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ABSTRACT
In this paper we investigate a form of selection where parents
are not selected independently. We show that a particular
form of dependent selection, linear selection, leads a genetic
algorithm with homologous crossover to become very similar
to a genetic algorithm with standard (independent) selection
and headless chicken crossover, i.e., it turns crossover into a
type of mutation. In the paper we analyze this form of selec-
tion theoretically, and we compare it to ordinary selection
with crossover and headless chicken crossover in real runs.

1. INTRODUCTION
Different selection methods have been analyzed mathe-

matically in depth in the last decade or so. The main em-
phasis of previous research has been the takeover time [4],
i.e., the time required by selection to fill up the population
with copies of the best individual in the initial generation,
and the evaluation of the changes produced by selection on
the fitness distribution of the population [2, 3, 7]. In this
second line of research, the behavior of selection algorithms
is characterized using the loss of diversity, i.e., the propor-
tion of individuals in a population that are not selected.

Starting from some simple observations on the sampling
behavior of tournament selection, in [9, 8] it was shown that
this is a possible source of inefficiency in EAs. This previ-
ously unknown phenomenon has very deep implications, its
analysis effectively led to a completely new class of EAs – the
backward-chaining EA – which is more powerful and closer
in spirit to classical AI techniques than traditional EAs. In
addition, this analysis was used in [13] to define new forms
of tournament selection that would not suffer from the this
phenomenon.

These theoretical studies are very comprehensive and ap-
peared to have completely characterized selection, funda-
mentally making it a largely understood process. How-
ever, all theoretical studies have considered forms of selec-
tion where the parent individuals are selected independently.
Naturally, some forms of selection where this is not the case
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have been considered by practitioners. For example, [12]
introduced the notion of tournament selection without re-
placement, which effectively induces a small dependency in
the selection of individuals. Here, however, we want to study
much more extreme forms of dependent selection. In par-
ticular, we are interested in understanding the effects of the
interactions between such forms of selection and crossover
operators.

When crossover is used, two parents need to be selected.
These are typically drawn independently, so the probability
of a pair of parents (x, y), is given by the product of their
selection probabilities, i.e., p(x, y) = p(x)p(y). In some se-
lection schemes, such as the one originally proposed in [5],
one parent is selected based on fitness, while the second is
randomly picked from the population. In this case, the prob-
ability of selecting it is simply given by the frequency, φ(x),
of such individual in the population, so p(x, y) = p(x)φ(y).
However, in principle, any assignment of p(x, y) such that
p(x, y) ≥ 0 and

P

x

P

y
p(x, y) = 1 would be an accept-

able form of joint parent selection. Any such form of selec-
tion would also be implementable, albeit not very efficiently.
Given a population P one would just need to create a new
population, P 2, of pairs of individuals (effectively the Carte-
sian product of P with P ), associate to each pair a virtual
fitness p(x, y), and then select pairs via roulette wheel selec-
tion.

Not all such forms of joint selection would make sense,
however. So, it is natural to start by asking whether mean-
ingful ways of performing the joint selection of two parents
based on p(x), p(y), φ(x) and/or φ(y) other than via a prod-
uct formula. In this paper we study the following forms:

• The simplest of such combinations is where a pair of
parents is selected based on the straight average of
the selection probabilities of the parents. That is we
consider the case

p(x, y) =
p(x) + p(y)

2
· α−1 (1)

where α is a normalization factor such that
P

x,y
p(x, y) = 1. We will term this form of selection

pure linear selection.

• As we will explain in the following section we also con-
sider a second form of linear selection, semi-linear se-
lection, which has the following form:

p(x, y) =
p(x) + p(y)

2α
δxδy (2)



where δx is 1 if x is in the population and 0 otherwise
(likewise for δy).

• We also consider

p(x, y) =
F (x) + F (y)

2
φ(x)φ(y) · α−1 (3)

where, again α is a normalization factor, and F (x)
is a function of the fitness of individual x (but does
not necessarily coincide with it). Likewise for F (y).
We call this form of selection Holland’s selection for
reasons that will become clear later.

Surprisingly, as we will see in the following, we find that
linear and semi-linear selection lead a genetic algorithm with
ordinary (homologous) crossover to become very similar to
a GA with standard (independent) selection and headless
chicken crossover [6, 1]. Headless chicken crossover is a form
of crossover where an individual selected from the popula-
tion is crossed-over with a randomly created individual. So,
with most forms of crossover used in standard GAs oper-
ating on fixed-lenght strings (e.g., uniform crossover, one-
and multi-point crossover, etc.), each application of head-
less chicken crossover introduces 50% random material in
the offspring. That is, unexpectedly linear selection effec-
tively transforms crossover into a type of adaptive macro
mutation.

Holland’s selection, instead, is surprising for a different
reason. It is provably identically to the selection method
used by Holland [5] who, in a selecto-recombinative GA, se-
lected the first parent based on fitness and chose the second
parent randomly and uniformly from the population. This
is in fact the reason why we gave this name to the selection
scheme in Equation (3).

This article is organized as follows. In Section 2 we pro-
vide a more precise definition of linear and semi-linear se-
lection and Holland’s selection and derive exact evolution
equations that describe the dynamics of a system with such
selections and crossover in the infinite population limit. We
then compare these with corresponding equations for nor-
mal selection and for headless chicken crossover in Section
3. This allows us to identify efficient algorithms to imple-
ment linear selection. In Section 4 we study the behavior
of different forms of selection both by performing real runs
and by integrating the infinite population evolution equa-
tion. Finally, Section 5 presents some conclusions and sug-
gests possible avenues for future work.

2. LINEAR AND HOLLAND’S SELEC-
TION

It is well known (e.g., see [14]), that in the infinite popu-
lation limit, a genetic system with with selection and 100%
crossover (i.e., pxo = 100%), but in the absence of mutation
(i.e., pm = 0%), is governed by the following equation

φ(z, t + 1) =
X

x,y∈Ω

p(x, y, t)p(x, y → z) (4)

where φ(z, t + 1) represents the frequency of individuals of
type z in the next generation (t + 1), Ω is the search space,
p(x, y, t) is the probability of selecting parents x and y at
generation t, and p(x, y → z) is the probability of obtaining
an offspring of type z when crossing-over parents of types x

and y.1

We could trivially specialize this equation to the form of
linear selection mentioned in Section 1 by setting

p(x, y, t) =
p(x, t) + p(y, t)

2α(t)
(5)

where p(x, t) and p(y, t) represent the selection probabilities
for the parents at generation t if selected independently by
normal selection. This would lead to the equation

φ(z, t + 1) =
X

x,y∈Ω

p(x, t) + p(y, t)

2α(t)
p(x, y → z). (6)

It is, however, immediately apparent that this form of selec-
tion presents an unusual feature: p(x, y, t) may be non-zero
even if one of the parents, say y, is absent from the popu-
lation. This is because if, for example, p(y) = 0, Equation

(5) transforms into p(x, y, t) = p(x,t)
2α

, which will be non-zero
whenever p(x, t) is non-zero.

We can correct this behavior by modifying our definition
of linear selection. One way to achieve this is to ensure that
p(x, y, t) is zeroed whenever either x or y are not in the
population. This is what led to the definition of semi-linear
selection in Equation (2). There, δx(t) indicates whether
or not φ(x, t) is zero. Note that in many forms of selection
(such as fitness proportionate selection, tournament selec-
tion and rank selection) p(x, t) is zero if and only if φ(x, t) is
zero, and, so, effectively δx(t) is also an indicator of whether
or not p(x, t) is zero. That is, in non-greedy forms of selec-
tion have the property p(x, t) = 0 ⇐⇒ φ(x, t) = 0. In all
forms of selection, however, φ(x, t) = 0 =⇒ p(x, t) = 0.
In other words, δx(t) = 0 =⇒ p(x, t) = 0. We will use
this property later in this section to simplify the evolution
equation for a GA under semi-linear selection and crossover.

For semi-linear selection we obtain

φ(z, t+1) =
X

x,y∈Ω

p(x, t) + p(y, t)

2α(t)
δx(t)δy(t)p(x, y → z) (7)

Expanding we obtain

φ(z, t + 1) =
1

2α(t)
[

X

x,y∈Ω

p(x, t)p(x, y → z)δx(t)δy(t)

+
X

x,y∈Ω

p(y, t)δx(t)δy(t)p(x, y → z)]
(8)

With a suitable renaming of summation variables and gath-
ering of terms we then obtain

φ(z, t + 1) =
1

2α(t)

X

x,y∈Ω

p(x, t)

[p(x, y → z) + p(y, x → z)]δx(t)δy(t)

(9)

Note that, for non-greedy selection, δx(t) = 0 whenever
p(x, t) = 0 and δx(t) = 1 whenever p(x, t) > 0. Therefore
δx(t) can be omitted from Equation (9). Also, note that if
crossover is symmetric,2 then p(x, y → z) = p(y, x → z).

1Naturally, different crossover operators lead to different
p(x, y → z) distributions. Since the theory presented in
this paper applies to all, here we will not provide a more
detailed characterization of this distribution.
2We obtain a symmetric crossover, if, for example, we select
the parents and then randomly choose which parent to con-
sider as the first and which as the second, or if we generate
two offspring and then randomly select which one to return.



So, in these fairly general conditions Equation (9) simplifies
to

φ(z, t + 1) =
1

α(t)

X

x∈Ω

p(x, t)
X

y∈Ω

p(x, y → z)δy(t) (10)

We are now in a position to compute the value of the
normalization constant α(t). We start by summing both
sides of Equation 10 over all values of z in Ω obtaining

X

z∈Ω

φ(z, t + 1) =
X

z∈Ω

1

α(t)

X

x∈Ω

p(x, t)
X

y∈Ω

p(x, y → z)δy(t)

(11)
which can be transformed into

1 =
1

α(t)

X

x∈Ω

p(x, t)
X

y∈Ω

δy(t)
X

z∈Ω

p(x, y → z) (12)

since
P

z∈Ω φ(z, t) = 1 for any t by definition. Noting that
P

z∈Ω p(x, y → z) = 1 since crossover must always produce
some element of Ω irrespective of the choice of parents x and
y. So,

α(t) =
X

x∈Ω

p(x, t)
X

y∈Ω

δy(t) (13)

The two summations in this equation commute. Noting that
P

x∈Ω p(x, t) = 1 we then obtain

α(t) =
X

y∈Ω

δy(t) (14)

That is α(t) is the number of types, i.e., distinct individuals,
in the population at generation t, which not be confused
with the number of individuals in the population.

So, Equations (2) and (14) completely define linear selec-
tion, while the following equation describes the dynamics of
a system with linear selection and crossover:

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

pδ(y, t)p(x, y → z) (15)

where

pδ(y, t) =
δy(t)

P

w∈Ω δw(t)
. (16)

Following similar calculations, for Equation 6, one can
prove that, for symmetric crossover,

α(t) = |Ω| (17)

and

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

1

|Ω|
p(x, y → z) (18)

Similarly one can transform Equation (3), obtaining, for
symmetric crossover,

φ(z, t + 1) =
1

α(t)

X

x,y∈Ω

F (x)p(x, y → z)φ(x, t)φ(y, t) (19)

where

α(t) =
X

x∈Ω

F (x)φ(x, t) (20)

So, effectively we have

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

φ(y, t)p(x, y → z) (21)

where p(x, t) = F (x)φ(x)/
P

x∈Ω F (x)φ(x, t) is effectively a
form of fitness proportionate selection where the function F
is interpreted as a fitness function (although F may be a
complicated function of the actual fitness f).

In the next section we study Equations (15), (18) and
(21), and compare them to the evolution equations for stan-
dard selection with crossover, headless-chicken crossover and
mutation.

3. THEORETICAL COMPARISON WITH
OTHER OPERATORS

It is instructive to compare Equations (15) and (18) with
the evolution equations for a GA with standard selection
and crossover and for a GA with standard selection and
headless chicken crossover. In both cases, for simplicity we
will assume that genetic operators are applied with 100%
probability.

In normal selection each parent is selected independently
therefore p(x, y, t) = p(x, t)p(y, t), and, so, the infinite pop-
ulation model for a selecto-recombinative generational GA
becomes

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

p(y, t)p(x, y → z) (22)

If, instead the second parent is randomly drawn from the
population (as in Holland’s work), we have p(x, y, t) =
p(x, t)φ(y, t), and, so, the infinite population model for a
selecto-recombinative generational GA becomes

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

φ(y, t)p(x, y → z) (23)

The evolution equation for a GA with standard selection
and headless chicken crossover were derived [10]. This is

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

π(y, t)p(x, y → z) (24)

where π(y, t) is the probability of generating a random in-
dividual of type y at generation t. Since normally the algo-
rithm used to initialize the population is also used to gener-
ate the random parent in headless-chicken crossover, in fact,
π(y, t) is not a function of t. Also, in most GAs the initial-
ization algorithm draws individuals randomly and uniformly
in Ω. So, π(y, t) = 1

|Ω|
. Under these conditions we then have

φ(z, t + 1) =
X

x∈Ω

p(x, t)
X

y∈Ω

1

|Ω|
p(x, y → z) (25)

This equation is identical to the evolution equation for a
GA under pure linear selection (Equation (18)). That is,
a GA with normal selection and headless-chicken crossover
is identical to a GA with pure-linear selection and ordinary
crossover. We can also see that Equation (21) and Equa-
tion (23) are identical. However, also the similarity between
Equations (22) and (25) and Equation (15) is striking, the
only difference between these equations really being whether
pδ(y, t), p(y, t), φ(y, t) or 1

|Ω|
is used. This allows us to better

understand semi-linear selection.
Firstly, we can interpret semi-linear selection as a form

of independent selection, but one where the two parents are
chosen using different selection schemes: the first is selected
with whatever the selection algorithm is, leading to the term
p(x, t) in Equation (15); the second is independently selected



with a new form of selection, which leads to the term pδ(y, t).
What form of selection could this be? We note that if we
selected a type randomly and uniformly out of those present
in the population,3 each type would be selected with a prob-
ability of 1 over the total number of types. However, this is
exactly what Equation (16) computes. So, linear selection
corresponds to selecting the first parent using ordinary se-
lection of individuals and the second using random selection
of types. This gives us also a way of implementing linear
selection efficiently, without requiring the creation of a pop-
ulation P 2 of all possible pairs of individuals, as suggested
in Section 1.

Secondly, we notice the similarity between |Ω|, the number
of types in the search space, and the denominator of Equa-
tion (16), α(t) =

P

y∈Ω δy(t), which computes the number

of types in the population. Although it is unlikely that α(t)
will ever approach |Ω| in any realistic situation, in a large
and diverse population the selection of random types as sec-
ond parents to use in crossover leads to the introduction of
considerable variation in the offspring. In such conditions,
semi-linear selection effectively turns into pure-linear selec-
tion, and so it turns crossover into a form of headless chicken
crossover (i.e., an adaptive macro mutation).

4. RESULTS
In this section we study the behavior of linear selection

both by performing real runs and by integrating infinite pop-
ulation evolution equations. Because pure linear selection
with crossover behaves exactly as standard selection with
headless chicken crossover, we will treat these two cases as
one. So, whenever we refer to linear selection in this section,
we will mean semi-linear selection.

We consider two problems, both are functions of unitation.
The first is the Zero-max problem – a version of One-max
where the objective is to maximise the number of zeros. The
second is the OneMix problem, recently introduced in [11].
This function is a mixture of the OneMax problem and a Ze-
roMax problem. Like these it is a function of unitation, u,
which represents the number of 1s in a string. For unitation
values bigger than ℓ/2, where ℓ is the bit-string length, our
new function is just OneMax. For lower unitation values, it
is OneMax if u is odd, a scaled version of ZeroMax, other-
wise. The new function, which we call OneMix, is formally
defined as

f(u) =

8

>

<

>

:

(1 + a)(ℓ/2 − u) + ℓ/2 if u is even

and u < ℓ/2

u otherwise,

where a > 0. With this constraint we ensure that the global
optimum is the string 00 · · · 0.

We chose these problems because they have radically dif-
ferent features. ZeroMax is an “easy” problem where both
crossover type and mutation type search operators can do
well, while the OneMix problem is known to be deceptive
[11] for a GA with crossover while it is not for a GA based
on mutation.

4.1 Integration of infinite population equa-
tions

3This is not the same thing as selecting a random individual
from the population, which would lead to a term of the form
1/M where M is the population size.
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Figure 1: Differences between the value of φ(z, t) pre-
dicted integrating Equation (10) and that measured
in one run of the GA with linear selection.



To corroborate Equation 10, the infinite population dy-
namics obtained by integrating such an equation was com-
pared against the behavior shown in real runs of the a GA
with linear selection and crossover on the following version
of OneMix

f(u) = 1.3ℓ−

(

0.8ℓ − 1.6u + ℓ/2 if u is even and u < ℓ/2

u otherwise

(26)
where ℓ = 8. We use the same settings used in [11] but we
treat it as a minimization problem. The population size was
very large, 15, 000, compared to the search space size, 256,
so as to well approximate the infinite population behavior.

As an illustration, Figure 1 presents the differences be-
tween the frequency of strings of each type, φ(x, t), esti-
mated using Equation (10) and that measured in a run of
the algorithm, at generations 1, 3, and 8. The x axis rep-
resents the individual while the y axis represents the differ-
ences i.e. φEquation−φrun. It is apparent how the predictions
are exact within experimental errors.

4.2 Experiments
The behavior of a GA with linear selection and crossover

was compared against a GA with headless chicken crossover,
a GA with normal selection and crossover, and a GA us-
ing Holland’s selection and crossover. The comparison was
made on the ZeroMax and OneMix (Equation 26) problems.

We used the following settings: chromosome length ℓ =
200, population size 500, 10 independents runs and the
crossover probability was varied from 10% to 100% in steps
of 10% (i.e., 100%, 90% . . . 10%).

Figures (2), (3), (4), and (5) show the results for the Ze-
roMax problem for the normal selection, Holland’s selec-
tion, linear selection, and headless chicken crossover, respec-
tively. Only the probabilities pxo = 10%, pxo = 5%, and
pxo = 100% were plotted with the purpose of making the
figures more understandable.

Figure 2 shows the results for the linear selection. It is ob-
served that probabilities pxo = 50% and pxo = 100% exhibit
a similar performance and it is the best performance within
the four selection schemes. Figure 3 presents the results
for Holland’s selection. In this case the best performance
is obtained using pxo = 50%. The results for the linear
selection can be seen in Figure 4. It is observed that the
best behavior is obtained with pxo = 50% and pxo = 10%.
Finally, Figure 5 presents the performance of the headless
chicken crossover. It is noted that GAs with probabilities
pxo = 100% and pxo = 50% are making no progress in the
search because of the high rate of crossover which effectively
can be interpreted as high rate of mutation.

Comparing figures (2), (3), (4), and (5) it is observed that
the best performance is obtained in the normal selection and
the worst is the headless chicken crossover. It can be seen
that linear selection with pxo = 100% and Holland selection
with pxo = 100% have a similar behavior. Furthermore,
linear selection with pxo = 50% and pxo = 10% and Holland
selection with pxo = 10% also exhibit a similar performance.

The results obtained in this experiment confirm what we
have expected based on the theory presented in the previous
section.

For the OneMix problem the crossover probability was
varied from 100% to 20% by a step of 10% and from 20%
to 10% by a step of 2% (i.e. 20%, 18% . . . 10%). This was
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Figure 4: ZeroMax Problem Linear Selection.
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Figure 5: ZeroMax Problem Headless Chicken
Crossover.

done to find the value of pxo where there is the shift in
convergence from the global optimum to the local optimum.
The results are shown in Figures (6), (8), and (9). The
plots present only the probability pxo = 90%, pxo = 50%,
pxo = 30%, pxo = 18%, pxo = 16%, pxo = 14%, pxo = 12%,
and pxo = 10% in order to make them more understandable.

Figure 6 shows the results for the normal selection. With
pxo = 10% the algorithm converges towards the optimal
unitation class. However, crossover rates pxo = 18%, pxo =
16%, and pxo = 14% make the algorithm stay around uni-
tation class 100 (the one of the initial population) showing
almost no progress in the search. Rates pxo > 18% have
a tendency of driving the algorithm towards unitation class
200 while probabilities pxo < 14% drive it towards unitation
class 0. The runs with pxo = 90% and pxo = 10% present the
highest tendencies towards u = 200 and u = 0, respectively.
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Figure 6: OneMix Problem Normal Selection.

The results for the Holland’s selection are presented in
Figure 7. It is observed that probabilities pxo = 10%, pxo =
12%, pxo = 14%, and p18% are driving the algorithm to look
below the unitation class 100 and probabilities pxo = 14%
and pxo = 12% have a tendency of driving the algorithm

towards the 0 unitation class. All other probabilities make
the algorithm look above the 100 unitation class which is a
local optimum.
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Figure 7: OneMix Problem Holland Selection.

Figure 8 shows the results for the linear selection. Prob-
abilities pxo = 50% and pxo = 12% are the ones that show
the highest drive towards unitation classes 0 and 200, respec-
tively. All runs with pxo > 16% have a tenendency towards
the 200 unitation class, while for pxo < 16% tends to the
100 unitation class.
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Figure 8: OneMix Problem Linear Selection.

Figure 9 shows the results for the Headless Chicken
Crossover. Here, there is no crossover rate that drives
the population towards the 200 unitation class, but rates
pxo ≥ 30% always keep the population around the 100 uni-
tation class, showing no improvement in the search.

Comparing Figures (6), (7), (8), and (9) it is observed
that the best performance is obtained by the linear selec-
tion with pxo = 12% and that the worst behavior is found
in the normal selection with pxo = 90%. It is also noted
that the headless chicken runs were never attracted to the
local optimum which is consistent with the hypothesis that
OneMax is deceptive for crossover.
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Figure 9: OneMix Problem Headless Chicken
Crossover.

Also It is observed that more settings of the headless
chicken crossover were attracted towards the 0 unitation
class. While normal selection presented the fewer settings
towards the 0 unitation class and instead it was more at-
tracted to the 200 unitation class.

5. CONCLUSIONS
We have considered forms of selection where parents are

not selected independently. The studied theoretically three
different forms of selection — pure linear selection, semi-
linear selection and Holland’s selection — in conjunction
with crossover and found, surprisingly, that two such forms
actually correspond to a preexisting form of selection (orig-
inally defined by Holland) with crossover and standard se-
lection with headless-chicken crossover. One form, semi-
linear selection, where the parents are jointly selected with
a probability proportional to the average of their selec-
tion probabilities, however, provided, in conjunction with
crossover, novel features that are somehow in between those
of a crossover-based and a mutation-based GA with normal
selection.

Experimental results have shown that semi-linear selec-
tion behaves in the middle between algorithms driven by
crossover or those driven by mutation. This results con-
firmed the findings of the theory.
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