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JorgeCervantesO@aim.com

2 Centre for Informatics and Systems of the University of Coimbra
Polo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

moraglio@dei.uc.pt

Abstract. Motivated by a practical interpretation of the Geiringer’s
theorem, we define the class of “Pure Crossovers” independently of the
solution representation used and explain why they are important for both
theorists and practitioners. We then give a geometric characterization of
this class of operators and prove some general properties common to all
pure crossovers.
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1 Introduction

Crossover is the most complicated operator to understand from a theoretical
point of view compared to selection and mutation. What are the effects of
crossover? What are the principles underlying a certain observed behaviour in
an EA? What is the theory that can be used to unify criteria and analyze EAs?

One key factor that is needed is a clear classification of genetic operators and
their associated characteristic effects on the evolutionary process. In this direc-
tion, the work of Moraglio and Poli [3] [4] sets a classification of crossovers in
geometric and non-geometric. Interestingly, this classification is representation-
independent and relies on the notion of inbreeding properties, which are proper-
ties that characterize recombination operators by stating what offspring may or
may not be obtained as a result of recombining close relative solutions, such as,
for example, parents and offspring. Many pre-existing recombination operators
for the most frequently used representations belong to the class of geometric
crossovers [5].

Motivated by a practical interpretation of the Geiringer’s theorem for finite
populations, in this work we extend this classification and define a new subclass
of geometric crossovers, the Pure Crossovers. We analyze the inbreeding prop-
erties of crossovers of this kind and, more importantly, describe why it is good
for theorists and practitioners to know these properties.
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2 The Practical side of Geiringer’s Theorem

According to Geiringer’s theorem [1], (see also [2]), the effect on an infinite
population with fixed length genomes of a crossover operator (without mutation
or selection) that produces offspring at generation t by taking, for each position
i of their genome, only one of the genes in position i of either of its parents, is
to make the proportions PI of every configuration I tend to P ∗

I
given by

P ∗
I = lim

t→∞
PI(t) =

∏

i

PIi
(0) (1)

where PIi
is the proportion of the population having the ith bit equal to the ith

bit of I.
Given an initial distribution of an infinite population and applying only such

a recombination operator, this formula provides the asymptotical proportions of
every schema I in terms of its most basic components which are the proportions
of order 1 schemata. For instance, if I = ∗ ∗ 101 then

P ∗
I = P∗∗1∗∗(0)P∗∗∗0∗(0)P∗∗∗∗1(0) (2)

considering that P∗∗∗∗∗(0) = 1. Note that these asymptotic proportions depend
only on the initial proportions of the order 1 schemata.

If one wants to use in a practical way (finite populations) the theoretical
view of Geiringer’s theorem then the crossover operator must keep every PIi

constant over time because this theorem is expressed in terms of the initial
values of each PIi

and any change to them implies a change in the asymptotic
distribution of the population which is contradictory with the asymptotic claim
of Geiringer’s theorem. This is possible, for instance, when every pair of parents
produce two offspring by taking always, for each gene position, both parents’
genes and placing them on both offspring and then both parents are replaced by
both offspring If formula 1 does not hold it means that the crossover operator
induces some effects that produce changes in at least one of the PIi

. These
effects can be compared to either selective or mutational effects. Selective effects
would make the PIi

tend to either 1 or 0, i.e., convergence. Mutational effects
would make all PIi

tend to 0.5 which is the value one would expect in a random
population, i.e., divergence.

Above, we have seen an example of such an operator for binary strings. More
in general, what kind of crossover operators have this non-selective and non-
mutational property? It is clear that the specific representation used determines
the form of the corresponding crossover. This imposes severe difficulties on iden-
tifying a general class of operators with this property because representations can
vary from one application to another. Below, we give a first tentative definition
of a general class of crossovers that have no selective or mutational effects inde-
pendently of the representation one uses. In the remainder of the paper, we will
make this definition exact. The advantage of having a representation indepen-
dent definition is clear, one could, in principle, examine any particular operator
on a particular representation and check if it belongs to this class. Then, if it
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belongs, it is reasonable to conjecture that a representation-independent gener-
alization of the Geiringer’s theorem would hold and one could analyze the effects
of selection, mutation and crossover separately because the crossover operator
contains no other effect than that stated in Geiringer’s Theorem. We call this
class of crossover operators “Pure Crossovers”.

Definition 1. (Pure Crossovers (tentative definition)) A crossover operator is
Pure if its effects on a population are exclusively recombinative, this is, without
any selective (convergence) nor mutational (divergence) effects.

Above, we have explained what selective and mutational effects are for the
specific case of binary strings. However, for our tentative definition of pure
crossovers to become exact and truly representation-independent, we need to
characterize, in a representation-independent fashion, the notions of selective
and mutational effects. Also, in order to relate them to a possible representation-
independent generalization of the Geiringer’s theorem, we need to define in a
representation-independent way what we mean by “proportion of the population
having the ith bit equal to the ith bit of a binary string I”. Before proceeding
with this, we explain, in the next section, why pure crossovers are valuable for
both theoreticians and practitioners.

3 Why Pure Crossovers?

The definition of pure crossovers naturally allows for a clear-cut distinction of
crossover (mixing), mutational (variation) and selective (fixation) effects on the
basis of the convergence properties of the operator on the dynamic of the popula-
tion: (i) pure mixing effects are equated with a population without convergence
or divergence (ii) pure variation effects are equated with a divergent population,
and (iii) pure fixation effects are equated with a convergent population.

Non-pure crossovers introduce a bias that can be rendered as a selective
and/or mutational bias in the effects of crossovers. These induced effects are
noisy, are not controlled by the designer of the algorithm and can hardly be
measured separately. This makes the process much more unpredictable and does
not allow for a precise analysis of the principles underlying a certain observed
behaviour.

If a pure crossover is used, then any selection effect is due only to the selection
operator being used. The same for mutation effects. This makes it easier to study
and control each operator’s effects separately with the immediate consequence
that these effects would be better understood by theorists who would be able
to create a better evolutionary theory and practitioners who would be able to
better adapt their algorithms to their own needs.

Pure crossovers have another interesting and useful property. When a GA
reaches a steady state means that selective and mutational effects cancel and
there is no convergence or divergence anymore. This situation is not altered by
the action of a Pure crossover. Under these circumstances, Geiringer’s theorem
still applies, even in the presence of the other operators. Thus one is able to
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calculate the (asymptotic) expected proportion of each genome generated by
recombination for the next generation.

There are two ways to proceed in order to generalize the notion of pure
crossover beyond the binary representation and in a representation-independent
way. 1) The first one consists in generalizing the ability of pure crossover of
keeping the proportions of some representation-independent generalized notion
of order 1 schemata constant over time. 2) The alternative is to generalize the
ability of pure crossover of keeping the population in a non-convergent non-
divergent state. The first generalization can be naturally used as a starting point
to generalize the Geiringer’s theorem to any solution representation. The second
generalization links naturally with the notion of geometric crossover. The two
alternative generalizations are not mutually exclusive. They meet nicely as we
will show in section 5. In the following we present a general, representation-
independent definition of pure crossover based on the first alternative.

4 Fixed crossovers

Pure crossovers are inherently linked with the collection of sets they keep the
proportions in the population constant over time. Therefore, we need to charac-
terize formally this collection of sets.

Definition 2. (Bipartition structure) Let S be a set of points (a search space
of possible solutions). We say that the collection of sets B ⊆ 2S is a bipartition
structure on the set S if for any set i ∈ B also the complement of i with respect
to S belongs to B, which is ī ∈ B.

In other words, a bipartition structure B is a set of subsets i of S where these
subsets of S are always accompanied by their complementary set ī with respect
to S. B can be seen as a list (exhaustive or not) of different ways to partition S

in two subsets i and ī.

Definition 3. (Proportion of a set) Let S be a set of points (a search space of
possible solutions), let P ⊆ S be a population of points and let i be any subset
of S. The proportion of i in P is the number of points of P which are also in i

over the number of points in P , which is Pi = |i∩P |
|P | .

The previous definition naturally extends to the case in which the population
P is a multi-set. Notice that the proportion of the complement of i with respect
to S is Pī = 1 − Pi because each point in the population belongs either to i or
to ī.

Definition 4. (Fixed-proportions population) A population has fixed-proportions
with respect to a bipartition structure B, if the proportion Pi of any set i ∈ B
remains constant over time.

Notice that a fixed-proportions population is not necessarily neither non-
convergent nor non-divergent with respect to any metric. We make precise the
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notion of convergence in the next section. We will also see that when the biparti-
tion structure is the set of all metric half-spaces for some metric, then the notion
of non-divergent non-convergent population becomes equivalent to the notion of
fixed-proportions population.

Definition 5. (Fixed Operator) A genetic operator is Fixed if, acting alone,
it makes the population remain fixed-proportions over time with respect to a
bipartition structure B.

Notice that the property of being Fixed is relative to the structure B. On
two different bipartition structures, the same operator can be fixed with respect
to one and non-fixed with respect to the other.

In the following, we show how the definitions above generalize traditional
crossovers for binary strings.

Proposition 1. The set of all order 1 schemata of length n is a bipartition
structure on the set of all binary strings of length n.

This is easy to see. For example, the order 1 schemata 1*** and 0*** are
complementary and form a bipartition of all binary strings of size 4.

Proposition 2. Any mask-based crossover for binary strings which replaces 2
parents with 2 complementary offspring is a fixed crossover with respect to the
bipartition structure of order 1 schemata.

This is because offspring match exactly the same order 1 schemata their
parents match. Therefore, by replacing parents by their offspring, the proportions
of strings in the population matching any order 1 schema remain constant.

Proposition 3. For binary strings, Pure crossovers are fixed crossovers with
respect to the bipartition structure of all order 1 schemata.

5 Geometric Characterization of pure crossover

In the following we present a geometric characterization of pure crossover which
links it to geometric crossover.

Definition 6. (Metric segment) Given a metric space M = (S, d), the metric
segment between two points a, b ∈ S is the set [a, b]d = {c ∈ S|d(a, c) + d(c, b) =
d(a, b)}. The length of the metric segment [a, b]d is l([a, b]d) = d(a, b).

Proposition 4. (Multiple end-points of a segment) The points a and b are called
a pair of end-points of the metric segment [a, b]d. In general, a metric segment
can have more than a pair of end-points. So, for a segment [a, b]d two points
x, y ∈ S different from a, b may exist such that [a, b]d = [x, y]d.

Definition 7. (Metric convex set) Given a metric space M = (S, d), a set H ⊆
S is d-convex if ∀a, b ∈ H : H ⊇ [a, b]d.
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Definition 8. (Metric half-space) Given a metric space M = (S, d), a d-convex
set H is a d-half-space if its complement S \ H is also a d-convex set.

Definition 9. (Geometric crossover) A recombination operator OP : S×S → S

is a geometric crossover with respect to metric d, if ∀x, y ∈ S : OP (x, y) ⊆ [x, y]d.

Definition 10. (Segment-preserving crossover) A recombination operator OP :
S × S → (S × S) is a Segment-preserving crossover with respect to metric d, if
∀x, y ∈ S and ∀w, z such that OP (x, y) 7→ (w, z) : [x, y]d = [w, z]d.

Proposition 5. (Geometric schemata) (i) Convex sets are invariant under ge-
ometric crossover GX: for any convex set C if x, y ∈ C then GX(x, y) ⊆ C. (ii)
Metric convex sets for the Hamming distance coincide with traditional schemata.

Proposition 6. (Order 1 geometric schemata) Metric half-spaces for the Ham-
ming distance coincide with the traditional order 1 schemata.

Theorem 1. (Segment-preserving crossover with parent replacement Fixed with
respect to B) For any distance d, any Segment-preserving crossover that replaces
parents by their offspring is a Fixed crossover with respect to the bipartition
structure B consisting of the set of all metric half-spaces i under d.

Proof. We will prove this theorem by showing that a segment-preserving crossover
that replaces parents by their offspring applied to any two parents in a popula-
tion does not change the proportions Pi for any half-space i.

Case 1: both parents belong to the same half-space i. For any half-space i, if
a, b ∈ i then a, b do not belong to ī = S\i, which is the complementary half-space
to i. For the convexity of half-space i, since a, b ∈ i then their offspring x, y ∈ i.
Therefore, x, y do not belong to ī = S \ i.

Case 2: one parent belongs to the half-space i, the other parent belongs to the
complementary half-space ī. For any half-space i, if a ∈ i and b ∈ ī, then their
offspring x, y under pure crossover must be in complementary half-spaces, say
x ∈ i and y ∈ ī. This can be shown by contradiction as follows. For the definition
of pure crossover, we have [a, b] = [x, y]. From this we have that a, b ∈ [x, y]. If
both offspring x, y are in the same half-space i then, for the convexity of i, we
have [x, y] ⊆ i and, therefore, a, b ∈ i contradicting the hypothesis that parents
belong to complementary half-spaces.

So, for any half-space i, by applying a distance preserving crossover and
replacing parents by their offspring does not change the proportions Pi. Thus the
population is non-convergent and non-divergent and consequently this crossover
is Fixed.

Notice that a segment-preserving crossover can be fixed also with respect
to bipartition structures other than the one consisting of all half-spaces. For
example, a segment-preserving crossover is fixed with respect to all bipartition
structures consisting of only some half-spaces.
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6 Inbreeding properties of Fixed crossover

Inbreeding properties characterize recombination operators in a representation-
independent fashion by stating what offspring may or may not be obtained as a
result of recombining close relative solutions, such as, for example, parents and
offspring. In the following, we present the inbreeding properties that completely
characterize Fixed crossovers.

Definition 11. (Cycle inbreeding property) A recombination operator has the
cycle inbreeding property if for any choice of parents it is possible to obtain both
of them as a result of recombining their offspring.

X --- Y

|

-------

| |

W --- Z

|

-------

| |

X Y

Fig. 1. Simple cycle property

X --- Y

|

-------

| |

W1---Z1

|

-------

| |

W2---Z2

|

:

:

-------

| |

X Y

Fig. 2. General cycle property

The inbreeding diagram in Figure 1 illustrates the cycle inbreeding property:
the parents X and Y are recombined obtaining the offspring W and Z, which
when recombined can produce as their offspring X and Y .

The cycle inbreeding property can be generalized by requiring only that by
successive recombinations of offspring among themselves, eventually both their
parents can be obtained. This is illustrated in Figure 2: the parents X and Y are
recombined obtaining the offspring W1 and Z1, which when recombined produce
as their offspring W2 and Z2, which when recombined produce W3 and Z3, and
so on and so forth, until at a certain generation when X and Y can be generated
back. This property implies that at each generation the genetic material needed
to generate the original parents is not altered, while keeping the population size
constant too, so that any pair of parents can be eventually recovered.

Definition 12. (Invariant set) A set H is said to be invariant for a recombi-
nation operator OP if all offspring obtained by recombining elements of H are
also in H.
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Theorem 2. (Cycle inbreeding property and Fixed crossover) Every recombina-
tion operator OP with the general cycle inbreeding property is a fixed crossover
with respect to any bipartition structure made of invariant sets for the operator
OP .

Proof. A simple generalization of the proof of theorem 1 proves it.

7 Selection and mutation as non-fixed operators

Theorem 2 can be generalized to the case of a recombination operator of input
arity n and output arity n, which is for a recombination operator that takes n

parents in input and produces n offspring. The interesting aspect of this general-
ization is that it allows us to relate fixed crossover with selection and mutation.
We illustrate this in the following.

Firstly, let us consider selection. Selection can be seen as an operator which
acts at a population level: it takes all the population in input and produces a
new population in output of the same size, with the same members or with less
members, and with possibly changed frequency of each member. If the population
has size n, the selection operator has input arity n and output arity n.

Let us consider if the selection operator meets the conditions of theorem
2. Interestingly, the selection operator is invariant with respect to any set H ,
because if its input members (parents) belong to H , clearly its output members
(offspring) belong to H as well. Therefore, this condition holds. However, the
selection operator does not have the general cycle inbreeding property. This is
because by successive applications of selection to a population we may never
obtain the original population back. So, selection seen as an operator fails to be
fixed because of the lack of cycle property.

Let us now consider mutation. Mutation is a unary operator both in input
and in output: it takes one parent and it returns one offspring. By repeated
applications of mutation, we can obtain back the original parent from one of its
successors for any choice of the parent. So, the cycle property holds. However,
there are no invariant sets for (ergodic) mutation, because for any set H not
including all solutions, the mutation operator can with probability greater than
zero generate an offspring not in H . So, mutation fails to be fixed because of the
lack of invariant sets to it.

The interesting aspect of analyzing selection and mutation as fixed operators
is that they fail to be so for opposite reasons. Both, mutation and selection, are
not fixed operators since they necessarily change the proportions in the initial
population with respect to any proper bipartition structure.

Above we have seen how selection and mutation can’t be fixed operators,
only crossovers can. This suggests that any crossover that fails to be fixed must
have an intrinsic effect that equals either selection or mutation effects and, con-
sequently, can’t be Pure. (According to definition 1) Under this view, a non-pure
crossover can be modeled as a Pure crossover plus some amount of either selec-
tion or mutation accordingly. For the inbreeding properties of fixed crossover, a
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crossover operator must have the cycle property in order to be Fixed. The family
of sets this operator is fixed for is the family of sets for which it is invariant.

Proposition 7. Pure crossovers have the cycle inbreeding property.

Proposition 8. A class of crossovers which can concretely be characterized as
Pure is the class of segment-preserving crossovers with parent replacement, which
are both fixed with respect to the set of half-spaces associated with them and
(hence) geometric.

8 Convergence and pure crossover

Fixed crossovers, by definition, keep the proportions of some sets covering the
population constant over time. Therefore, intuitively, fixed crossovers may keep
the population in an orbit which is non-convergent and non-divergent. In the
following, we analyze formally how Pure crossovers relate with population con-
vergence.

Definition 13. (Non-divergence) A population P is said to be non-diverging
under the operator OP acting at a population level, if there is a metric d such
that the metric convex hull of P includes the metric convex hull of OP (P ), which
is if co(P ) ⊇ co(OP (P )).

When the inclusion between convex hulls is strict, the population is said to
be converging.

Definition 14. (Non-convergence non-divergence) A population P is said to
be non-convergent non-divergent under the operator OP acting at a population
level, if there is a metric d such that the metric convex hull of P equals the
metric convex hull of OP (P ), which is if co(P ) = co(OP (P )).

Theorem 3. (Segment preserving and non-convergence non-divergence) A pop-
ulation under Segment-preserving crossover replacing n parents by n offspring is
non-convergent non-divergent.

Proof. co(P ) is the union of all segments [a, b] with a, b ∈ P . Since the crossover
operator preserves all segments, co(P) = co(OP (P )).

Proposition 9. A population under fixed crossover can be diverging or converg-
ing depending with respect to which family of sets it is fixed.

Proposition 10. A population evolving under a crossover operator that is fixed
with respect to the bipartition structure of all metric half spaces is non-convergent
non-divergent.

Hence, a population under the Pure crossover in proposition 8 is non convergent
non-divergent.

Conjecture 1. A population evolving under any Pure crossover is non-convergent
non-divergent.
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9 Conclusions and future work

Crossovers have an intrinsic effect on populations that is not present in either
selection or mutation but it is possible that a crossover operator contains, be-
sides its recombinative effect, additional selective and/or mutational effects. So
we have defined the class of Pure crossovers which have exclusively recombina-
tive effects. This classification is important because with a non-pure crossover
one can not understand and effectively control how much they influence in the
evolutionary process. Hence, one has to be careful on the choice of a crossover
operator and, preferably, one should choose a Pure Crossover over non-Pure
ones. On the theoretical side, Pure Crossovers precisely characterize the class
of crossovers that will act exclusively as a recombinative force which must be
distinguished and studied separately from other forces such as selection and mu-
tation. This is very important given that the study of the dynamics of selection
and/or mutation is relatively easy compared to recombination. If one gets good
knowledge about them separately, then when used together, one should be able
to distinguish the effects that must be caused by recombination or by its in-
teractions with other operators. If a non-Pure Crossover is used one would see
effects of this operator that are similar to either selection or mutation besides
the effects of the selection or mutation operators and that would be confusing.
With the proposed definition of Pure crossovers one is able to classify existing
implementations of crossovers and design new ones taking into account their
very true purpose, mixing genetic material, and also to get rid of any effect that
could be accomplished by either selection or mutation in a controlled way.

In future work we are planning to formally generalize a form of Geiringer’s
theorem for finite populations that is representation-independent. We already
have all the necessary formal definitions to do it but further assumptions on the
bipartition structure used may need to be taken into account. Although intuition
leads to think it is possible, the proof may not be trivial.
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