have considered three related representations – sets, multisets and partitions
– in their variable size and fixed size variants.



For the variable size case we have considered the ins/del edit distance, that
for sets corresponds to the symmetric distance, and its extensions to the case of
multi-sets and partitions, for which it becomes the move edit distance.

We have shown that the geometric crossovers associated to the ins/del edit
distance for sets is a crossover that requires offspring to be supersets of the
intersection of the two parent sets and subsets of their union. The geometric
crossovers associated to the ins/del distance for multisets and partitions are
simple extensions of the inter/union crossover for sets.

For the fixed size case we have considered the substitution edit distance,
that is equivalent to the ins/del edit distance when restricted to set of fixed size.
Therefore, geometric crossover under substitution edit distance is a restricted
version of the inter/union crossover where all offspring are required to have
fixed size. The geometric crossover associated to multisets and partitions for the
fixed size case are analogous to the restricted inter/union crossover for sets.

We have proved a duality between geometric crossover for sets, multisets and
partitions on the one hand, and binary strings, integer vectors, and permutations
with repetitions on the other. Interestingly, this allows the interchangeable use of
representations and operators, being equivalent in terms of search, but exploiting
their differences in terms of expressing constraints.
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Table 1. Crossovers dual equivalence

PRIMAL DUAL

Representation: Sets - variable size Binary vectors
Map: Indication function
Distance: Ins/del edit distance Hamming distance
Crossover: Inter/union crossover Traditional crossover

Representation: Sets - fixed size Binary permutations with repetitions
Map: Indication function
Distance: Substitution edit distance Permutation swap edit distance
Crossover: Inter/union crossover Sorting crossover by swap

restricted to fixed size

Representation: Multisets - variable size Integer vectors
Map: Multiplicity function
Distance: Ins/del edit distance Absolute value distance
Crossover: Inter/union crossover Integer blending crossover

Representation: Multisets - fixed size Integer distributions
Map: Multiplicity function
Distance: Substitution edit distance Absolute value distance
Crossover: Inter/union crossover Integer blending crossover

restricted to fixed size restricted to constant sum

Representation: Partitions - variable structure Multary vectors
Map: Partition label function
Distance: Partition move edit distance Hamming distance
Crossover: Partitionwise inter/union crossover Traditional crossover

restricted to mutual exclusion
restricted to complete covering

Representation: Partitions - fixed structure Permutations with repetitions
Map: Partition label function
Distance: Partition swap edit distance Permutation swap edit distance
Crossover: Partitionwise inter/union crossover Sorting crossover by swaps

restricted to mutual exclusion
restricted to complete covering
restricted to same structure

Representation: n-partitions of set size n Permutations
Map: Partition label function
Distance: Partition swap edit distance Permutation swap edit distance
Crossover: Partitionwise inter/union crossover Sorting crossover by swaps,

restricted to mutual exclusion PMX, Cycle crossover
restricted to complete covering
restricted to single element subsets


