
Geometric Particle Swarm Optimization
for the Sudoku Puzzle

Alberto Moraglio
Department of Computer Science

University of Essex, UK

amoragn@essex.ac.uk

Julian Togelius
Department of Computer Science

University of Essex, UK

jtogel@essex.ac.uk

ABSTRACT
Geometric particle swarm optimization (GPSO) is a recently
introduced generalization of traditional particle swarm op-
timization (PSO) that applies to all combinatorial spaces.
The aim of this paper is to demonstrate the applicability
of GPSO to non-trivial combinatorial spaces. The Sudoku
puzzle is a perfect candidate to test new algorithmic ideas
because it is entertaining and instructive as well as a non-
trivial constrained combinatorial problem. We apply GPSO
to solve the sudoku puzzle.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Theory

Keywords
Particle Swarm Optimisation, Metric Space, Geometric
Crossover, Sudoku

1. INTRODUCTION
Particle swarm optimisation [8] has traditionally been ap-

plied to continuous search spaces. Although a version of
PSO for binary search spaces has been defined [7], all at-
tempts to extend PSO to richer spaces, such as, for example,
combinatorial spaces, have had no real success [3].

There are two ways of extending PSO to richer spaces.
The first one is rethinking and adapting the PSO for each
new solution representation. The second is making use of
a rigorous mathematical generalisation to a general class of
spaces of the notion (and motion) of particles. This sec-
ond approach has the advantage that a PSO can be de-
rived in a principled way for any search space belonging to
the given class. In recent work [16] we have pursued this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07,July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

Figure 1: Example of Sudoku puzzle.

approach. We have shown formally how a general form
of PSO (without the momentum term) can be obtained
by using theoretical tools developed for a different form
of search algorithms, namely evolutionary algorithms us-
ing geometric crossover and geometric mutation. These are
representation-independent operators that generalise many
pre-existing search operators for the major representations,
such as binary strings [12], real vectors [12], permutations
[14], syntactic trees [13] and sequences [15]. We have demon-
strated how to derive the specific PSO for the cases of Eu-
clidean, Manhattan and Hamming spaces and reported good
experimental results.

Sudoku is a logic-based placement puzzle. The aim of the
puzzle is to enter a digit from 1 through 9 in each cell of a
9x9 grid made up of 3x3 subgrids (called “regions”), start-
ing with various digits given in some cells (the “givens”).
Each row, column, and region must contain only one in-
stance of each digit. In fig 1 we show an example Sudoku
puzzle. Sudoku puzzles with a unique solution are called
proper sudoku, and the majority of published grids are of
this type.

Published puzzles often are ranked in terms of difficulty.
Perhaps surprisingly, the number of givens has little or no
bearing on a puzzle’s difficulty. It is based on the relevance
and the positioning of the numbers rather than the quantity
of the numbers.

The 9x9 Sudoku puzzle of any difficulty can be solved very
quickly by a computer. The simplest way is to use some
brute force trial-and-error search employing back-tracking.
Constraint programming is a more efficient method that
propagates the constraints successively to narrow down the
solution space until a solution is found or until alternate val-

ues cannot otherwise be excluded, in which case backtrack-
ing is applied. A highly efficient way of solving such con-
straint problems is the Dancing Links Algorithm, by Donald
Knuth [9].

The general problem of solving Sudoku puzzles on n2×n2

boards of n x n blocks is known to be NP-complete [19].
This means that, unless P=NP, the exact solution meth-
ods that solve very quickly the 9x9 boards take exponential
time in the board size in the worst case. However, it is
unknown weather the general Sudoku problem restricted to
puzzles with unique solutions remains NP-complete or be-
comes polynomial.

Solving Sudoku puzzles can be expressed as a graph col-
oring problem. The aim of the puzzle in its standard form is
to construct a proper 9-coloring of a particular graph, given
a partial 9-coloring.

A valid Sudoku solution grid is also a Latin square. Su-
doku imposes the additional regional constraint. Latin
square completion is known to be NP-complete. A further
relaxation of the problem allowing repetitions on columns
(or rows) makes it polynomially solvable.

Admittedly evolutionary algorithms and meta-heuristics
in general are not the best technique to solve Sudoku be-
cause they do not exploit systematically the problem con-
straints to narrow down the search. However, Sudoku is an
interesting study case because it is a relatively simple prob-
lem but not trivial since is NP-complete, and the different
types of constraints make Sudoku an interesting playground
for search operator design.

In previous work [10] we have used the geometric frame-
work to design an evolutionary algorithm to solve the Su-
doku puzzle and obtained very good experimental results.

The aim of this paper is to demonstrate that GPSO can
be specified easily to non-trivial combinatorial spaces. We
demonstrate this by applying GPSO to solve the Sudoku
puzzle. We report extensive experimental results.

In section 2, we introduce the geometric framework. In
section 3, we introduce the general geometric particle swarm
optimization algorithm. In section 4, we apply GPSO to Su-
doku. In section 5, we report extensive experimental results.
In section 6, we present conclusions and future work.

2. GEOMETRIC FRAMEWORK
Geometric operators are defined in geometric terms using

the notions of line segment and ball. These notions and
the corresponding genetic operators are well-defined once a
notion of distance in the search space is defined. Defining
search operators as functions of the search space is opposite
to the standard way [6] in which the search space is seen as
a function of the search operators employed.

2.1 Geometric preliminaries
In the following we give necessary preliminary geometric

definitions and extend those introduced in [12]. For more
details on these definitions see [4].

The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symme-
try and triangular inequality. A simple connected graph is
naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length
of a shortest path between the nodes. Distances arising
from graphs via their path metric are called graphic dis-
tances. Similarly, an edge-weighted graph with strictly pos-

itive weights is naturally associated to a metric space via a
weighted path metric.

In a metric space (S, d) a closed ball is a set of the form
B(x; r) = {y ∈ S|d(x, y) ≤ r} where x ∈ S and r is a positive
real number called the radius of the ball. A line segment is
a set of the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)}
where x, y ∈ S are called extremes of the segment. Metric
ball and metric segment generalise the familiar notions of
ball and segment in the Euclidean space to any metric space
through distance redefinition. In general, there may be more
than shortest path (geodesic) connecting the extremes of
a metric segment; the metric segment is the union of all
geodesics.

We assign a structure to the solution set by endowing
it with a notion of distance d. M = (S, d) is therefore a
solution space and L = (M, g) is the corresponding fitness
landscape.

2.2 Geometric crossover
Definition: A binary operator is a geometric crossover un-
der the metric d if all offspring are in the segment between
its parents.

The definition is representation-independent and, there-
fore, crossover is well-defined for any representation. Being
based on the notion of metric segment, crossover is only
function of the metric d associated with the search space.

This class of operators is really broad. For vectors of
reals, various types of blend or line crossovers, box re-
combinations, and discrete recombinations are geometric
crossovers [12]. For binary and multary strings, all homol-
ogous crossovers are geometric [12, 11]. For permutations,
PMX, Cycle crossover, merge crossover and others are ge-
ometric crossovers [14]. For syntactic trees, the family of
homologous crossovers are geometric [13]. Recombinations
for several more complex representations are also geometric
[15, 12, 14, 17].

2.3 Geometric crossover for permutations
In previous work we have studied various crossovers

for permutations, revealing that PMX [5], a well-known
crossover for permutations, is geometric under swap dis-
tance. Also, we found that Cycle crossover [5], another tra-
ditional crossover for permutations, is geometric under swap
distance and under Hamming distance (geometricity un-
der Hamming distance for permutations implies geometric-
ity under swap distance but not vice versa). Finally, we
showed that geometric crossovers for permutations based on
edit moves are naturally associated with sorting algorithms:
picking offspring on a minimum path between two parents
corresponds to picking partially sorted permutations on the
minimal sorting trajectory between the parents.

2.4 Geometric crossover landscape
Geometric operators are defined as functions of the dis-

tance associated with the search space. However, the search
space does not come with the problem itself. The problem
consists of a fitness function to optimize and a solution set.
The act of putting a structure over the solution set is part of
the search algorithm design and it is a designer’s choice. A
fitness landscape is the fitness function plus a structure over
the solution space. So, for each problem, there is one fitness
function but as many fitness landscapes as the number of
possible different structures over the solution set. In prin-

ciple, the designer could choose the structure to assign to
the solution set completely independently from the problem
at hand. However, because the search operators are defined
over such a structure, doing so would make them decoupled
from the problem at hand, hence turning the search into
something very close to random search.

In order to avoid this one can exploit problem knowledge
in the search. This can be achieved by carefully designing
the connectivity structure of the fitness landscape. For ex-
ample, one can study the objective function of the problem
and select a neighbourhood structure that couples the dis-
tance between solutions and their fitness values. Once this
is done problem knowledge can be exploited by search op-
erators to perform better than random search, even if the
search operators are problem-independent (as in the case of
geometric crossover and mutation).

Under which conditions is a landscape well-searchable by
geometric operators? As a rule of thumb, geometric muta-
tion and geometric crossover work well on landscapes where
the closer pairs of solutions, the more correlated their fit-
ness values. Of course this is no surprise: the importance of
landscape smoothness has been advocated in many different
contexts and has been confirmed in uncountable empirical
studies with many neighborhood search meta-heuristics [18].

Rule-of-thumb 1: if we have a good distance for the prob-
lem at hand than we have good geometric mutation and
good geometric crossover

Rule-of-thumb 2: a good distance for the problem at hand
is a distance that makes the landscape “smooth”

2.5 Product geometric crossover
In recent work [11] we have introduced the notion of prod-

uct geometric crossover.

Theorem 1. Cartesian product of geometric crossover is
geometric under the sum of distances

This theorem is very interesting because it allows one to
build new geometric crossovers by combining crossovers that
are known to be geometric. In particular, this applies to
crossovers for mixed representations. The compounding ge-
ometric crossovers do not need to be independent, for the
cartesian crossover to be geometric.

2.6 Multi-parental geometric crossover
To extend geometric crossover to the case of multiple par-

ents we need the following definitions.
A family X of subsets of a set X is called convexity on

X if: (C1) the empty set ∅ and the universal set X are in
X , (C2) if D ⊆ X is non-empty, then

TD ∈ X , and (C3)
if D ⊆ X is non-empty and totally ordered by inclusion,
then

SD ∈ X . The pair (X,X) is called convex structure.
The members of X are called convex sets. By the axiom
(C1) a subset A of X of the convex structure is included
in at least one convex set, namely X. From axiom (C2), A
is included in a smallest convex set, the convex hull of A:
co(A) =

T{C|A ⊆ C ∈ X}. The convex hull of a finite set is
called a polytope. The axiom (C3) requires domain finiteness
of the convex hull operator: a set C is convex iff it includes
co(F) for each finite subset F of C. The convex hull operator
applied to set of cardinality two is called segment operator.
Given a metric space M = (X, d) the segment between a
and b is the set [a, b]d = {z ∈ X|d(x, z) + d(z, y) = d(x, y)}.
The abstract geodetic convexity C on X induced by M is

obtained as follow: a subset C of X is geodetically-convex
provided [x, y]d ⊆ C for all x, y in C. If co denotes the
convex hull operator of C, then ∀a, b ∈ X : [a, b]d ⊆ co{a, b}.
The two operators need not to be equal: there are metric
spaces in which metric segments are not all convex.

We can now provide the following extension [16]:

Definition 1. (Multi-parental geometric crossover) In
a multi-parental geometric crossover, given n parents
p1, p2, . . . , pn their offspring are contained in the metric con-
vex hull of the parents C({p1, p2, . . . , pn}) for some metric d

Theorem 2. (Decomposable three-parent recombination)
Every multi-parental recombination RX(p1, p2, p3) that can
be decomposed as a sequence of 2-parental geometric
crossovers under the same metric GX and GX ′, so that
RX(p1, p2, p3) = GX(GX ′(p1, p2), p3), is a three-parental
geometric crossover

3. GEOMETRIC PSO

3.1 Basic, Canonical PSO Algorithm and Ge-
ometric Crossover

Consider the canonical PSO in Algorithm 1. The main
feature that allows the motion of particles is the ability to
perform linear combinations of points in the search space.
To obtain a generalisation of PSO to generic search spaces,
we can achieve this same ability by using multiple (geomet-
ric) crossover operations.

Algorithm 1 Standard PSO algorithm

1: for all particle i do
2: initialise position xi ∈ U [a,b] and velocity vi = 0
3: end for
4: while not converged (optimum of current objective

function is not found) do
5: for all particle i do
6: set personal best x̂i as best position found so far

from the particle (best of current and previous po-
sitions)

7: set global best ĝ as best position found so far from
the whole swarm (best of personal bests)

8: end for
9: for all particle i do

10: update velocity using equation

vi(t+1) = ωvi(t)+φ1R1(ĝ(t)−xi(t))+φ2R2(x̂i(t)−xi(t))
(1)

11: update position using equation

xi(t + 1) = xi(t) + vi(t + 1) (2)

12: end for
13: end while

In the following we illustrate the parallel between geo-
metric crossover and the motion of a particle (see Figure 2).
Geometric crossover picks offspring C on a line segment be-
tween parents A, B. Geometric crossover can be interpreted
as a motion of a particle: consider a particle P that moves
in the direction to a point D being in the next time step in
position P ′. If now one equates parent A with the particle
P and parent B with the direction point D, the offspring
C is therefore the particle at the next time step P ′. The

Figure 2: Geometric crossover and particle motion.

distance between parent A and offspring C is the intensity
of the velocity of the particle P . Notice that the particle
moves from P to P ′: this means that the particle P is re-
placed by the particle P ′ in the next time step. In other
words, the new position of the particle replaces the previ-
ous position. Coming back to the geometric crossover, this
means that the offspring C replaces its parent A in the new
population. Since at a given time all particles move, each
particle is selected for mating. Mating is a weighted multi-
recombination involving the memory of the particle and the
best in the current population. Weights are the propensity
of a particle towards memory, sociality, stability.

We explain these ideas in detail in the following sections.

3.2 Geometric interpretation of linear combi-
nations

In the following we first give some necessary preliminary
notions on linear combinations and their geometric interpre-
tation. Then, we use these to show that when the momen-
tum term in the velocity update equation of PSO (equa-
tion(1)) is zero we can characterize the dynamic of PSO as
a simple linear combination of the positions of the particle,
particle best and swarm best without making explicit use of
the particle velocity. This opens the way to the generaliza-
tion of PSO to generic metric spaces presented in the next
sections.

If v1, ..., vn are vectors and a1, ..., an are scalars, then the
linear combination of those vectors with those scalars as co-
efficients is : a1v1 + a2v2 + a3v3 + · · · + anvn . A linear
combination on n linearly independent vectors spans com-
pletely a n-dimensional or lower dimensional space but not a
higher dimensional one. So, the linear combination of three
linearly independent points spans all a 3-dimensional space
but not a 4-dimensional one.

An affine combination of vectors x1, ..., xn is a linear com-
bination

Pn
i=1 αi · xi = α1x1 + α2x2 + · · ·+ αnxn in which

the sum of the coefficients is 1, thus:
Pn

i=1 αi = 1. When
a vector represents a point in space, the affine combination
of 2 points spans completely the line passing through them;
the affine combination of 3 points spans completely the plane
(2D line) passing through them; increasing number of points
spans completely higher dimensional “lines”.

A convex combination is a linear combination of vectors
where all coefficients are non-negative and sum up to 1. It is
called “convex combination”, since, when a vector represent
a point in space, all possible convex combinations (given
the base vectors) will be within the convex hull of the given
points. In fact, the set of all convex combinations constitutes
the convex hull.

A special case is with only two points, where the value of

the new point (formed by the convex combination) will lie
on a straight line between the two points. For three points,
their convex hull is the triangle with the points as vertices.

Theorem 3. In a PSO with no momentum (ω = 0) and
where learning rates are such that φ1 + φ2 < 1, the future
position of each particle x′ is within the triangle formed by
its current position x, its local best x̂ and the swarm best
ĝ. Furthermore, x′ can be expressed without involving the
particle’s velocity as x′ = (1− w2 − w3)x + w2x̂ + w3ĝ.

In the next section, we generalize this simplified form of
PSO from real vectors to generic metric spaces. Mutation
will be required to extend the search beyond the convex hull.

3.3 Convex combinations in metric spaces
Linear combinations are well-defined for vector spaces, al-

gebraic structures endowed with scalar product and vecto-
rial sum. A metric space is a set endowed with a notion of
distance. The set underlying a metric space does not nor-
mally come with well-defined notions of scalar product and
sum among its elements. So a linear combination of its ele-
ments is not defined. How can we then define a convex com-
bination in a metric space? Vectors in a vector space can be
easily understood as points in a metric space. However, for
scalars their interpretation is not as straightforward: what
do the scalar weights in a convex combination mean in a
metric space?

As seen in section 3.2, a convex combination is an alge-
braic description of a convex hull. However, even if the no-
tion of convex combination is not defined for metric spaces,
convexity in metric spaces is still well-defined through the
notion of metric convex set that is a straightforward gener-
alization of traditional convex set. Since convexity is well-
defined for metric spaces, we still have hope to generalize
the scalar weights of a convex combination trying to make
sense of them in terms of distance.

The weight of a point in a convex combination can be seen
as a measure of relative linear attraction toward its corre-
sponding point versus attractions toward the other points of
the combination. The closer the weight to one, the stronger
the attraction to its corresponding point. The resulting
point of the convex combination can be seen as a weighted
spatial average and it is the equilibrium point of all the at-
traction forces. The distance between the equilibrium point
and a point of the convex combination is therefore a de-
creasing function of the level of attraction (weight) of the
point: the stronger the attraction, the smaller its distance
to the equilibrium point. This observation can be used to
reinterpret the weights of a convex combination in a metric
space as follows: y = w1x1 + w2x2 + w3x3 with w1, w2 and
w3 greater than zero and w1 +w2 +w3 = 1 is generalized to
d(x1, y) ∼ 1/w1, d(x2, y) ∼ 1/w2 and d(x3, y) ∼ 1/w3.

This definition is formal and valid for all metric spaces but
it is non-constructive. In contrast a convex combination, not
only defines a convex hull, but it tells also how to reach all its
points. So, how can we actually pick a point in the convex
hull respecting the above distance requirements? Geometric
crossover will help us with this in the next section.

The requirements for a convex combination in a metric
space are:

1. Convex Weights: the weights respect the form of a
convex combination: w1, w2, w3 > 0 and w1 + w2 +
w3 = 1

2. Convexity: the convex combination operator combines
x, x̂ and ĝ and returns a point in their metric convex
hull, or simply triangle, under the metric of the space
considered

3. Coherence between weights and distances: the dis-
tances to the equilibrium point are decreasing func-
tions of their weights

4. Symmetry: the same value assigned to w1, w2 or w3

has the same weight (so in a equilateral triangle, if the
coefficients have all the same value, the distance to the
equilibrium point are the same)

3.4 Geometric PSO algorithm
The generic Geometric PSO algorithm is illustrated in

Algorithm 2. This differs from the standard PSO (Algo-
rithm 1) in that: there is no velocity, the equation of po-
sition update is the convex combination, there is mutation
and the parameters ω, φ1, and φ2 are positive and sum up
to one.

Algorithm 2 Geometric PSO algorithm

1: for all particle i do
2: initialise position xi at random in the search space
3: end for
4: while stop criteria not met do
5: for all particle i do
6: set personal best x̂i as best position found so far by

the particle
7: set global best ĝ as best position found so far by

the whole swarm
8: end for
9: for all particle i do

10: update position using a randomized convex combi-
nation

xi = CX((xi, ω), (ĝ, φ1), (x̂i, φ2)) (3)

11: mutate xi

12: end for
13: end while

In previous work we have specified this algorithm to Eu-
clidean, Manhattan and Hamming spaces. In the following
we show how to specify it to general representations in a
straightforward way.

3.5 Geometric PSO for general representa-
tions

Before introducing how to extend geometric PSO for other
solution representations, we will discuss the relation between
3-parental geometric crossover and the symmetry require-
ment for a convex combination.

We could consider, or define, a three-parental recombi-
nation and then prove that it is a three-parental geometric
crossover by showing that it can be actually decomposed
into two sequential applications of a geometric crossover for
the specific space.

Alternatively, we could skip altogether the explicit defini-
tion of a three-parental recombination. In fact to obtain the
three-parental recombination we could use two sequential
applications of a known two-parental geometric crossover
for the specific space. This composition is indeed a three-
parental recombination, it combines three parents, and it is

decomposable by construction, hence it is a three-parental
geometric crossover.

The benefit of defining explicitly a three-parental recom-
bination is that the requirement of symmetry of the con-
vex combination is true by construction: if the roles of any
two parents are swapped exchanging in the three-parental
recombination both positions and respective recombination
weights, the resulting recombination operator is equivalent
to the original operator.

The symmetry requirement becomes harder to enforce
and prove for a three-parental geometric crossover obtained
by two sequential applications of a two-parental geometric
crossover. We illustrate this in the following. Let us con-
sider three parents a,b and c with weights wa, wb and wc

positive and adding up to one. If we have a symmetric
three-parental weighted geometric crossover ∆GX, the sym-
metry of the recombination is guaranteed by the symmetry
of the operator. So, ∆GX((a, wa), (b, wb), (c, wc)) is equiva-
lent to ∆GX((b, wb), (a, wa), (c, wc)), hence the requirement
of symmetry on the weights of the convex combination holds.
If we consider a three-parental recombination defined by
using twice a two-parental genetic crossover GX we have:
∆GX((a, wa), (b, wb), (c, wc)) =
GX((GX((a, w′a), (b, w′b)), wab), (c, w

′
c)) with the constraint

that w′a and w′b positive and adding up to one and wab and
w′c positive and adding up to one. It is immediate to notice
that there is not inherent symmetry in this expression: the
weights w′a and w′b are not directly comparable with w′c be-
cause are relative weights between a and b. Moreover there
is the extra weight wab. This makes problematic the re-
quirement of symmetry: given the desired wa, wb and wc,
what values of w′a, w′b, wab and w′c do we have to choose
to obtain an equivalent symmetric 3-parental weighted re-
combination expressed as a sequence of two two-parental
geometric crossovers?

For the Euclidean space, it is easy to answer this question
using simple algebra: ∆GX = wa · a + wb · b + wc · c =
(wa + wb)(

wa
wa+wb

· a + wb
wa+wb

· b) + wc · c. Since the con-

vex combination of two points in the Euclidean space is
GX((x, wx), (y, wy)) = wx · x + wy · y and wx, wy > 0
and wx + wy = 1 then ∆GX((a, wa), (b, wb), (c, wc)) =
GX((GX((a, wa

wa+wb
), (b, wb

wa+wb
)), wa + wb), (c, wc)). Al-

though this question may be less straightforward to answer
for other spaces, we could use the equation above as a rule-
of-thumb to map the weights of ∆GX and the weights in
the sequential GX decomposition.

Where does this discussion leave us about the extension of
geometric PSO to other representations? We have seen that
there are two alternative ways to produce a convex combina-
tion for a new representation: (i) explicitly define a symmet-
ric three-parental recombination anew for the new represen-
tation and then prove its geometricity by showing that it is
decomposable into a sequence of two two-parental geomet-
ric crossovers (ii) use twice the simple geometric crossover
to produce a symmetric or nearly symmetric three-parental
recombination. The second option is indeed very interesting
because it allows us to extended automatically to geometric
PSO all representations we have geometric crossovers for,
such as permutations, GP trees, variable-length sequences,
to mention few, and virtually any other complex solution
representation.

4. GEOMETRIC PSO FOR SUDOKU
In this section we will put into practice the ideas dis-

cussed in section 3.5 and propose a geometric PSO to solve
the Sudoku puzzle. In section 4.1 we present a geomet-
ric crossover for Sudoku. In section 4.2 we present a three
parental crossover for Sudoku and show that is a convex
combination.

4.1 Geometric crossover for Sudoku
Sudoku is a constraint satisfaction problem with 4 types

of constraints:

1. Fixed elements

2. Rows are permutations

3. Columns are permutations

4. Boxes are permutations

It can be cast as an optimization problem by choosing
some of the constraints as hard constraints that all solu-
tions have to respect, and the remaining constraints as soft
constraints that can be only partially fulfilled and the level
of fulfillment is the fitness of the solution. We consider a
space with the following characteristics:

• Hard constraints: fixed positions and permutations on
rows

• Soft constraints: permutations on columns and boxes

• Distance: sum of swap distances between paired rows
(row-swap distance)

• Feasible geometric mutation: swap two non-fixed ele-
ments in a row

• Feasible geometric crossover : row-wise PMX and row-
wise cycle crossover

This mutation preserves both fixed positions and permu-
tations on rows because swapping elements within a row
that is a permutation returns a permutation. The mutation
is 1-geometric under row-swap distance.

Row-wise PMX and row-wise cycle crossover recombine
parent grids applying respectively PMX and cycle crossover
to each pair of corresponding rows. In case of PMX the
crossover points can be selected to be the same for all rows,
or be random for each row. In terms of offspring that can
be generated, the second version of row-wise PMX includes
all the offspring of the first version.

Simple PMX and simple cycle crossover applied to parent
permutations return always permutations. They also pre-
serve fixed positions. This is because both are geometric
under swap distance and in order to generate offspring on a
minimal sorting path between parents using swaps (sorting
one parent into the order of the other parent) they have to
avoid swaps that change common elements in both parents
(elements that are already sorted). Therefore also row-wise
PMX and row-wise cycle crossover preserve both hard con-
straints.

Using the product geometric crossover theorem, it is imme-
diate that both row-wise PMX and row-wise cycle crossover
are geometric under row-swap distance, since simple PMX
and simple cycle crossover are geometric under swap dis-
tance. Since simple cycle crossover is also geometric under

Hamming distance (restricted to permutations), row-wise
cycle crossover is also geometric under Hamming distance.

To restrict the search to the space of grids with fixed posi-
tions and permutations on rows, the initial population must
be seeded with feasible random solutions taken from this
space. Generating such solutions can be done still very effi-
ciently.

Fitness function (to maximize): sum of number of unique
elements in each row, plus, sum of number of unique ele-
ments in each column, plus, sum of number of unique ele-
ments in each box. So, for a 9× 9 grid we have a maximum
fitness of 9 · 9 + 9 · 9 + 9 · 9 = 243 for a completely cor-
rect Sudoku grid and a minimum fitness little more than
9 · 1 + 9 · 1 + 9 · 1 = 27 because for each row, column and
square there is at least one unique element type.

It is possible to show that the fitness landscapes associ-
ated with this space is smooth, making the search operators
proposed a good choice for Sudoku.

4.2 Convex combination for Sudoku
In the following we first define a multi-parental recombi-

nation for permutations and then prove that it respects the
four requirements for being a convex combination presented
in section 3.3.

Let us consider the following example to illustrate how
the multi-parental sorting crossover works.

mask: 1 2 2 3 1 3 2

p1: 1 2 3 4 5 6 7

p2: 3 5 1 4 2 7 6

p3: 3 2 1 4 5 7 6

o: 1 5 3 4 2 7 6

The mask is generated at random and is a vector of the
same length of the parents. The number of 1s, 2s and 3s
in the mask is proportional to the recombination weights
w1, w2 and w3 of the parents. Every entry of the mask
indicates to which parent the other two parents need to be
equal to for that specific position. In a parent, the content
of a position is changed by swapping it with the content of
another position in the parent. The recombination proceeds
as follows. The mask is scanned from the left to the right.
In position 1 the mask has 1. This means that at position
1 parent 2 and parent 3 have to become equal to parent 1.
This is done by swapping the element 1 and 3 in parent 2
and the element 1 and 3 in parent 3. The recombination now
continues on the updated parents: parent 1 is left unchanged
and current parent 2 and parent 3 are the original parent 2
and 3 after the swap. At position 2 the mask has 2. This
means that at position 2 current parent 1 and current parent
3 have to become equal to current parent 2. So at position
2, parent 1 and parent 3 have to get 5. To achieve this, in
parent 1 we need to swap elements 2 and 5 and in parent
3 we need to swap elements 2 and 5. The recombination
continues on the updated parents for position 3 and so on
up to the last position in the mask. At this point the three

parents are now equal because at each position one element
of the permutation has been fixed in that position and it
is automatically not involved in any further swap. So after
all positions have been considered, all elements are fixed.
The permutation to which the three parents converged is
the offspring permutation. So, this recombination sorts by
swaps the three parents towards each others according to
the contents of the crossover mask and the offspring is the
result of this multiple sorting. This recombination can be
easily generalized to any number of parents.

Theorem 4. (Geometricity of three-parental sorting
crossover) Three-parental sorting crossover is geometric
crossover under swap distance

Proof sketch: A three-parental sorting crossover with re-
combination mask m123 is equivalent to a sequence of two
two-parental sorting crossovers: the first between parent p1

and p2 with recombination mask m12 obtained by substitut-
ing all 3’s with 2’s in m123. The offspring p12 so obtained is
recombined with p3 with recombination mask m23 obtained
by substituting all 1’s with 2’s in m123. So, for theorem 2
the three-parental sorting crossover is geometric.

Theorem 5. (Coherence between weights and distances)
In weighted multi-parent sorting crossover, the swap dis-
tances of the parents to the expected offspring are decreasing
functions of the corresponding weights.

Proof sketch: The weights associated to the parents are
proportional to their frequencies in the recombination mask.
The more occurrences of a parent in the recombination mask
the smaller the swap distance between this parent and the
offspring. This is because the mask tells the parent to copy
at each position. So, the higher the weight of a parent, the
smaller its distance to the offspring.

The weighted multi-parental sorting crossover is a con-
vex combination operator satisfying the four requirements
of a metric convex combination for the swap space: con-
vex weights sum to 1 by definition, convexity (geometricity,
theorem 4), coherence (theorem 5) and symmetry is self-
evident.

The solution representation for Sudoku is a vector of per-
mutations. For the product geometric crossover theorem,
the compound crossover over the vector of permutations
that applies a geometric crossover to each permutation in
the vector is a geometric crossover. This theorem extends
to the case of a multi-parent geometric crossover.

Theorem 6. (Product geometric crossover for convex
combinations) A convex combination operator applied to
each entry of a vector results in a convex combination oper-
ator for the entire vector.

Proof sketch: The product geometric crossover theorem
(theorem 1) is true because the segment of a product space
is the cartesian product of the segments of its projections.
A segment is the convex hull of two points (parents). More
in general, it holds that the convex hull (of any number of
points) of a product space is the cartesian product of the
convex hulls of its projections [20]. The product geometric
crossover then naturally generalizes to the multi-parent case.

As explained in section 3.5 there are two alternative ways
of producing a convex combination: either using a convex

Table 1: Average of bests of 50 runs with population
size 100, lattice topology and mutation 0.0 varying
sociality (vertical) and memory (horizontal).

Soc/Mem 0.0 0.2 0.4 0.6 0.8 1.0

1.0 208 - - - - -
0.8 227 229 - - - -
0.6 230 233 235 - - -
0.4 231 236 237 240 - -
0.2 232 239 241 242 242 -
0.0 207 207 207 207 207 207

Table 2: Average of bests of 50 runs with population
size 100, lattice topology and mutation 0.3 varying
sociality (vertical) and memory (horizontal).

Soc/Mem 0.0 0.2 0.4 0.6 0.8 1.0

1.0 238 - - - - -
0.8 238 237 - - - -
0.6 239 239 240 - - -
0.4 240 240 241 241 - -
0.2 240 241 242 242 242 -
0.0 213 231 232 233 233 233

combination operator or simply apply twice a 2-parental
weighted recombination with appropriate weights to obtain
the convex combination.

5. EXPERIMENTAL RESULTS
In order to test the efficacy of the geometric PSO algo-

rithm on the Sudoku problem, we ran several experiments in
order to thoroughly explore the parameter space and varia-
tions of the algorithm. The algorithm in itself is a straight-
forward implementation of the geometric PSO algorithm
given in section 3.4 with the search operators for Sudoku
presented in section 4.2.

The parameters we varied were swarm sociality and mem-
ory, each of which were in turn set to 0, 0.2, 0.4, 0.6, 0.8 and
1.0. As the inertia is defined as (1 - sociality - memory) the
space of this parameter was implicitly explored. Likewise,
mutation probability was set to either 0, 0.3, 0.7 or 1.0.
The swarm size was set to be either 20, 100 or 500 parti-
cles, but the number of updates was set so that each run
of the algorithm resulted in exactly 100000 fitness evalua-
tions (thus performing 5000, 1000 or 200 updates). Further,
each combination was tried with ring topology, von Neu-
mann topology (or lattice topology) and global topology.
Both ways to produce convex combination operators, ex-
plicit and implicit, were tried and turned out to produce
indistinguishable results.

5.1 Effects of varying coefficients
The best population size is 100. The other two sizes

we studied, 20 and 500 were considerably worse. The best
topology is the lattice topology. The other two topologies
we studied were worse.

From tables 1, 2 and 3, we can see that mutation rates
of 0.3 and 0.7 perform better than no mutation at all. We
can also see that parameter settings with inertia set to more
than 0.4 generally perform badly. The best configurations

Table 3: Average of bests of 50 runs with population
size 100, lattice topology and mutation 0.7 varying
sociality (vertical) and memory (horizontal).

Soc/Mem 0.0 0.2 0.4 0.6 0.8 1.0

1.0 232 - - - - -
0.8 232 240 - - - -
0.6 228 241 241 - - -
0.4 224 242 242 242 - -
0.2 219 234 242 242 242 -
0.0 215 226 233 233 236 236

Table 4: Success rate of various methods.
Method Success

GA 50/50
Hillclimber 35/50
PSO-Global 7/50
PSO-ring 20/50
PSO-von Neumann 36/50

generally have sociality set to 0.2 or 0.4, memory set to 0.4
or 0.6, and inertia 0 or to 0.2. This gives us some indication
of the importance of the various types of recombinations in
PSO as applied at least to this particular problem. Note
that the only type of recombination that uniquely differen-
tiates PSO from evolutionary algorithms is the inertia, and
that the best results for this problem were found with very
low or no inertia. In the case of inertia set to 0, PSO in
fact degenerates to a type of genetic algorithm with local
selection between parents and offspring.

5.2 PSO vs EA
Table 4 compares the success rate of the best configura-

tions of various methods we have tried in this and our previ-
ous paper. Success is here defined as in how many runs (out
of 50) the global optimum (243) is reached. All the methods
were allotted the same number of function evaluations per
run.

From the table we can see that the von Neumann topol-
ogy clearly outperforms the other topologies we tested, and
that a PSO with this topology can achieve a respectable
success rate on this tricky non-continuous problem. How-
ever, the best genetic algorithm still significantly outper-
forms the best PSO we have found so far. We believe this
at least partly to be the effect of the even more extensive
tuning of parameters and operators undertaken in our GA
experiments.

6. CONCLUSIONS AND FUTURE WORK
Geometric PSO is rigorous generalization of the classical

PSO to general metric spaces. In particular, it applies to
combinatorial spaces.

We have demonstrated how simple it is to specify the gen-
eral geometric particle swarm optimization algorithm to the
space of Sudoku grids (vectors of permutations). This is
the first time that a PSO algorithm has been successfully
applied to a non-trivial combinatorial space. This shows
that geometric PSO is indeed a natural and promising gen-
eralization of classical PSO. In future work we will consider

geometric PSO for the space of genetic programs.

7. REFERENCES
[1] T. Bäck and D. B. Fogel and T. Michalewicz.

Evolutionary Computation 1: Basic Algorithms and
Operators. Institute of Physics Publishing, 2000.

[2] D. Bratton and J. Kennedy. Defining a Standard for
Particle Swarm Optimization, Proceedings of EuroGP,
2006.

[3] M. Clerc. Discrete Particle Swarm Optimization,
Illustrated by the Traveling Salesman Problem. New
Optimization Techniques in Engineering, Springer,
2004.

[4] M. Deza and M. Laurent. Geometry of cuts and
metrics. Springer, 1991.

[5] D. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley,
1989.

[6] T. Jones. Evolutionary Algorithms, Fitness Landscapes
and Search. PhD thesis, University of New Mexico,
1995.

[7] J. Kennedy and R.C. Eberhart. A Discrete Binary
Version of the Particle Swarm Algorithm, IEEE, 1997.

[8] J. Kennedy and R.C. Eberhart. Swarm Intelligence,
Morgan Kaufmann Publishers, 2001.

[9] D. E. Knuth. Dancing links. Preprint P159, Stanford
University, 2000.

[10] A. Moraglio and J. Togelius and S. Lucas. Product
Geometric Crossover for the Sudoku Puzzle.
Proceedings of IEEE Congress on Evolutionary
Computation, 2006.

[11] A. Moraglio and R. Poli. Product geometric crossover.
Proceedings of Parallel Problem Solving from Nature
Conference, 2006.

[12] A. Moraglio and R. Poli. Topological interpretation of
crossover. Proceedings of Genetic and Evolutionary
Computation Conference, 2004.

[13] A. Moraglio and R. Poli. Geometric landscape of
homologous crossover for syntactic trees. Proceedings
of IEEE Congress on Evolutionary Computation,
2005.

[14] A. Moraglio and R. Poli. Topological crossover for the
permutation representation. GECCO 2005 Workshop
on Theory of Representations, 2005.

[15] A. Moraglio and R. Seehuus and R. Poli. Geometric
crossover for biological sequences. Proceedings of
European Conference on Genetic Programming, 2006.

[16] A. Moraglio and C. Di Chio and R. Poli. Geometric
Particle Swarm Optimization. Proceedings of European
Conference on Genetic Programming, 2007.

[17] A. Moraglio and R. Poli. Geometric Crossover for
Sets, Multisets and Partitions. Proceedings of Parallel
Problem Solving from Nature Conference, 2006.

[18] P. M. Pardalos and M. G. C. Resende, editors.
Handbook of Applied Optimization. Oxford University
Press, 2002.

[19] T. Yato and T. Seta. Complexity and completeness of
finding another solution and its application to puzzles.
Preprint, University of Tokyo, 2005.

[20] M. L. J. Van de Vel. Theory of Convex Structures. North-
Holland, 1993.

