
Product Geometric Crossover for the Sudoku Puzzle

Alberto Moraglio
Dept. of Computer Science
University of Essex, UK

amoragn@essex.ac.uk

Julian Togelius
Dept. of Computer Science
University of Essex, UK

jtogel@essex.ac.uk

Simon Lucas
Dept. of Computer Science
University of Essex, UK

sml@essex.ac.uk

Abstract— Geometric crossover is a representation-
independent definition of crossover based on the distance of
the search space interpreted as a metric space. It generalizes
the traditional crossover for binary strings and other important
recombination operators for the most used representations.
Using a distance tailored to the problem at hand, the abstract
definition of crossover can be used to design new problem
specific crossovers that embed problem knowledge in the
search. In recent work, we have introduced the important
notion of product geometric crossover that enables the
construction of new geometric crossovers combining pre-
existing geometric crossovers in a simple way. In this paper, we
use it to design an evolutionary algorithm to solve the Sudoku
puzzle. The different types of constraints make Sudoku an
interesting study case for crossover design. We conducted
extensive experimental testing and found that, on medium
and hard problems, the new geometric crossovers perform
significantly better than hill-climbers and mutations alone.

Keywords: Theory, Operators, Representations, Games,
Sudoku

I. I NTRODUCTION

Geometric crossover [6] is a representation-independent
recombination operator defined over the distance of the
search space. Informally, geometric crossover requires the
offspring to lie between parents.

Geometric crossover generalizes many pre-existing re-
combination operators for the major representations used
in evolutionary algorithms, such as binary strings [6], real
vectors [6], permutations [7] [9], syntactic trees [8] and
sequences [10].

They are defined in geometric terms using the notions of
line segment and ball. These notions and the corresponding
genetic operators are well-defined once a notion of distance
in the search space is well-defined. This way of defining
search operators as function of the search space is opposite
to the standard way [3] in which the search space is seen as
a function of the search operators employed. This viewpoint
greatly simplifies the relationship between search operators
and fitness landscape and has allowed us to give simple
rule-of-thumbsto build/choose crossover operators for the
problem at hand that are likely to perform well.

Using the abstract definition of geometric crossover and
choosing a distance firmly rooted in the syntax of the solution
representation as the basis for geometric crossover, one can
derive new crossovers for any representation.

So far we have proven that a number of important pre-
existing recombination operators for the most used repre-
sentations are geometric crossovers (geometricity by anal-
ysis). We have also applied the abstract definition of ge-

Fig. 1. Example of Sudoku puzzle.

ometric crossover to distances firmly rooted in a specific
solution representation and designed brand-new crossovers
(geometricity by construction). An appealing way to build
new geometric crossovers is starting from recombination
operators that are known to be geometric and derive new
geometric crossovers bygeometricity-preserving transforma-
tions/combinationsthat when applied to geometric crossovers
return geometric crossovers (geometricity by derivation).

The cartesian product of geometric crossover allows the
construction of new geometric crossovers combining preex-
isting geometric crossovers in a very simple way. Given a
number of representations and relative geometric crossovers,
the geometric crossover for the compound representation tak-
ing the shape of a vector of a number of basic representations
is the compound recombination operator that applies to each
representation in the vector its relative geometric crossover.
The distance associated with the product crossover is simply
the sum of the distances of the composing crossovers.

Sudoku is a logic-based placement puzzle. The aim of the
puzzle is to enter a digit from 1 through 9 in each cell of a
9x9 grid made up of 3x3 subgrids (called “regions”), starting
with various digits given in some cells (the “givens”). Each
row, column, and region must contain only one instance of
each digit. In fig 1 we show an example Sudoku puzzle.
Sudoku puzzles with a unique solution are called proper
sudoku, and the majority of published grids are of this type.

Published puzzles often are ranked in terms of difficulty.
Perhaps surprisingly, the number of givens has little or no
bearing on a puzzle’s difficulty. It is based on the relevance
and the positioning of the numbers rather than the quantity
of the numbers.

The 9x9 Sudoku puzzle of any difficulty can be solved
very quickly by a computer. The simplest way is to use some



brute force trial-and-error search employing back-tracking.
Constraint programming is a more efficient method that ap-
plies the constraints successively to narrow down the solution
space until a solution is found or until alternate values cannot
otherwise be excluded, in which case backtracking is applied.
A highly efficient way of solving such constraint problems
is the Dancing Links Algorithm, by Donald Knuth [4].

The general problem of solving Sudoku puzzles onn2×n2

boards of n x n blocks is known to be NP-complete [12].
This means that, unless P=NP, the exact solution methods
that solve very quickly the 9x9 boards take exponential
time in the board size in the worst case. However, it is
unknown weather the general Sudoku problem restricted
to puzzles with unique solutions remains NP-complete or
becomes polynomial.

Solving Sudoku puzzles can be expressed as a graph
coloring problem. The aim of the puzzle in its standard form
is to construct a proper 9-coloring of a particular graph, given
a partial 9-coloring.

A valid Sudoku solution grid is also a Latin square.
Sudoku imposes the additional regional constraint. Latin
square completion is known to be NP-complete. A further
relaxation of the problem allowing repetitions on columns
(or rows) makes it polynomially solvable.

Admittedly evolutionary algorithms are not the best tech-
nique to solve Sudoku because they do not exploit systemat-
ically the problem constraints to narrow down the search.
However, Sudoku is an interesting study case because it
is a relatively simple problem but not trivial since is NP-
complete, and the different types of constraints make Sudoku
an interesting playground for crossover design. In particular,
its structure makes it a perfect candidate for product geomet-
ric crossover.

In this paper we use the geometric framework and its
extension to the cartesian product of geometric crossover, to
design an evolutionary algorithm to solve the Sudoku puzzle.
We report extensive experimental results.

The paper is organized as follows. In section 2 we present
the geometric framework and its extension to product ge-
ometric crossover. In section 3, we design new geometric
crossovers tailored to Sudoku using the product geometric
crossover. In section 4, we introduce a new heuristic logic-
based mutation built for Sudoku. In section 5, we test
experimentally our new search operators. In section 6, we
draw conclusions.

II. GEOMETRIC FRAMEWORK

A. Geometric preliminaries

In the following we give necessary preliminary geometric
definitions. The following definitions are taken from [1].

The termsdistance and metric denote any real valued
function that conforms to the axioms of identity, symme-
try and triangular inequality. A simple connected graph is
naturally associated to a metric space via itspath metric: the
distance between two nodes in the graph is the length of a
shortest path between the nodes. Similarly, an edge-weighted

graph with strictly positive weights is naturally associated to
a metric space via aweighted path metric.

In a metric space(S, d) a closed ball is the set of the
form B(x; r) = {y ∈ S|d(x, y) ≤ r} where x ∈ S and
r is a positive real number called the radius of the ball.
A line segment(or closed interval) is the set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} wherex, y ∈ S
are called extremes of the segment. Metric ball and metric
segment generalize the familiar notions of ball and segment
in the Euclidean space to any metric space through distance
redefinition. These generalized objects look quite different
under different metrics. Notice that a metric segment does not
coincide to a shortest path connecting its extremes (geodesic)
as in an Euclidean space. In general, there may be more than
one geodesic connecting two extremes; the metric segment
is the union of all geodesics.

We assign a structure to the solution set by endowing
it with a notion of distanced. M = (S, d) is therefore a
solution spaceandL = (M, g) is the corresponding fitness
landscape, whereg is the fitness function overS. Notice that
d is arbitrary and need not have any particular connection or
affinity with the search problem at hand.

B. Geometric crossover definition

The following definitions arerepresentation-independent
therefore crossover is well-defined for any representation. It
is only function of the metric dassociated with the search
space being based on the notion of metric segment.

Definition 1: (Image set) Theimage setIm[OP ] of a
genetic operatorOP is the set of all possible offspring
produced byOP with non-zero probability.

Definition 2: (Geometric crossover) A binary operator is
a geometric crossover under the metricd if all offspring are
in the segment between its parents.

Definition 3: (Uniform geometric crossover) Uniform ge-
ometric crossoverUX is a geometric crossover where allz
laying between parentsx andy have the same probability of
being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])
|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].
A number of general properties for geometric crossover and
mutation have been derived in [6].

Result: traditional crossover is geometric under Hamming
distance.

C. Geometric crossover for permutations

In previous work we have studied various crossovers
for permutations, revealing that PMX [2], a well-known
crossover for permutations, is geometric under swap distance.
Also, we found that Cycle crossover [2], another traditional
crossover for permutations, is geometric under swap distance
and under Hamming distance (geometricity under Hamming
distance for permutations implies geometricity under swap



distance but not vice versa). Finally, we showed that geomet-
ric crossovers for permutations based on edit moves are nat-
urally associated with sorting algorithms: picking offspring
on a minimum path between two parents corresponds to
picking partially sorted permutations on the minimal sorting
trajectory between the parents.

D. Geometric crossover landscape

Geometric operators are defined as functions of the dis-
tance associated with the search space. However, the search
space does not come with the problem itself. The problem
consists only of a fitness function to optimize, that defines
what a solution is and how to evaluate it, but it does not
give any structure on the solution set. The act of putting a
structure over the solution set is part of the search algorithm
design and it is a designer’s choice. A fitness landscape
is the fitness function plus a structure over the solution
space. So, for each problem, there is one fitness function
but as many fitness landscapes as the number of possible
different structures over the solution set. In principle, the
designer could choose the structure to assign to the solution
set completely independently from the problem at hand.
However, because the search operators are defined over such
a structure, doing so would make them decoupled from the
problem at hand, hence turning the search into something
very close to random search.

In order to avoid this one can exploit problem knowledge
in the search. This can be achieved by carefully designing the
connectivity structure of the fitness landscape. For example,
one can study the objective function of the problem and select
a neighbourhood structure that couples the distance between
solutions and their fitness values. Once this is done problem
knowledge can be exploited by search operators to perform
better than random search, even if the search operators are
problem-independent (as in the case of geometric crossover
and mutation).

Under which conditions is a landscape well-searchable by
geometric operators? As a rule of thumb, geometric mutation
and geometric crossover work well on landscapes where the
closer pairs of solutions, the more correlated their fitness
values. Of course this is no surprise: the importance of
landscape smoothness has been advocated in many different
contexts and has been confirmed in uncountable empirical
studies with many neighborhood search meta-heuristics [11].

Rule-of-thumb 1: if we have a good distance for the
problem at hand than we have good geometric mutation and
good geometric crossover

Rule-of-thumb 2: a good distance for the problem at hand
is a distance that makes the landscape “smooth”

E. Product geometric crossover

In recent work [5] we have introduced the notion of
product geometric crossover.

Theorem 1:Cartesian product of geometric crossover is
geometric under the sum of distances

This theorem is very interesting because it allows one
to build new geometric crossovers by combining crossovers

that are known to be geometric. In particular, this applies
to crossovers for mixed representations. The compounding
geometric crossovers do not need to be independent, for the
cartesian crossover to be geometric:

• Multi-crossover: same representation, same crossover n
times

• Hybrid crossover: same representation, different
crossover for each projection

• Hybrid representation crossover: different representa-
tion for each projection (and different crossover)

• No independence required: composing geometric
crossovers do not need to be independent

III. G EOMETRIC DESIGN FORSUDOKU

A. Sudoku constraints, search spaces and genetic operators

Sudoku is a constraint satisfaction problem with 4 types
of constraints:

1) Fixed elements
2) Rows are permutations
3) Columns are permutations
4) Boxes are permutations

It can be cast as an optimization problem by choosing
some of the constraints as hard constraints that all so-
lutions have to respect, and the remaining constraints as
soft constraints that can be only partially fulfilled and the
level of fulfillment is the fitness of the solution. Notice
that there is more than one combination available to set
which are hard constraints and which are soft constraints. We
have considered two search spaces, the first respecting one
constraint, the other respecting two constraints at the same
time. Trying to further restrict the search space, requiring to
respect three constraints at the same time seems not to be
feasible: even only generating a random solution within the
space of grids respecting the first three constraints is a NP-
complete problem being equivalent to finding a solution to a
Latin square.

1) Restricted Hamming space:

• Hard constraints: fixed positions
• Soft constraints: permutations on rows, columns and

boxes
• Distance: Hamming distance between grids
• Feasible geometric mutation: change any non-fixed el-

ements
• Feasible geometric crossover: traditional crossover over

the vector obtained by joining the rows of the grid.

It is easy to see that these mutation and crossover pre-
serve fixed positions from parent grids to offspring grids.
The mutation is 1-geometric under Hamming distance. The
crossover, being the traditional crossover, is geometric under
Hamming distance.

To restrict the search to the space of grids with fixed
positions, the initial population must be seeded with feasible
random solutions taken from the feasible space, which is, by
solutions respecting the fixed position constraints.



2) Row-swap space:

• Hard constraints: fixed positions and permutations on
rows

• Soft constraints: permutations on columns and boxes
• Distance: sum of swap distances between paired rows

(row-swap distance)
• Feasible geometric mutation: swap two non-fixed ele-

ments in a row
• Feasible geometric crossover: row-wise PMX and row-

wise cycle crossover

This mutation preserves both fixed positions and permuta-
tions on rows because swapping elements within a row that
is a permutation returns a permutation. The mutation is 1-
geometric under row-swap distance.

Row-wise PMX and row-wise cycle crossover recombine
parent grids applying respectively PMX and cycle crossover
to each pair of corresponding rows. In case of PMX the
crossover points can be selected to be the same for all rows,
or be random for each row. In terms of offspring that can be
generated, the second version of row-wise PMX includes all
the offspring of the first version.

Simple PMX and simple cycle crossover applied to parent
permutations return always permutations. They also preserve
fixed positions. This is because both are geometric under
swap distance and in order to generate offspring on a minimal
sorting path between parents using swaps (sorting one parent
into the order of the other parent) they have to avoid swaps
that change common elements in both parents (elements that
are already sorted). Therefore also row-wise PMX and row-
wise cycle crossover preserve both hard constraints.

Using the product geometric crossover theorem, it is
immediate that both row-wise PMX and row-wise cycle
crossover are geometric under row-swap distance, since
simple PMX and simple cycle crossover are geometric under
swap distance. Since simple cycle crossover is also geometric
under Hamming distance (restricted to permutations), row-
wise cycle crossover is also geometric under Hamming
distance.

To restrict the search to the space of grids with fixed
positions and permutations on rows, the initial population
must be seeded with feasible random solutions taken from
this space. Generating such solutions can be done still very
efficiently.

The row-swap space presents two advantages to the re-
stricted Hamming space: (i) the search space of feasible
solutions is much smaller and (ii) this restriction includes
the optimum grid and prunes only grids with lower fitness.

B. Sudoku fitness landscapes

One important benefit of knowing that a certain search
operator is geometric under a specific distance is that it is
possible to tell a priori whether the search operator is a
good choice for a specific problem. From previous work, we
know that, as a rule-of-thumb, search operators associated
to a fitness landscape with a smooth trend, in which closer
solutions have stronger fitness correlation, are likely to

perform well. Although this is quite intuitive for mutation
operators, the geometric framework allows the extension to
the case of crossover operators. In the following, we will
show that the fitness landscapes associated with both spaces
introduced in the previous section are smooth, making the
search operators proposed a good choice for Sudoku.

Fitness function (to maximize): sum of number of unique
elements in each row, plus, sum of number of unique
elements in each column, plus, sum of number of unique
elements in each box. So, for a9×9 grid we have a maximum
fitness of 9 · 9 + 9 · 9 + 9 · 9 = 243 for a completely
correct Sudoku grid and a minimum fitness little more than
9 · 1 + 9 · 1 + 9 · 1 = 27 because for each row, column
and square there is at least one unique element type. The
maximum global fitness variation is therefore little less than
∆F = 216.

Under Hamming distance, a single element change affects
the current fitness of -1 0 +1 for the row, for the column and
for the box the elements belong to. So the total change in
fitness due to a single element change is between -3 and +3.
The maximum local fitness variation is∆fH = 3.

Under row-swap distance, a single swap in a row affects
the current fitness of 0 for the row (permutation is preserved),
in the range between -2 and +2 for the columns touched (a
single swap can fix or unfix at most one element in two
columns at the same time) and between -2 and +2 for the
boxes touched. So the total change in fitness due to a single
swap in a row is between -4 and 4. The maximum local
fitness variation is∆frs = 4.

A simple measure of smoothness of the landscape is
maximum local variation over maximum global variation.
The smaller this measure, the smoother the landscape.SH =
3/216 andSrs = 4/216. The fitness landscapes are both very
smoothwhen compared with the two extreme of smoothness
0 (no change between neighbor solutions) and 1 (maximum
and minimum are neighbors).

Interestingly, the Hamming space is smoother than the
row-swap space. So, in terms of smoothness the Hamming
space is a better choice than the row-swap space.

It is also interesting to notice that the maximum global fit-
ness variation increases (linearly) with the grid size, whereas
the the maximum local fitness variation is constant with the
grid size.So, for increasing size of the problem, the fitness
landscape becomes smoother.So this may counteract the
increasing difficulty of the search due to a larger space.

IV. SMART-SQUARE MUTATION

Since we want to get to the optimum as much as possible,
and evolutionary algorithms are lazy optimiser, we use a
heuristic mutation built for Sudoku.

The smart square mutation applies the most obvious con-
straints to the possible values of a square.

For example, if a column has a fixed ‘9’ in it, then all
the squares in that column have ‘9’ removed from the set of
possible values that it could take.

These constraints are applied for rows, columns, and sub-
squares (regions). For most sudoku grids, the application of



these constraints from the initial set of fixed numbers will
fix some further numbers i.e. certain squares will have only
one possible value. Such squares are added to the set of fixed
numbers, and the constraints thus arising are propagated. This
process is iterated until no further numbers can be fixed.
When the process is finished, each mutation now selects a
square from the set of ones that are still free, and chooses
only among the feasible values for that square.

We implemented this as an obvious and irresistible im-
provement over a simplistic mutation operator that did not
account for these constraints. However, there are many
further sudoku constraints that we could have implemented,
and taken to their logical extreme would solve most sudoku
problems without the need for any search (evolutionary or
otherwise).

V. EXPERIMENTS

A. Genetic Framework

We tested the various operators with a steady state evolu-
tionary algorithm. In the following, we describe the frame-
work used in our experiments. The parameters were subject
to extensive automatic tuning.

• Encoding:
Each individual was encoded as an array of 81 integers
in the range [0..9], which was interpreted as a vector of
9 rows.

• Initialization:
For the hamming space experiments, each candidate
solution of the first generation had the contents all
non-fixed positions set to random integers in the range
[1..9]. For the swap space experiments, each row of each
candidate solution in the first generation was a random
valid permutation of all numbers in the range[1..9],
respecting fixed positions. See section III for more
information.

• Population:
The population size was set to 5000, with an elite of
2500 candidate solutions.

• Selection and replacement:
Each generation, all candidate solutions were evaluated
using the fitness function described in section III. The
whole population was then sorted based on fitness, so
that the 2500 best candidates formed the new elite. The
other half of the population was replaced with 2500 new
candidates, created by crossover and mutation (using
the current operators) from two candidates randomly
selected from the elite.

• Crossover:
We used the crossover operators described in section
III. All crossovers operate within the bounds of single
rows (so e.g. PMX is row-wise PMX), except two-point
crossover, which is traditional two-point crossover ap-
plied to the whole grid seen as a vector, and the whole-
row crossover, which randomly selects whole rows from
either of the two parents, and is geometric under both
distances. Cycle crossover takes two forms: onecycle,

the form proposed by Goldberg [2], which considers
only one cycle, and multicycle, which considers all
possible cycles. Uniform swap is a sorting crossover
based on edit-swap-move.

• Mutation:
For each newly formed candidate in a population, the
current mutation operator was applied with probability
0.8. A number of mutation operators were used. For
the hamming space, we used point mutation, meaning
that one non-fixed position was set to a new random
value in the range [1..9] (Table II); uniform swap
mutation, where the values of two randomly selected
positions of the whole grid are exchanged (Table III);
and exponential probability point mutation, after each
point mutation there is a 0.8 probability of a new point
mutation, leading to a theoretically infinite number of
mutations, but in practice only a handful (Table IV).
We also tried the algorithm without any mutation at all
(Table I).
For the swap space, we used the row swap mutator,
where two non-fixed positions in a row were exchanged
(Table VI). We also used an exponential probability
row swap mutator (Table VII), and tried the various
crossover operators without any mutation (Table V).

• Stopping criterion:
The stopping criterion was that no progress had been
made (no fitter candidates discovered) for 20 genera-
tions.

We further tested all the mutation operators, including the
smartsqaure, as local search operators. In other words, we
used these operators as bases for hill-climbers. Initialization
and fitness function for the hill-climbers were the same as for
the population-based algorithms, and the stopping criterion
was that no progress had been made for 100 000 fitness
evaluations.

B. Test Environment

Five initial sudoku grids were taken from the sudoku
problem generator atwww.sudoku.com. Three of them were
classified (by the generator program) as easy, one as medium
hard and one as hard. We then ran 30 evolutionary runs of
each combination of crossover and mutation operator on each
initial grid. As time efficiency was not a main concern, we
did not measure the time taken for each run.

C. Results

The result tables are organized by mutation type.
1) Hamming space:In Tables I, II, III and IV, we report

the results for mutations and crossovers associated with
the Hamming space. The best crossover, independent of
mutation operator, is whole-row crossover, followed by two-
point crossover. But even with row-wise crossover, we only
relatively rarely manage to reach the optimal solution. We
have never evolved an optimal solution without crossover, or
when using uniform crossover.



2) Swap space:In Tables V, VI and VII, we report the
results for mutations and crossovers associated with the Swap
space. In general, the final fitnesses are a lot higher for
the swap space experiments than for the Hamming space
experiments. For the three easy instances, all the crossovers
generally perform very well, when supplied with some muta-
tion. PMX, uniform swap and multicycle crossover perform
surprisingly well even in the absence of mutation. For the
“medium” difficulty problem, no combination managed to
evolve the optimal solution, but for the hard problem either
uniform swap or multicycle crossover seems to perform best,
in one case finding the solution 15 times out of 30.

3) Hill-climbers: In table VIII, we report the results for
the hill-climbers. The smartsquare mutation solved all the
easy problems instantaneously, without even starting the
evolutionary process. The two other mutators that performed
reasonably well were uniform swap and exponential proba-
bility row swap mutation. No mutators managed to get even
close to optimal fitness for the medium and hard problem
instances.

Grid None Uniform Twopoint Whole-row
#opt avg #opt avg #opt avg #opt avg

Easy 1 0 211 0 212 0 240 1 239
Easy 2 0 212 0 212 1 239 7 241
Easy 3 0 215 0 214 4 239 1 239
Med 1 0 210 0 210 0 235 0 236
Hard 1 0 210 0 209 0 237 0 239

TABLE I

NO MUTATION , HAMMING SPACE CROSSOVERS. EACH CELL CONTAINS

THE NUMBER OF EVOLUTIONARY RUNS OUT OF30 THAT PRODUCED THE

OPTIMAL SOLUTION, AND THE MEAN FITNESS OF THE BEST CANDIDATE

OF THE LAST GENERATION OF ALL30 RUNS (THE MAX FITNESS IS 243).

Grid None Uniform Twopoint Whole-row
#opt avg #opt avg #opt avg #opt avg

Easy 1 0 231 0 212 4 240 1 240
Easy 2 0 231 0 212 2 239 8 241
Easy 3 0 232 0 213 5 241 9 241
Med 1 0 228 0 210 0 235 0 237
Hard 1 0 230 0 210 0 237 1 239

TABLE II

POINT MUTATION , HAMMING SPACE CROSSOVERS.

Grid None Uniform Twopoint Whole-row
#opt avg #opt avg #opt avg #opt avg

Easy 1 0 231 0 212 2 240 5 241
Easy 2 0 231 0 212 4 238 8 241
Easy 3 0 231 0 213 4 240 14 242
Med 1 0 227 0 210 0 232 0 236
Hard 1 0 229 0 210 0 236 0 238

TABLE III

UNIFORM SWAP MUTATION, HAMMING SPACE CROSSOVERS.

Grid None Uniform Twopoint Whole-row
#opt avg #opt avg #opt avg #opt avg

Easy 1 0 222 0 212 1 238 2 240
Easy 2 0 221 0 212 1 237 8 241
Easy 3 0 221 0 214 3 238 3 240
Med 1 0 220 0 210 0 231 0 235
Hard 1 0 220 0 210 0 234 0 238

TABLE IV

EXPONENTIONAL PROBABILITY POINT MUTATION, HAMMING SPACE

CROSSOVERS.

VI. CONCLUSIONS

In this paper we have designed new geometric crossovers
for the Sudoku puzzle that deal in a natural way with its
constraints. We have demonstrated the usage of the important
notion of product geometric crossover to straightforwardly
derive (i) new geometric crossovers for the entire grid
obtained by employing simple geometric crossovers for each
row and (ii) the distance functions associated with them. This
has allowed us to analyze the geometric fitness landscape
associated to the new geometric crossovers and tella priori,
by the way the fitness landscape is constructed, that the new
crossovers are very well-suited to the Sudoku puzzle hence
likely to perform well. We extensively tested a number of
geometric crossovers, mutations and hill-climbers and found
that the operators associated with the row-swap distance are
the best and produce consistently (near) optimal Sudoku
grids. In future work, we want to extend our analysis to
Sudoku grid of increasing size and combine smartsquare
mutation with the best geometric crossover to tackle bigger
and tougher instances.

REFERENCES

[1] M. Deza and M. Laurent.Geometry of cuts and metrics. Springer,
1991.

[2] D. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, 1989.

[3] T. Jones. Evolutionary Algorithms, Fitness Landscapes and Search.
PhD thesis, University of New Mexico, 1995.

[4] D. E. Knuth. Dancing links.Preprint P159, Stanford University, 2000.
[5] A. Moraglio. Product geometric crossover.Technical Report CSM-446,

University of Essex, 2006.
[6] A. Moraglio and R. Poli. Topological interpretation of crossover. In

Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1377–1388, 2004.

[7] A. Moraglio and R. Poli. Geometric crossover for the permutation
representation.Technical Report CSM-429, University of Essex, 2005.

[8] A. Moraglio and R. Poli. Geometric landscape of homologous
crossover for syntactic trees. InProceedings of CEC 2005, pages
427–434, 2005.

[9] A. Moraglio and R. Poli. Topological crossover for the permutation
representation. InGECCO 2005 Workshop on Theory of Representa-
tions, 2005.

[10] A. Moraglio, R. Poli, and R. Seehuus. Geometric crossover for
biological sequences. InProceedings EuroGP (to appear), 2006.

[11] P. M. Pardalos and M. G. C. Resende, editors.Handbook of Applied
Optimization. Oxford University Press, 2002.

[12] T. Yato and T. Seta. Complexity and completeness of finding another
solution and its application to puzzles.Preprint, University of Tokyo,
2005.



Grid None Whole-row PMX Uniform swap Onecycle Multicycle
#opt avg #opt avg #opt avg #opt avg #opt avg #opt avg

Easy 1 0 212 0 239 26 243 28 243 0 237 24 243
Easy 2 0 212 2 241 21 242 21 242 0 234 22 242
Easy 3 0 214 1 240 29 243 30 243 0 237 30 243
Med 1 0 210 0 236 0 237 0 237 0 230 0 237
Hard 1 0 210 0 238 9 242 15 242 0 234 12 242

TABLE V

NO MUTATION , SWAP SPACE CROSSOVERS.

Grid None Whole-row PMX Uniform swap Onecycle Multicycle
#opt avg #opt avg #opt avg #opt avg #opt avg #opt avg

Easy 1 5 241 15 242 28 243 29 243 22 242 27 243
Easy 2 3 240 16 242 24 243 27 243 9 241 23 243
Easy 3 8 241 26 243 30 243 30 243 25 243 30 243
Med 1 0 236 0 237 0 237 0 235 0 237 0 237
Hard 1 0 239 5 241 4 241 9 239 1 240 10 242

TABLE VI

ROW SWAP MUTATION, SWAP SPACE CROSSOVERS.

Grid None Whole-row PMX Uniform swap Onecycle Multicycle
#opt avg #opt avg #opt avg #opt avg #opt avg #opt avg

Easy 1 0 239 14 242 27 243 24 242 20 242 29 243
Easy 2 2 239 16 242 19 242 21 241 11 242 23 243
Easy 3 5 240 27 243 29 243 30 243 29 243 29 243
Med 1 0 234 0 237 0 234 0 230 0 236 0 237
Hard 1 0 237 2 241 0 236 1 234 2 239 7 241

TABLE VII

EXPONENTIAL PROBABILITY ROW SWAP MUTATION, SWAP SPACE CROSSOVERS.

Grid None Point Uniform swap Exp. p. point Row swap Exp. p. row swap Smartsquare
#opt avg #opt avg #opt avg #opt avg #opt avg #opt avg #opt avg

Easy 1 0 190 0 232 12 241 0 233 1 238 7 241 30 243
Easy 2 0 190 0 232 9 241 0 235 0 237 2 239 30 243
Easy 3 0 188 0 232 21 242 0 233 6 239 15 241 30 243
Med 1 0 182 0 230 0 236 0 232 0 234 0 236 0 235
Hard 1 0 171 0 232 1 240 0 233 0 238 0 239 0 239

TABLE VIII

HILL -CLIMBERS. MUTATION OPERATORS ALONG THE Y-AXIS .


