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Abstract—This paper presents a framework for heuristic
portfolio optimisation applied to a hedge fund investment
strategy. The first contribution of the paper is to present a
framework for implementing portfolio optimisation of a market
neutral hedge fund strategy. The paper also illustrates the
application of the recently developed Geometric Nelder-Mead
Algorithm (GNMA) in solving this real world optimization
problem, compared with a Genetic Algorithm (GA) approach.

I. INTRODUCTION

Given a set of stock returns and risk forecasts, and any

number of constraints, the portfolio optimization problem

typically consists in maximizing return or minimizing risk

by finding the optimal set of stock weights (i.e., percentages

of invested capital) that satisfies a set of constraints. There are

a number of optimization models for portfolio construction.

The classic one is the mean-variance optimisation introduced

by Markowitz [7][8]. His seminal work made a number

of simplifying assumptions in order to solve the problem

using classical mathematical optimization techniques, such

that returns are normally distributed, and that investors have

quadratic preferences. But it is now well understood that

stock returns exhibit non-normal characteristics, including

skewness and fat tails, and that most investors are loss

averse, thus, invalidating those original simplifying assump-

tions. Heuristic optimisation methods provide a more flexible

toolset where no simplifying assumptions are needed. These

methods have been applied to tackle portfolio optimisation

for some time now [12]. Some of the applications have

successfully achieved the use of non-quadratic risk measures

such as Value at Risk [4], or have allowed the incorpora-

tion of integer constraints, such as cardinality constraints

[2]. Several different heuristic algorithms have been used,

including Genetic Algorithms [12], and Threshold Accepting

algorithms [3],[6].

A hedge fund is a special type of investment fund that

typically uses more complex strategies than a traditional

investment fund (i.e., portfolio). One of the most common

characteristics of hedge funds is the use of short-selling to

reduce part of the risk of their strategies. In practice, the
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mechanics of short-selling works as follows. A hedge fund

manager with a negative view about a stock would like

to include it in his portfolio with a negative weight (i.e.,

hold a certain negative amount of the stock). This can be

implemented as follows. Brokers/dealers on behalf of clients

try to identify stock owners willing to lend the stock for a

fee. The hedge fund manager borrows the stock, and sells

it on the market. At a future date, usually when the stock

price has fallen, the hedge fund manager buys back the

stock on the market at the lower price, making a profit, and

then returns the stock to the original owner. It is important

to note that the use of shorting (i.e., short-selling) in an

investment process introduces a number of new risks for

the portfolio manager. The main risk is the potential for

unlimited losses. The maximum loss from a long position

(i.e., without short-selling) in a stock is limited to the initial

investment value. That is, if you buy a share in a company

worth 100, and that company goes bankrupt, you would lose

the entire 100 investment. However, the maximum loss from

a short position (i.e., with short-selling) can be unlimited. If

you “short” that same company worth 100, and its stock price

for example triples in value, you would lose 200. This risk

of losing more than the initial investment, together with the

fact that stock returns are not normally distributed, motivates

the need to attempt to control for the risk of extreme events,

i.e. tail risk. Value-at-Risk (VaR) is one of the most widely

used risk measures to model and control for tail risk [1].

There is a large number of different hedge fund strategies,

with market neutral equity being one of the most popular

strategies. The strategy consists of selecting a set of stocks

to buy and a set of stocks to short-sell, from the constituents

of an equity index (i.e., a fixed large set of stocks), such

that the amount invested in the buys and sells is the same,

thus, neutralising the risk of changes in value of the equity

index. Usually for a hedge fund strategy, the objective is to

maximise expected returns for a given a level of expected

risk.

The contribution of this paper is two-fold. Firstly, it

presents a framework for implementing a market neutral

hedge fund strategy, where short-selling is allowed, and using

VaR as the risk measure, instead of variance. To the author’s

best knowledge, to date all literature on heuristic portfolio

optimisation enforces the no-shorting constraint. Secondly,

it presents the first application of the recently developed

Geometric Nelder-Mead Algorithm (GNMA) [10], described

in section III, to a portfolio optimisation problem.
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II. MARKET NEUTRAL PORTFOLIO OPTIMIZATION

For a traditional long-only investment fund (i.e., without

short-selling), the portfolio optimisation problem consists

of selecting a subset of stocks from a given universe of

stocks, and the amount to invest in each of them, subject

to a number of constraints and a number of objectives.

On a traditional long-only portfolio problem, the sum of

weights (i.e., amounts to be invested in the stocks hold in

the portfolio) must equal to one, and no negative weights are

allowed (i.e., no-shorting constraint). In formulas:
∑

wj = 1 (1)

wj ≥ 0 (2)

for j = 1, . . . , nA where wj is the weight of stock j in the

portfolio and nA is the number of stocks available in that

given universe.

To implement a market neutral strategy, we relax the no-

shorting constraint, and aim at constructing a portfolio with

two books: a “long book” with positive weights adding to 1,

and a “short book” with negative weights adding to -1. Such

weights are characterized by the following constraints:
∑

|wj | = 2 (3)

∑
wj = 0 (4)

for j = 1, . . . , nA. The resulting portfolio is referred to as

a market neutral portfolio because it has a zero exposure to

the equity market.

A. The mean-variance model

Mean-variance optimization is the most widely used

framework, both in the academia and in the industry, to con-

struct portfolios. The utility function for defining optimality

is based on the original framework proposed by Markowitz:

u(w) = wr− λw′Qw (5)

where w is the vector of portfolio weights, r is the vector of

stock return forecasts, Q is the forecasted covariance matrix,

and λ is the risk aversion parameter. This risk aversion

parameter defines the preferences of the investor, in terms

of the trade-off between taking additional expected risk for

additional expected return. The objective of the optimiser

is to maximise utility, by finding portoflios that give this

optimal trade-off between risk and return according to the

investor preferences.

B. The bounded-VaR model

The variance measure above is a symmetric risk measure,

but given the non-normal properties of stock returns, and the

potential for unlimited losses when using short-selling, a risk

measure that focuses on modeling tail risk such as VaR may

be more appropriate. VaR is an estimate, with a given degree

of confidence, of how much can be lost from a portfolio over

a given time horizon. We could easily formulate a mean-VaR

optimization with a risk aversion parameter, similar to the

above mean-variance approach. However, in practice, VaR is

usually a constraint set by either the financial regulator or a

risk management policy, aimed at limiting the amount of risk

that an investment manager takes. Therefore, a practically

more relevant utility function is the expected return, rw, to

be maximized with an extra constraint limiting VaR:

u(w) = rw (6)

V aR(w, c) < V aRmax (7)

where V aR(w, c) is the forecasted VaR at a given confidence

level c of a portfolio defined by the vector of weights w, and

V aRmax is the limit to VaR. This type of problem including

as a hard constraint the limit on VaR, which is a non-linear

function of w, cannot be easily solved with a traditional

optimiser, and thus, it exemplifies the benefits in terms of

flexibility provided by heuristic optimisation methods.

C. Solution encoding and fitness function

In the following, we cast the optimization models above in

a form that can be solved by a traditional Genetic Algorithm

with binary representation by choosing appropriate solution

encoding and fitness function that can handle the various

types of constraints. The same encoding and fitness function

will be used with the Geometric Nelder-Mead Algorithm, so

making the two algorithms directly comparable.

Every stock in the considered universe is encoded using

two bits, the first bit determines whether or not the stock

has to be part of the portfolio, and the second bit determines

whether to buy or to short-sell the stock when the stock

is part of the portfolio (i.e., it indicates the book the stock

belongs to). So a complete portfolio is encoded with string

of 2 · nA bits. The weights of the stocks are assigned in

a way that all selected stocks in a book are given the

same weight, and the sum of the weights for each book

equals one. This encoding guarantees that constraints (3) and

(4) hold by construction. This encoding is not expressive

enough to represent all possible portfolios. It was chosen to

simplify the optimization problem and to be able to apply the

GNMA heuristic method. However, given that market neutral

strategies tend to hold highly diversified portfolios with

large number of stocks, restricting the optimisation process

from its natural continuous space to a discrete representation

should still result in realistic portfolio solutions.

The fitness function for the mean-variance model cor-

responds to the utility function (equation 5). To enforce

the constraint (7), the fitness function for the bounded-VaR

model corresponds to the utility function (equation 6) when

the constraint holds and the utility is larger than zero, and

zero otherwise. In other words, fitness zero indicates both

very poor and infeasible solutions.

III. BINARY NELDER-MEAD ALGORITHM

The Nelder-Mead Algorithm (NMA) [11] is an almost

half-century old method for numerical optimization, and it is

a close relative of Particle Swarm Optimization (PSO) and

Differential Evolution (DE). In recent work, PSO, DE and



NMA have been generalized using a formal geometric frame-

work [9] that treats solution representations in a uniform way.

These formal algorithms can be used as templates to derive

rigorously specific PSO, DE and NMA for both continuous

and combinatorial spaces retaining the same geometric inter-

pretation of the search dynamics of the original algorithms

across representations. In previous work, a geometric NMA

was formally derived for the binary string representation.

To the authors’s best knowledge, apart from very recent

work of the authors [10], there are no generalizations of

the NMA to combinatorial spaces. The geometric NMA was

then preliminary tested on NK-landscapes [5], which are a

well-known benchmark of artificially constructed problems,

on which it performs well in the comparison with a Genetic

Algorithm. In this paper, we extend the experimental analysis

of the geometric NMA to the case of Portfolio Optimisation

Problem, which is an interesting and challenging real-world

problem.

A. Classic Nelder-Mead Algorithm

In this section, we describe the traditional NMA [11]. The

NMA uses n + 1 points in Rn. These points form a type of

n-dimensional polygon, a simplex, which has n + 1 points

as vertices in Rn. For example, the simplex is a triangle in

R2 and a tetrahedron in R3. The initial simplex has to be

non-degenerate, i.e., the points must not lie in the same hy-

perplane. This allows the NMA to search in all n dimensions.

The method then performs a sequence of transformations

of the simplex, which preserve non-degeneracy, aimed at

decreasing the function values at its vertices. At each step, the

transformation is determined by computing one or more test

points and comparing their function values. In Figure 1, we

illustrate the NMA transformations for the two-dimensional

case, where the simplex S consists of three points.

The optimization process starts with creating a sample of

n + 1 random points in the search space. Notice that apart

from the creation of the initial simplex, all further steps are

deterministic and do not involve random choices. In each

loop iteration, the points in the simplex S are arranged in

ascending order according to their corresponding objective

values. Hence, the best solution candidate is S[0] and the

worst is S[n]. We then compute the center m of the n
best points and then reflect the worst candidate solution

S[n] through this point, obtaining the new point r as also

illustrated in Fig. 1(a). The reflection parameter α is usually

set to 1. In the case that r is neither better than S[0] nor as

worse as S[n], we directly replace S[n] with it. If r is better

than the best solution candidate S[0], we expand the simplex

further into this promising direction. As sketched in Fig. 1(b),

we obtain the point e with the expansion parameter γ set to 1.

We now take the best of these two points to replace S[n]. If

r is no better than S[n], the simplex is contracted by creating

a point c somewhere in between r and m. In Fig. 1(c), the

contraction parameter ρ was set to 1/2. We substitute S[n]
with c only if c is better than r. When everything else fails,

we shrink the whole simplex by moving all points (except

S[0]) into the direction of the current optimum S[0]. The

shrinking parameter σ normally has the value 1/2, as is the

case in the example outlined in Fig. 1(d).

Fig. 1. One step of the NMA in R
2 (figure modified from [13])

B. Geometric Nelder-Mead Algorithm

The generalization of the classic Nelder-Mead Algorithm

to the binary representation was done by following a formal

generalization methodology that allows us to generalize

search algorithms defined on continuous spaces to combina-

torial spaces in a systematic way, without arbitrary choices in

the transition from continuous to combinatorial spaces (e.g.,

to deal with the “discreteness” of combinatorial spaces). The

interested reader is referred to [10] where the generalization

methodology and the formal derivation of the Nelder-Mead

for the Hamming space are described in details. Briefly, the

generalization methodology is as follows. Firstly, the search

operations described in the previous section (reflection, ex-

pansion, contraction and shrinking) have to be rewritten

expressing them as functions of the Euclidean distance. Then,

in these definitions, the Euclidean distance is substituted

with the Hamming distance associated with binary strings.

Finally, the search operators for the binary space are formally

derived by rewriting the (declarative) definitions of the search

operators in terms of Hamming distance, in an equivalent but

operational form, in terms of manipulation of binary strings.

In principle, the same technique can be used to formally

derive the Nelder-Mead Algorithm for any representation

associated with a well-defined notion of distance between

solutions.

Center of mass, convex combinations and extension rays

in the Euclidean space can be expressed solely in terms

of distance relations between points in space, hence, these

geometric concepts can be naturally generalized to the

Hamming space associated with binary strings, by replacing

the Euclidean distance with the Hamming distance. The

graphical description of the search operations of NMA (Fig.

1) leads directly to their geometric interpretation in terms of

appropriate compositions of center of mass, convex combina-

tion and extension ray. Hence all the search operators of the

NMA can be formally generalized and formally specialized

to binary strings using only these three operators once they

are formally instantiated for binary strings in the Hamming

space. In this space, the convex combination corresponds to

a form of biased uniform crossover for binary strings. The

center of mass for binary strings corresponds to a multi-

parent recombination where the offspring is determined by

position-wise majority voting of their parents. The extended



ray recombination is the “inverse” recombination operator of

the convex combination: given that we know a parent string

and the offspring string obtained by the convex combination

of the known parent and a second unknown parent, the

extension ray recombination reconstructs the unknown parent

string. Detailed descriptions of these operators, their formal

derivations, and of the complete binary GNMA can be found

in [10].

IV. EXPERIMENTS

In this section we present a description of the data used

and the experiments carried out.

We constructed a data-set of daily stock returns for the 100

names that constitute the FTSE 100 index between January

2007 and December 2009, over a total of 500 trading days.

The forecasted covariance matrix, used for the mean-

variance problem was calculated as a full covariance matrix

with a rolling window of the last 250 days. This approach of

using historical returns in order to forecast future volatility is

widely used. 1 The Value at Risk (VaR) forecasts are based on

the historical method. Given a set of stock weights, defining

a portfolio at time t, we take a historical observation period

of 1 year, 250 trading days, from t-1 to t-250, and compute

for each day in the period the daily return that such portfolio

would have delivered based on historic stock returns. This

gives an empirical distribution of historical daily returns,

and can be used to estimate with a degree of confidence,

how much can be lost. With a 99 percent confidence level,

and a sample of 250 days, the historical 1-day VaR estimate

is obtained by taking the third highest lost in that window.

Then, a given portfolio satisfies the VaR constraint if its third

largest loss over that historic period is smaller than the VaR

limit V aRmax.

The forecasts for stock returns were constructed in such

a way as to reflect some level of forecasting ability, but

at the same time, to also reflect the high level of noise

and uncertainty in industry models for stock return fore-

casting. We achieved this by calculating forecasted returns

as a weighted sum between a normally distributed random

variable (95 percent weight) and one day ahead known

stock returns (5 percent weight). 2 Portfolio simulations are

performed by re-balancing the portfolio in each from time

t=251 to t=500. We need to start at t=251 as we need

250 historical days to calculate the covariance matrix and

to calculate the VaR estimate. The ex-post performance of

the portfolio is calculated as the portfolio return over one

holding period. Note we ignore transaction costs, as the aim

1In practice, a factor based approach may lead to better risk forecasts.
However, for simplicity, and given the number of dates is larger than the
number of stocks, a full covariance matrix approach was used.

2Obviously, this would not be possible to implement in practice, but it is
a simple way of introducing some forecasting power to our ex-ante stock
returns.A 5 percent information content reflects the explanatory power of
a typical industry cross-sectional multi factor model, and despite of these
low implied R-squared, successful investment strategies can be build which
such levels of explanatory power. Obviously, in practice it would not be
possible to implement this strategy, as we don’t know one day ahead stock
returns. However, as our aim is to illustrate the effectiveness of the heuristic
methods in portfolio optimisation, this is not a problem.

of the paper is not to propose a profitable trading strategy,

but rather, to illustrate the portfolio construction framework,

and implications of the choice of risk measure.

V. ANALYSIS AND DISCUSSION

We present two types of analysis. The first one aims at

comparing the the GNMA with a GA in terms of quality

of solutions found and efficiency. The second one aims at

validating the new features of the portfolio optimization

models proposed (i.e., allowing for short-selling and using

VaR as a measure of risk) by checking if the solutions found

make sense from a financial point of view.

A. Comparison of GNMA and GA

Two algorithms have been used. The GNMA above (re-

ferred to in the diagrams as NM) and a genetic algorithm

(referred to in the diagrams as GA). For both algorithms,

we have used standard parameter values from the literature,

as they produced good results in preliminary trials. The

GA uses uniform crossover with probability 0.8, bitflip

mutation with a probability of 1/n, where n = 2 · nA

is the size of the binary string, population size of n + 1
individuals, elitism and roulette-wheel selection. The GNMA

uses canonical parameters for the geometric transformations

(α = 1.0, γ = 2.0, ρ = 0.5, σ = 0.5) and population

size of n + 1 individuals. Both algorithms return the best

solution found after 100,000 fitness evaluations, which are

sufficient to reach high quality solutions. This allows for a

fair comparison of the algorithms in terms of quality of the

solution found. To be able to compare the algorithms also in

terms of efficiency, the number of fitness evaluations needed

to find the solution are also considered.

We have tested the GNMA and GA on the two types

of problem models, mean-variance with risk aversion λ =
10000 and bounded-VaR with threshold V aRmax = 0.020
(referred in the diagrams as MV and BV, respectively).

For each combination of algorithm and problem instance,

the table I reports summary statistics on the fitness of the

best solution found (fitness) and how many evaluations were

needed to find it (time). The statistics refer to averages and

variances on 250 days, and the values of each day are the

means of 10 independent runs (as the algorithms considered

are stochastic). Overall, the performance of GA and GNMA

is similar, both in terms of quality of solution produced and

time taken.

B. Financial Analysis of Optimal Portfolios

We can analyse whether the assumptions made in the

financial models used were appropriate. The performance

chart in Figure 2 below displays the average cumulative

realised return of each of the four strategies, with the average

calculated over the 10 runs. The annualised realised returns

are shown in the legend. From that, we can conclude the

model for stock return forecasts is appropriate, given that all

four strategies deliver positive returns over the sample period,

despite of forecasts only containing 5 percent of information,

with the remaining 95 percent being just noise. This proves



TABLE I
SUMMARY STATISTICS OVER 250 DAYS, EACH DAY IS AVERAGED OVER TEN RUNS. EXPECTED AND REALISED RISK NUMBERS ARE IN ANNUALISED

PERCENTAGES, VAR NUMBERS ARE IN DAILY PERCENTAGES.

Alg-Prob Fitness Time Expected Risk Realised Risk Expected VaR Realised VaR

GA-MV 2.63± 0.24 89410± 9955 14.22± 0.17 13.06± 0.52 n/a n/a
NM-MV 2.63± 0.24 89179± 10431 14.23± 0.24 13.15± 0.65 n/a n/a
GA-BV 2.24± 0.28 91710± 7764 16.16± 0.24 14.08± 1.09 2.00± 0.17 2.61± 0.48

NM-BV 2.25± 0.28 91603± 8039 16.14± 0.24 14.48± 1.06 2.00± 0.14 2.54± 0.22

the point that having a model with relatively low explanatory

power of next day’s stock return can be efficiently used

to implement profitable investment strategies, when applied

over a large enough set of stocks.
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Fig. 2. Portfolio cumulative performance

We can also compare expected risk with realised risk of the

portfolios, to assess whether the model used for forecasting

risk was appropriate. Table I shows the average expected risk

and the average realised risk in annualised percentages, over

the 10 runs, for each of the 4 problems. Here, realised risk

is calculated as the standard deviation of the realised daily

portfolio returns. Expected risk is only needed in the utility

function for the MV problem, but for comparison purposes

we also report it here for the BV problem. We can see that

the risk model used based on a historic 250 day rolling

window appears to be appropriate, as the forecasted risk

levels are generally in line with the realised risk exhibited

by the portfolios. The same conclusion can be drawn when

looking at expected VaR versus realised VaR numbers in

Table I. Despite of realised VaR being slightly higher than the

target 2 percent, and given that this is a small sample of only

10 runs, we can conclude the VaR constraint is achieving

its objective of limiting the downside risk of the portfolios

appropriately.

We used different risk measures in each of the two

problems, variance for the MV problem, and VaR for the

BV problem. The risk aversion parameter λ in the MV

problem and the VaR threshold V aRmax in the BV problem

were calibrated such that the realised risk of both sets of

portfolio returns were similar. This can be seen in Table I,

which shows realised risk levels for the two problems being

around 13.5 percent. By having two sets of portfolios with

comparable risk levels, we can draw some conclusions about

the impact of using the different risk measures. An interesting

observation from an investment point of view is how the

realised return for the mean-VaR portfolios is substantially

higher than the mean-variance portfolios. Variance, being a

symmetric measure, appears to limit the risk of the portfolio

both on the downside as well as on the upside. On the

other hand, VaR only limits the risk of the portfolio on the

downside (i.e., losses). This has implications for investment

in practice, assuming expected returns contain directional

information, and also assuming that historic based VaR

forecasts are a good predictor of extreme events in realised

performance. If that is the case, the use of VaR as a risk

measure should deliver higher returns as compared to the

use of variance, everything else being equal.

VI. CONCLUSIONS

In this paper we have proposed an interesting application

of heuristic methods for portfolio optimisation in implement-

ing a market neutral hedge fund strategy. We have shown

how the recently developed GNMA method is suitable for

tackling this type of problem, delivering solutions that are in

line with a GA approach. We have shown for the first time

that the GNMA performs well when applied to a real world

problem.

The analysis of using VaR instead of variance as a risk

measure has shown that VaR, by limiting downside risk, is

able to deliver higher returns, while variance, by limiting

both downside and upside symmetrically, delivers lower

returns.

Further work will consist of testing the sensitivity of the

results presented here to the choice of risk parameters, as well

as testing this portfolio optimisation framework with larger

datasets. We also plan to replace the return forecasting model

with a more realistic one, such as one based on typically used

stock selection factors in the investment industry, such as

valuation, momentum, fundamentals and technical indicators.
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