Generalized Cycle Crossover for Graph Partitioning

Alberto Moraglio
Dept. of Comp. Sci.
University of Essex

Wivenhoe Park, Colchester
CO4 35Q, UK

amoragn@essex.ac.uk

Byung-Ro Moon
Sch. of Comp. Sci. & Eng.
Seoul National University

Sillim-dong, Gwanak-gu

Seoul, 151-744 Korea

moon@soar.snu.ac.kr

ABSTRACT

We propose a new crossover that generalizes cycle crossover
to permutations with repetitions and naturally suits parti-
tion problems. We tested it on graph partitioning problems
obtaining excellent results.

Categories and Subject Descriptors: G.2.3 [Mathemat-

ics of Computing]: DISCRETE MATHEMATICS — Appli-
cations

General Terms: Algorithms.

Keywords: Cycle crossover, permutations with repetitions,
graph partitioning.

1. INTRODUCTION

Permutations with repetitions are a natural generalization
of simple permutations. In this paper we propose a new
crossover for permutations with repetitions that is a natural
generalization of cycle crossover.

Grouping problems are interesting and NP-hard. A diffi-
culty with groping problems is that traditional recombina-
tion does not preserve the feasibility of offspring. So, recom-
bining parents with the same grouping structures does not
lead to offspring with the same structure, requiring a repair-
ing mechanism to be applied to the offspring. A better way
to deal with this problem is to design a recombination oper-
ator that transmits parent feasibility to offspring. Our cycle
crossover for permutation with repetitions naturally applies
to grouping problems allowing to search only the space of
feasible solutions. We tested the new crossover on graph
partitioning obtaining remarkable performance.

2. GENERALIZED CYCLE CROSSOVER

In a permutation every elements occurs exactly once, e.g.,
(21453). In a permutation with repetitions the same value
may occur more than once, e.g., (214154232). Two permu-
tations with repetitions in which elements have the same

Copyright is held by the author/owner(s).
GECCO'06,July 8-12, 2006, Seattle, Washington, USA.
ACM 1-59593-186-4/06/0007.

Yong-Hyuk Kim
Dept. of Math. Sci. and
Res. Inst. of Math.
Seoul National University
Seoul, 151-744 Korea

yhdfly@soar.snu.ac.kr

Yourim Yoon
Sch. of Comp. Sci. & Eng.
Seoul National University
Sillim-dong, Gwanak-gu
Seoul, 151-744 Korea

yryoon@soar.snu.ac.kr

Riccardo Poli
Dept. of Comp. Sci.
University of Essex

Wivenhoe Park, Colchester
CO4 35Q, UK

rpoli@essex.ac.uk

number of repetitions are said to belong to the same repe-
tition class.

The extension of cycle crossover we propose produces off-
spring of the same repetition class of the parents. This
crossover has two phases: (i) finding cycles and (ii) mixing
cycles.

PHASE I (FINDING CYCLES):

In order to identify cycles, we proceed as follows:

(1) Pick a random position in parent A.

(2) Consider the corresponding element in parent B and pick
at random any of its occurrences in parent A (among non-
taken positions).

(3) Continue this procedure until you get an element of par-
ent B that is the first element you considered in parent A.
When this happens, we have found a cycle.

Notice that the cycle involves the same number of repe-
titions in both parents. Excluding the elements of cycle 1
from the two parents leaves elements with the same number
of repetitions in the two parents. So the “leftover” permu-
tations are still of the same repetition class.

(4) Repeat loop (1)—(3) to find more cycles until all position
have been marked with a cycle tag.

PHASE II (MIXING CYCLES):
(1) Create a crossover mask with one entry for each cycle
by randomly flipping a coin as many times as the number
of cycles detected in the previous phase. The entries in the
mask indicate from which parent each cycle is inherited.
(2) We convert this “cycle” mask into a standard recom-
bination mask by relabeling all the entries ¢; in cycle as
follows: ¢; — mask(c;) obtaining a new mask mask’.
(3) We perform standard mask-based crossover on the two
parents using mask’.

The following figure shows an example of the generalized
cycle crossover.

mask B B B A A
cycle 3 3 2 1 1 4

parentA‘l‘Z‘Z‘3‘l‘3‘

parentB‘2‘1‘2‘l‘3‘3‘

offspring‘z‘l‘z‘s‘l‘?:‘

The new cycle crossover has the following properties: (i)
it preserves repetition class, (ii) it is a proper generalization
of the cycle crossover (when applied to simple permutations,
it behaves exactly like the cycle crossover), (iii) it searches
only a fraction of the space searched by traditional crossover,
and (iv) when applied to parent permutations with repeti-
tions of different repetition class, offspring have intermediate
repetition class.

3. CYCLE CROSSOVER FOR
GRAPH PARTITIONING

Let G = (V, E) be an unweighted undirected graph. K-
way partition is a partitioning of the vertex set V into K
disjoint subsets. A K-way partition is said to be balanced
if the difference in cardinality between the largest and the
smallest subsets is at most one. The cut size of a partition is
defined to be the number of edges with endpoints in different
subsets of the partition. The K-way partitioning problem
is the problem of finding K-way balanced partition with
minimum cut size. The problem is NP-hard.

This is a constrained optimization problem, where the
constraint is the balancedness. Among all solutions (bal-
anced or not), the feasible ones are only those that are bal-
anced. A method that does not need to use any repair-
ing mechanism is to have a crossover that searches only the
space of balanced solutions. This is the approach we take
here. This reduces the size of the search space considerably.

Representation: The starting point for restricting the
search to balanced-partitions only is to see the object rep-
resenting the solution not as a vector of integer but as a
permutation with repetitions. Every position in the per-
mutation still represents a vertex of the graph and every
integer still represents the label of the group the vertex at
that position is assigned to. A solution is balanced when
all the partitions have approximatively the same number of
vertices. This means that in the representation, there will
be a similar number of repetitions of each element (integer).

Equally balanced initial population: In order to restrict
the search only to the space of equally balanced partitions,
we need to seed the initial population with solutions having
for the same partition exactly the same size for all solutions
(belonging to the same repetition class). Seeding the popu-
lation with balanced solutions is not sufficient.

Balanced crossover: Cycle crossover preserves repetition
class. Hence given two balanced parents belonging to the
same repetition class, it returns offspring of the same repe-
tition class, hence balanced. So there is no need for repairing
mutations.

Balanced mutation: We need to use a mutation that
keeps a permutation with repetition within the same rep-
etition class. So that, if a solution is balanced, the mutated
solution is still balanced. A simple mutation with this char-
acteristic is the swap mutation: you pick any two (different)
elements in the permutation and swap their positions.

4. EXPERIMENTS

We used the general structure of hybrid steady-state ge-
netic algorithms. In the following, we describe the setup
used in our experiments. In this setup, we will vary only
the crossover operator.

Initialization: We randomly create 50 chromosomes.

Selection: We use proportional selection with fitness scaling.
The probability that the best chromosome is chosen was set
to four times higher than the probability that the worst
chromosome is chosen.

Mutation: After cycle crossover, we repeatedly run swap mu-
tation until the expected Hamming distance between chro-
mosomes before and after mutation is approximately 1 per-
cent of the problem size |V].

Local optimization: As local optimization engine in our ge-
netic algorithm, we use the direct multiway partitioner pro-
posed in [1]. Its time complexity is O(K|E|).

Replacement: If it is superior to the closer parent, the off-
spring replaces the closer parent, and if not, the other parent
is replaced if the offspring is better. Otherwise the worst in
the population is replaced.

Stopping criterion: For stopping, we use the number of con-
secutive fails to replace one of the parents. We set the num-
ber to be 50.

Table 1 shows the results of 32-way and 128-way partition-
ing. On G graphs, cycle crossover (CX) could not dominate
traditional 5-point crossover (TX) on average, but it per-
formed better on the best. On U graphs, CX performed
better than TX both on average and in peak performance.
In 128-way partitioning, the performance of CX was much
better than in the case of 32-way partitioning. TX was al-
ways dominated by CX.

5. CONCLUSIONS

In this paper, we have designed a new crossover for permu-
tations with repetitions that naturally suits partition prob-
lems. In extensive experimentation, we had demonstrated
that this crossover outperforms traditional crossover.

Table 1: Multiway Partitioning Results
(32-way partitioning)

Graph 5pt crossover (TX) cycle crossover (CX)

Best Ave Gen Best Ave Gen
G500.2.5 182 185.18 1091 177 185.59 1269
G500.05 626 637.25 1424 627 637.58 1660
G500.10 1576 | 1587.23 | 1984 1575 | 1587.38 | 1987
G500.20 4040 | 4049.44 | 2247 4039 | 4049.65 | 2198
U500.05 112 120.65 1327 113 120.41 1245
U500.10 534 542.75 1163 524 539.67 1263
U500.20 1837 | 1846.30 | 1123 1834 | 1843.80 | 1170
U500.40 5363 | 5389.93 | 1043 5372 | 5391.77 999
(128-way partitioning)
Graph 5pt crossover (TX) cycle crossover (CX)

Best Ave Gen || Best Ave Gen
G500.2.5 316 320.14 844 311 314.54 911
G500.05 850 853.09 869 839 844.13 977
G500.10 1904 | 1907.78 932 1896 | 1899.32 | 1033
G500.20 4568 | 4571.93 965 4564 | 4567.94 | 1004
U500.05 697 704.06 935 695 701.40 941
U500.10 1679 1684.13 913 1673 1682.74 923
U500.20 3836 | 3841.45 890 3838 | 3840.37 864
U500.40 8066 | 8068.54 853 8065 | 8067.74 845

T From 100 runs.

6. REFERENCES

[1] Kim, J. P., AND MooN, B. R. A hybrid genetic search for
multi-way graph partitioning based on direct partitioning. In
Proceedings of the Genetic and Evolutionary Computation
Conference (2001), pp. 408-415.

