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ABSTRACT
Geometric crossover is a representation-independent gener-
alization of the traditional crossover defined using the dis-
tance of the solution space. Using a distance tailored to
the problem at hand, the formal definition of geometric
crossover allows to design new problem-specific crossovers
that embed problem-knowledge in the search. The standard
encoding for multiway graph partitioning is highly redun-
dant: each solution has a number of representations, one for
each way of labeling the represented partition. Traditional
crossover does not perform well on redundant encodings.
We propose a new geometric crossover for graph partition-
ing based on a labeling-independent distance that filters the
redundancy of the encoding. A correlation analysis of the
fitness landscape based on this distance shows that it is well
suited to graph partitioning. Our new genetic algorithm
outperforms existing ones.

Categories and Subject Descriptors
G.2.3 [Mathematics of Computing]: DISCRETE MATH-
EMATICS—Applications

General Terms
Theory

Keywords
Geometric crossover, labeling-independent distance, multi-
way graph partitioning
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Geometric crossover [21] is a representation-independent
operator defined over the distance of the search space. Tra-
ditional crossover can be considered as a geometric crossover
based on the Hamming distance. Informally, geometric cross-
over requires the offspring to lie between parents. The for-
mal definition of geometric crossover can be used to guide
the design of new specific crossover operators for non-standard
representations using as base for geometric crossover dis-
tances rooted on the specific representation [23]. To be
effective, specific geometric crossover operators need to be
matched to the problem at hand. In order to embed problem
knowledge in the crossover operator, this has to be based on
a distance that is meaningful for the problem at hand. In
previous work [22], we have suggested a rule of thumb: the
distance chosen should make the resulting fitness landscape
“smooth” in some statistical sense, or in other words, closer
solutions tend to have closer fitness.

Grouping problems are interesting and NP-hard [8]. In
this paper, we focus on the multiway graph partitioning
problem. When applying evolutionary algorithms to group-
ing problems, the standard solution encoding is highly re-
dundant. This affects badly the performance of traditional
crossover. In [4], it was introduced a highly effective proce-
dure to compensate for redundancy that requires a labeling-
normalization phase before the actual exchange of genetic
material between parents.

Distances are becoming of increasing importance both
in the analysis and design of evolutionary algorithm. The
Hamming distance is a näıve distance for grouping problems
because it does not keep into account the inherent redun-
dancy of the solution encoding. In previous work [17], we
have introduced a natural distance for grouping problems,
the labeling-independent distance, and we proved that it sat-
isfies the metric axioms and that can be efficiently computed
using the Hungarian method [18].

In this paper, we use the labeling-independent distance
as basis of geometric crossover to design a new crossover for
redundant encodings. Interestingly, this distance gives rise
to a crossover that requires a labeling-normalization phase
before exchanging genetic material between parents in the
traditional way. The new crossover can be implemented
exactly and efficiently using the Hungarian method that,



unlike previous normalization heuristics, allows obtaining
a perfect normalization in an efficient way. We compare
the landscapes under the Hamming distance and labeling-
independent distance and found that the second landscape
presents characteristics that make it better matched with
the corresponding geometric crossover; so we expect that
the new geometric crossover will achieve better performance.
We compared experimentally the traditional crossover (ge-
ometric under the Hamming distance), the new geomet-
ric crossover based on labeling-independent distance, and a
third one employing a heuristic normalization that is known
to be very good [15]. The new geometric crossover showed
remarkable performance improvement. This corroborates
the goodness of the new distance and the effectiveness of the
geometric crossover as design tool. We would like to stress
that the important notion of parent normalization before
crossover for grouping problems naturally arises from using
a distance tailored to redundant encodings together with the
geometric definition of crossover.

The remainder of this paper is organized as follows. In
Section 2, we introduce the multiway graph partitioning and
the labeling-independent metric. In Section 3, we introduce
the geometric framework. In Section 4, we present the new
geometric crossover based on labeling-independent distance.
In Section 5, we present a correlation analysis of the fit-
ness landscapes associated with the Hamming and labeling-
independent distances. In Section 6, we show experimental
setting and results, and make conclusions in Section 7.

2. GRAPH PARTITIONING AND
LABELING-INDEPENDENT DISTANCE

2.1 Multiway Graph Partitioning
Graph partitioning is an important problem that arises

in various fields of computer science, such as sparse matrix
factorization, VLSI circuit placement, network partitioning,
and so on. Good partitioning of a system not only signifi-
cantly reduces the complexity involved in the design process,
but can also improve the timing performance as well as its
reliability [9].

Let G = (V, E) be an unweighted undirected graph, where
V is the set of vertices and E is the set of edges. K-way
partition is a partitioning of the vertex set V into K disjoint
subsets {P1, P2, . . . , PK}. A K-way partition is said to be
balanced if the difference of cardinalities between the largest
and the smallest subsets is at most one. In this paper, we
consider only balanced partition. The cut size of a partition
is defined to be the number of edges whose endpoints are in
different subsets of the partition. The K-way partitioning
problem is the problem of finding K-way balanced partition
with minimum cut size.

Since the K-way partitioning problem is NP-hard [8], at-
tempts to solve partitioning problems have focused on find-
ing heuristics which yield approximate solutions in polyno-
mial time. Among such methods, the Kernighan-Lin algo-
rithm [14] and the Fiduccia-Mattheyses algorithm (FM) [7]
are representative. They are local search heuristics for 2-
way partitioning. There have been a number of algorithms
for K-way partitioning [5, 6, 13, 25]. There have been also
several methods using genetic algorithms [12, 15, 19].

2.2 Labeling-Independent Distance
The standard representation of a solution for K-way graph

partitioning is a vector x of size |V | such as xi = j ⇒ vi ∈
Pj . Since the specific mapping of indices to partitions does
not change how the graph is partitioned, each solution has
K! representations. For this encoding, the Hamming dis-
tance between two solutions is unnatural because it depends
on the specific mapping between indices and partitions that
is completely arbitrary. We proposed a distance measure,
the labeling-independent distance, that eliminates this de-
pendency completely [17].

Formally, the term distance or metric denotes any real val-
ued function that conforms to the axioms of identity, sym-
metry, and triangular inequality. A distance for which the
axiom of identity is relaxed so that distance zero does not
necessarily implies equality (but equality still implies dis-
tance zero) is called pseudo-metric.

Definition 1 (Labeling-independent distance).

Given two K-ary encodings a, b ∈ U = {1, 2, . . . , K}|V |

(fixed-length vectors on a K-ary alphabet) and a metric d

in U , we define the labeling-independent distance LI asso-
ciated to d as follows:

LI(a, b) := min
σ∈ΣK

d(a, bσ)

where ΣK is the set of all permutations of length K and bσ

is a permuted encoding of b by a permutation σ, i.e., the ith

element bi of b is transformed into σ(bi).

Theorem 1. Labeling-independent distance LI is a pseudo-
metric in U .

Proof: The proof is given in [17].
Given an element a ∈ U , since d is a metric, there are K!

elements such that the labeling-independent distance LI to a

is zero. If the labeling-independent distance LI between two
elements is equal to zero, we define them to be in relation
∼. Then, the following proposition holds.

Proposition 1. The relation ∼ is an equivalence rela-
tion.

Proof: The proof is given in [17].

Theorem 2. Suppose that Q is the quotient set of U by
relation ∼ (i.e., Q = U/ ∼). Then, (Q,LI) is a metric
space, i.e., the labeling-independent distance LI is a metric
in Q.

Proof: The proof is given in [17].
So, U is the set of all labeled partitions and d is a metric

on this set. Q is the set of all unlabeled partitions associated
to U and LI is the corresponding metric on Q associated to
d.

2.3 Efficient Normalization and
Labeling-Independent Distance

We say that bσ∗ is normalized to a when LI(a, bσ∗) =
d(a, bσ∗) and we call σ∗ a normalizing relabeling.

In previous work, we have shown that, in the special case
of d being the Hamming distance H, the problem of comput-
ing LI can be formulated as the optimal assignment problem
and it can be solved efficiently by the Hungarian method.



The problem of finding a normalizing relabeling σ∗ is equiv-
alent to computing LI. Let M = (mij) be the K × K
assignment weight matrix between two chromosomes X and

Y . Each element mij means
P|V |

k=1
I(Xk = i, Yk 6= j) or

P|V |
k=1

I(Xk 6= i, Yk = j). The problem of computing LI is
exactly the problem of finding an assignment (permutation)
with minimum summation.

Theorem 3. If the metric d is the Hamming distance H,
then

LI(X,Y ) = min
σ∈ΣK

K
X

i=1

|V |
X

k=1

I(Xk = i, Yk 6= σ(i)).

Proof: The proof is given in [17].

3. GEOMETRIC FRAMEWORK
In this section, we report the essential concepts behind a

theoretical framework of recent introduction that allows to
analyze and design new crossover operators for any solution
representation tailored to the problem at hand.

3.1 Geometric Preliminaries
A simple connected graph is naturally associated to a met-

ric space via its path metric: the distance between two nodes
in the graph is the length of a shortest path between the
nodes.

In a metric space (S, d), a closed ball is the set of the
form B(x; δ) = {y ∈ S | d(x, y) ≤ δ} where x ∈ S and
δ is a positive real number called the radius of the ball.
A line segment (or closed interval) is the set of the form
[x, y]d = {z ∈ S | d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S
are called extremes of the segment. Metric ball and met-
ric segment generalize the familiar notions of ball and seg-
ment in the Euclidean space to any metric space through
distance redefinition. These generalized objects look quite
different under different metrics. Notice that a metric seg-
ment does not coincide to a shortest path connecting its
extremes (geodesic) as in an Euclidean space. In general,
there may be more than one geodesic connecting two ex-
tremes; the metric segment is the union of all geodesics.

We assign a structure to the solution set by endowing
it with a notion of distance d. M = (S, d) is therefore a
solution space and L = (M, g) is the corresponding fitness
landscape, where g is the fitness function over S. Notice that
d is arbitrary and need not have any particular connection
or affinity with the problem at hand.

3.2 Geometric Crossover Definition
The following definitions are representation-independent

therefore crossover is well-defined for any representation. It
is only function of the metric d associated with the search
space being based on the notion of metric segment.

Definition 2 (Image set). The image set Im[OP ] of
a genetic operator OP is the set of all possible offspring
produced by OP with non-zero probability.

Definition 3 (Geometric crossover). A binary op-
erator GX is a geometric crossover under the metric d if
all offspring are in a segment between its parents: ∀x, y :
Im[GX(x, y)] ⊆ [x, y]d

A number of general properties for geometric crossover
and mutation have been derived in [21].

Fact 1. The traditional crossover for K-ary vectors with
n crossover points is geometric under the Hamming distance
[21].

3.3 Geometric Crossover Landscape
The notion of fitness landscape is useful if the search op-

erators employed are connected or matched with the land-
scape: the greater the connection the more landscape prop-
erties mirror search properties. The conventional way to
look at the landscape is to see it as a function of the search
operator employed (Jones [11]). Whereas mutation is intu-
itively associated with the neighbourhood structure of the
search space, crossover stretches the notion of landscape fur-
ther leading to search spaces defined over complicated topo-
logical structures.

Geometric crossover and mutation are based on the dis-
tance associated with the search space. This approach is
the dual of Jones’ approach: we see the genetic operators as
functions of the search space. So, mutation and crossover
share the same neighbourhood structure. This greatly sim-
plifies the relationship between crossover and fitness land-
scape and allows to give a simple rule of thumb that tells
what makes a fitness landscape well-searchable by crossover.

Geometric operators are defined as functions of the dis-
tance associated to the search space. However, the search
space does not come with the problem itself. The problem
consists only of a fitness function to optimize, that defines
what a solution is and how to evaluate it, but it does not
give any structure on the solution set. The act of putting a
structure over the solution set is part of the search algorithm
design and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So,
for each problem, there is one fitness function but as many
fitness landscapes as the number of possible different struc-
tures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely
independently from the problem at hand. However, because
the search operators are defined over such a structure, doing
so would make them decoupled from the problem at hand,
hence turning the search into something very close to ran-
dom search. To avoid this one needs to exploit problem
knowledge in the search by choosing a distance that makes
sense for the problem at hand.

What is a good distance for the problem at hand? That
can be turned into: under which conditions is a landscape
well-searchable by geometric operators? As a rule of thumb,
geometric mutation and geometric crossover work well on
landscapes where the closer pairs of solutions, the more
correlated their fitness values. Of course this is no sur-
prise: the importance of landscape smoothness has been
advocated in many different context and has been confirmed
in uncountable empirical studies with many neighbourhood
search meta-heuristics [24].

4. GEOMETRIC CROSSOVER BASED ON
LABELING-INDEPENDENT METRIC

We design a new geometric crossover based on the labeling-
independent metric. We call it n-point LI-GX.

Definition 4 (n-point LI-GX). Normalize the second
parent to the first under the Hamming distance. Do the nor-



mal n-point crossover using the first parent and the normal-
ized second parent.

Theorem 4. The n-point LI-GX is geometric under the
labeling-independent metric.

Proof: Let p1 and p2 be parents and c be offspring af-
ter n-point LI-GX. It is enough to show that LI(p1, p2) =
LI(p1, c) + LI(c, p2). Since LI is a metric, by triangular in-
equality, it is trivial that LI(p1, p2) ≤ LI(p1, c) + LI(c, p2).
Now, we will show that LI(p1, p2) ≥ LI(p1, c) + LI(c, p2).
Let σ′ be argminσ∈ΣK

H(p1, (p2)σ), where (p2)σ is a per-
muted encoding of p2 by σ, i.e., the ith element p2i of p2 is
transformed into σ(p2i). Then, we let p′

2 be (p2)σ′ .

LI(p1, p2) = H(p1, p
′
2)

= H(p1, c) + H(c, p′
2) (∵ Fact 1)

≥ LI(p1, c) + LI(c, p′
2)

= LI(p1, c) + LI(c, p2) �

To implement n-point LI-GX, we use the Hungarian method
to find a maximum matching of the labels of the second
parent to the first parent and then we apply a traditional
n-point crossover. The time complexity of n-point LI-GX is
O(|V | + K3).

5. FITNESS LANDSCAPE ANALYSIS
5.1 Smoothness
5.1.1 Measuring Smoothness

To measure the smoothness of a fitness landscape, we plot
its autocorrelation function (or correlogram): a graph that
on the x-axis has distance between solutions and on the
y-axis has the correlation between their fitness. The auto-
correlation function for fitness landscapes was introduced by
Weinberger [26].

To have a meaningful comparison between correlation func-
tions of fitness landscapes based on different search space
structures with different distance distributions, we normal-
ize the x-axis dividing it by the average distance E(d) be-
tween any two points of the search space. Let rd(δ) be the
normalized correlogram of a fitness landscape based on a
metric d. Then rd(1) is the average distance correlation and
is a measure of global smoothness of the landscape. If rd(1)
is positive, we say that the landscape is globally smooth. If
it is negative, the landscape is said to be globally discontinu-
ous. If the normalized correlogram of a landscape is always
above the normalized correlogram of a second landscape,
then the former is smother than the latter.

5.1.2 Correlogram of Local-optimum Space
Since our evolutionary algorithm uses crossover to search

the local-optimum space, rather than the whole space, we
have to consider the correlogram of such a restricted space.
However, it is not easy to plot it exactly. Given a distance
value δ, it is not easy to find pairs of local optima such that
their distances are equal to the value δ. If we get it by form-
ing distance classes from a pool of randomly sampled local
optima, since the local-optimum space is too big, the range
of correlation becomes limited. However, an approximated
correlogram can be obtained under the following experimen-
tal framework.

Get randomly generated M local optima si’s;
for each p ∈ (0, 100] {

Get corresponding M local optima ti’s after
“random p% perturbation + local optimization”;

for each pair of M pairs (si, ti)’s,
Compute the Hamming distance (hi)

and labeling-independent distance (li);
Compute the correlation coefficient (c)

between the fitness of M pairs;
Plot a point (average of hi’s/E(H), c);
Plot a point (average of li’s/E(LI), c);

}

∗ In our experiments, we set M to be 3,000.

First, we get randomly sampled M local optima. For each
perturbation rate p, we perturb each local optimum by ran-
domly perturbing p percent of the bits and apply the lo-
cal optimizer to the perturbed solution to obtain a local
optimum. Then, we compute the Hamming distance and
labeling-independent distance between the new local opti-
mum and the previous one. After computing the correlation
coefficient between the fitness of M pairs, we plot the rela-
tion between the distances and the correlation coefficient.

We have some remarks. The average of hi’s and the aver-
age of li’s will increase as the perturbation rate p increases.
c’s are the same for two plots.

5.1.3 Distance Distributions
Let us consider the search space for 32-way partitions on

a graph with 500 vertices (G500.2.5). We can compute the
expected value E(H) in all-partition space approximately.
In all-partition space, the probability that the ith positions
of two solutions are the same is 1/32. Hence, E(H) is ap-
proximately 500×(1−1/32) = 484.375. This fact hints that
“most pairs of points are nearly of a maximum distance.”
The moral is that the problem space may be far from our
expectation. The following table shows the average and the
maximum distance for each space. It shows that the problem
space becomes much narrower in the labeling-independent
space (LI-space).

Space E(d)† max(d)

(all-partition, H) 484.364 500
(local-optimum, H) 484.369 ≤ max(whole, H)

(all-partition, LI) 429.010 ≤ 484‡

(local-optimum, LI) 274.301 ≤ max(whole, LI)

† The values of E(d) were empirically computed from a pool of 500

randomly sampled solutions.

‡ This value is the simple upper bound. Let a and b be 32-way

partitions of 500 vertices. The size of the largest subset for a or b is

d500 × 1/32e = 16. Let i and j be the indices of the largest subsets

of a and b, respectively. Then, LI(a, b) ≤ H(a, bσ), where σ is a

permutation such that σ(j) = i. Since H(a, bσ) ≤ 500 − 16 = 484,

LI(a, b) ≤ 484.

5.1.4 Comparison
Figure 1 shows normalized correlograms for all-partition

space and local-optimum space. The x-axis means normal-
ized distance between solutions and the y-axis is the cor-
relation coefficient between their fitness. First, we com-
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Figure 1: Normalized correlogram (G500.2.5)

pare between H-space and LI-space based on all partitions.
The normalized correlograms look similar (see Figure 1a).
The LI-correlogram is always above the H-correlogram, but
not of much, so we can say that LI-landscape is slightly
smoother than H-landscape. For both correlograms, points
that are at a distance smaller than average have increas-
ingly strong correlation; this makes both landscapes globally
smooth and so suitable for geometric crossover.

The reason that we expect the geometric crossover based
on LI-landscape to perform better than the one based on
H-landscape is only partially due to the stronger correla-
tion, but mostly due to the fact that the sizes of the spaces
that are actually searched by geometric crossover are differ-
ent: H-crossover searches the space of all labeled-partitions
and LI-crossover searches the much smaller space of all
unlabeled-partitions.

Next, we compare H-space and LI-space on local optima.
It is interesting to note that the average distance of local-
optimum LI-space is much smaller than the average space of
all-partition LI-space, whereas for the H-space there is al-
most no difference. This happens because by local optimiza-
tion, vertices of some subgraphs tend to belong to the same
partition. In local-optimum space, the effect of normaliza-
tion (associated to LI-space) is very large. The reason must
be topological: all the peaks are somehow remapped and
clustered by the normalization. Hence, it is natural that the
average distance of local-optimum LI-space is much smaller
than that of all-partition LI-space.

Since the average distance between local optima for LI is
so much smaller than that for H, the respective normalized
correlograms are strongly affected (see Figure 1b): the LI-
landscape is really much smoother than the H-landscape
(LI-correlogram is much above H-correlogram). So, from
the rule-of-thumb that smoother landscape has better geo-
metric crossover performance, we expect that, on the local-
optimum space, the geometric crossover based on labeling-
independent distance (LI-GX) performs much better than
the geometric crossover based on the Hamming distance (H-
GX).

5.2 Global Convexity
Given a set of local optima, Boese et al. [2] plotted, for

each local optimum, the relationship between the cost and
the average distance from all the other local optima. They

performed experiments for the graph bisection and the trav-
eling salesman problem, and showed that both problems
have strong positive correlations. This fact hints that the
best local optimum is located near the center of the local-
optimum space and, roughly speaking, the local-optimum
space is globally convex. In this section, we repeat their
experiments for multiway graph partitioning with different
distances.

The solution space for the experiment is selected as fol-
lows. First, we choose five hundreds of random solutions
and obtain the corresponding set of local optima by locally
optimizing them1. Figure 2 shows the plotting results for 32-
way partitioning of an instance (G500.2.5). The result with
the labeling-independent metric was consistent with Boese
et al.’s results with strong cost-distance correlation (corre-
lation coefficient was 0.79). On the other hand, the result
with Hamming distance showed little correlation (correla-
tion coefficient was −0.11).

In summary, there are three reasons we expect LI-GX to
perform better than H-GX: (i) global convexity (by cost-
distance correlation [2]), (ii) the smaller size of problem
space (from average distance), and (iii) smoothness (by au-
tocorrelation [26]). Properties (ii) and (iii) are more obvious
in local-optimum space.

6. EXPERIMENTS
6.1 Genetic Framework

We used the general structure of hybrid steady-state ge-
netic algorithms. In the following, we describe the frame-
work of genetic algorithm used in our experiments. Under
this framework, we will change only the crossover operator.

• Encoding: We use a K-ary string for each chromosome
to represent a K-way partition. For example, if vertex
vi belongs to partition Pj , the value of the ith gene is
j.

• Initialization: We randomly create p chromosomes.
Each chromosome satisfies a balance criterion. We set
the population size p to be 50.

1
We used the local optimization algorithm described in Section 6.1.
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Figure 2: The relationship between cost and distance (G500.2.5)

• Selection: We use the roulette-wheel-based propor-
tional selection scheme. The probability that the best
chromosome is chosen was set to four times higher than
the probability that the worst chromosome is chosen.

• Mutation: After crossover, chromosomes are usually
not balanced. We start at a random position on the
chromosome and adjust the gene values to the right
until the balance is satisfied. This makes some muta-
tion effect, so we do not add any specific mutation.

• Local optimization: Sanchis [25] extended the FM al-
gorithm for K-way partitioning. The algorithm con-
siders all possible moves of each vertex from its home
set to any of the others. He showed that this direct
multiway partitioning approach obtained better solu-
tions compared to the recursive approach for random
networks. As local optimization engine in our genetic
algorithm, we use its variation proposed in [15]. Its
time complexity is O(K|E|).

• Replacement: If it is superior to the closest parent,
the offspring replaces the closest parent, and if not,
the other parent is replaced if the offspring is better.
Otherwise the worst in the population is replaced.

• Stopping criterion: For stopping, we use the number
of consecutive fails to replace one of the parents. We
set the number to be 50.

6.2 Test Environment
Before showing the experimental results, we first intro-

duce the benchmarks used in this experiment and test envi-
ronment. We tested on a total of eight graphs which consist
of two groups of graphs. They are composed of eight graphs
with 500 vertices from [10] (four random graphs G*.* and
four random geometric graphs2 U*.*). The two classes were
used in a number of other graph-partitioning studies [1, 3,
16, 20]. More detailed description of them is given in [16].

We conducted tests on 32-way and 128-way partitioning.
A C language program was used on a Pentium III 1GHz
computer with Linux operating system. It was compiled
using gcc compiler.
2
Geometric graphs are one of the classes of random graphs that are

believed to be most similar to actual VLSI-circuit and computer-
network graphs in the sense that they tend to have local clusters.

6.3 Results
Under the same genetic framework described in Section 6.1,

we compare the geometric crossover based on the Ham-
ming distance (5pt H-GX), the geometric crossover based on
labeling-independent distance (5pt LI-GX), and a crossover
with previous normalization technique that is known to be
very good [15] (GEFM).

Let LI be the labeling-independent metric and let p1, p2

be parents, c be offspring after crossover, and o be offspring
after mutation (balance adjustment). Each value in Ta-
ble 1 and Table 2 means the average value of (LI(p1, c) +
LI(c, p2)−LI(p1, p2))/LI(p1, p2) and (LI(p1, o)+LI(o, p2)−
LI(p1, p2))/LI(p1, p2). To measure the degree of distortion
from the shortest path, we make this experiments. By The-
orem 4, it is trivial that the values of “After xover” in 5pt
LI-GX are zero. The values of “After mutation” in 5pt LI-
GX were also the smallest.

Table 3 and Table 4 show the partitioning results. The
statistics are from 100 independent runs. In 32-way parti-
tioning, 5pt LI-GX was better than 5pt H-GX on the best
and the average. LI-GX was better than GEFM on the av-
erage and also wins on the best (4 victories, 2 draws, and 2
defeats). Similar numbers of generations were reported. In
128-way partitioning, LI-GX showed more improved perfor-
mance. LI-GX was better than 5pt H-GX and GEFM both
on the average and on the best.

The local optimization used is much more computation-
ally expensive than maximum matching using the Hungarian
method. For small number K, normalization by the Hun-
garian method affects computational time little. In 32-way
partitioning, similar computational time was required. In
128-way partitioning, our algorithm took about 1.3 times
more than the others.

From a geometrical viewpoint, it is not surprising that 5pt
LI-GX and GEFM performed similarly, even if 5pt LI-GX
was better, because after all GEFM is almost geometric un-
der the distance 5pt LI-GX is based upon. Since, from the
landscape analysis we know that this is a very meaningful
distance for the problem at hand, this just corroborates the
rule-of-thumb that given a good distance, one get a good
geometric crossover, other details being of secondary impor-
tance (exact probability distribution of the search operator).
The argument that geometricity is what really counts is re-



Table 1: The Degree of Distortion on 32-way Partitioning
Graph 5pt H-GX GEFM[15] 5pt LI-GX

After xover After mutation After xover After mutation After xover After mutation
G500.2.5 0.56 0.69 0.01 0.14 0.00 0.12
G500.05 0.42 0.53 0.01 0.14 0.00 0.13
G500.10 0.42 0.53 0.01 0.13 0.00 0.11
G500.20 0.39 0.49 0.01 0.12 0.00 0.12
U500.05 1.07 1.25 0.01 0.15 0.00 0.14
U500.10 1.49 1.72 0.01 0.15 0.00 0.15
U500.20 1.90 2.18 0.01 0.15 0.00 0.14
U500.40 0.96 1.12 0.01 0.15 0.00 0.14

Average over 100 runs.

Table 2: The Degree of Distortion on 128-way Partitioning
Graph 5pt H-GX GEFM[15] 5pt LI-GX

After xover After mutation After xover After mutation After xover After mutation
G500.2.5 0.75 0.99 0.03 0.25 0.00 0.21
G500.05 0.69 0.91 0.03 0.24 0.00 0.22
G500.10 0.62 0.83 0.03 0.24 0.00 0.21
G500.20 0.55 0.75 0.03 0.23 0.00 0.21
U500.05 1.14 1.45 0.03 0.25 0.00 0.22
U500.10 0.83 1.07 0.03 0.25 0.00 0.22
U500.20 0.55 0.74 0.03 0.23 0.00 0.21
U500.40 0.42 0.60 0.03 0.22 0.00 0.19

Average over 100 runs.

inforced by noting (see Table 2) that GEFM was a less good
approximation of geometric crossover for 128-way partition-
ing (0.03 non-geometric) and this was mirrored in Table 4
with a bigger difference in absolute values between the av-
erages of GEFM and 5pt LI-GX. So, when GEFM was less
geometric, this was immediately reflected in a loss of perfor-
mance.

7. CONCLUSIONS
In this paper, we have shown that the important notion of

normalization before recombination, that is very effective on
problems with redundant encodings, can be naturally cast
in geometric terms using a distance that filters the redun-
dancy of the encoding together with the formal definition of
geometric crossover.

This geometric point of view on normalization has allowed
us to study its effect on the fitness landscape and explain,
within the geometric framework, why normalization before
recombination for redundant encodings is a good idea.

The landscape analysis also provided evidence for the fact
that the labeling-independent distance is more suitable for
the solution space of multiway graph partitioning problem
than the Hamming distance.

We designed a geometric crossover based on the labeling-
independent distance and showed its performance by exper-
iments. It outperformed existing genetic algorithms. We
expect that our geometric crossover will be working well on
other grouping problems.
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