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Abstract—The Nelder-Mead Algorithm (NMA) is an almost discrete spaces as continuous search via encoding the can-
half-century old method for numerical optimization, and it is  didate solutions as vectors of real numbers and then applying
a close relative of Particle Swarm Optimization (PSO) and he traditional search algorithms to solve these continuous

Differential Evolution (DE). In recent work, PSO, DE and NMA .
have been generalized using a formal geometric framework that problems. Other works present PSO and DE algorithms de-

treats solution representations in a uniform way. These formal fined on combinatorial spaces acting directly on the original
algorithms can be used as templates to derive rigorously specific solution representation that, however, are only loosely related
PSO, DE and NMA for both continuous and combinatorial to the traditional algorithms in that the original geometric
spaces retaining the same geometric interpretation of the search interpretation is lost in the transition from continuous to

dynamics of the original algorithms across representations. In . - .
previous work, a geometric NMA was derived for the binary combln_atorlal spaces. Eurthermore, m_the_ latter gpproaches
string representation. In this paper, we advance this line of €Very time a new solution representation is considered, the
research and derive formally a specific NMA for the permutation search algorithm needs to be rethought and adapted to the
representation. The result is a Nelder-Mead Algorithm searching new representation. To the authors’s best knowledge, apart
the space of permutations by acting directly on this representa- oy very recent work of one of the authors [8], there are
tion. We present initial experimental results for the new algorithm o . .
on the Traveling Salesman Problem. The peculiar geometry of no generalizations of the NMA to combinatorial spaces.
the permutation space seems to affect the performance of the The searches done by PSO, DE and NMA have natural
geometric NMA that does not perform as well as the NMA geometric interpretations and can be understood as the motion
for the binary string representation. We present a discussion of points in space obtained by different but related linear
about the nature of permutation spaces that seeks to explain this o mpinations of their current and past positions to determine
phenomenon. Further study is required to understand if this is a their new positions. Geometric Particle Swarm Optimization
fundamental limitation of the application of the geometric NMA e . -
to permutation spaces. (GPSO) [6], Geometric Differential Evolution (GDE) [11] and
Geometric Nelder-Mead Algorithm (GNMA) [8] are recently
l. INTRODUCTION devised formal generalizations of PSO, DE and NMA that, in

The Nelder-Mead Algorithm published by Nelder and Meagrinciple, can be specified to any solution representation while
in 1965 [12], also known as the simplex method, is a numeriaataining the original geometric interpretation of the dynamics
optimization method which is, despite its age, the method of the points in space across representations. In particular,
choice for many practitioners. Contrasted with the majorithhese formal algorithms can be applied to any search space
of classic methods for numerical optimization, it only usesndowed with a distance and associated with any solution
the values of the objective function without any derivativeepresentation to derive formally specific PSO, DE and NMA
information. The search done by NMA is based on geometfior the target space and for the target representation.
operations (reflection, expansion, contraction and shrinking)Specific GPSOs were derived for different types of con-
on a current set of points, seen as the corners ai-a tinuous spaces and for the Hamming space associated with
dimensional polygon (a simplex), to determine what pointsinary strings [7], for spaces associated with permutations [10]
in space to evaluate next. The overall behaviour of the NMa&nd for spaces associated with genetic programs [18]. GDE
expands or focuses the search adaptively on the basis of Wees specialized to the space of binary strings [11] and, very
topography of the fitness landscape. recently, to the space of genetic programs [9]. GNMA was

Interestingly, the NMA can be seen as a form o$pecialized to the space of binary strings [8]. The derived
(population-based) evolutionary algorithm with special selealgorithms performed satisfactorily in experimental results.
tion and reproduction operators [17]. Also, there are similari-his suggests that the generalization methodology employed
ties between the search operators employed by the NMA aisda promising one. In this paper, we continue this line of
those of DE [16] and PSO [3] that have led a number aésearch and derive the Geometric Nelder-Mead Algorithm for
authors to propose hybrid approaches (see for example [19% space of permutations. Preliminary experimental results
and [4]). As the original versions of DE and PSO, NMAindicate that the permutation-based GNMA does not perform
requires the search space to be continuous and the pointasnwell as the GNMA for binary strings, as unlike the latter,
space to be represented as vectors of real numbers. the former is not really competitive with a genetic algorithm

There are few extensions of DE and PSO to combinatoriahd a stochastic local search based on the same search space.
spaces [16] [15] [14] [2] [1] and to the space of genetithe reason behind it seems to be related with the peculiar
programs [13]. Some of these works recast the searchgaometric properties of the permutation space that forces the



GNMA towards a degenerate dynamic. Further investigati@est points and comparing their function values. In Figure 1, we
is needed to elucidate if this is a fundamental limitation of th#ustrate the NMA transformations for the two-dimensional
application of the GNMA to permutation spaces. case, where the simple consists of three points.

The remaining part of the paper is organized as follows. Sec-The optimization process described by Algorithm 1 starts
tion Il reviews the original Nelder-Mead Algorithm and Secwith creating a sample of + 1 random points in the search
tion Il presents its formal geometric generalization. Sectiaspace. Notice that apart from the creation of the initial simplex,
IV presents specific GNMA search operators for permutatioral further steps are deterministic and do not involve random
Section V reports experiments for GNMA for permutations oohoices. In each loop iteration, the points in the simffeare
the Traveling Salesman Problem and in Section VI presentsamanged in ascending order according to their corresponding
analysis and a discussion. Section VII presents the conclusiamgective values. Hence, the best solution candidat8[is
and future work. and the worst isS[n]. We then compute the center of then
best points and then reflect the worst candidate solufifr
through this point, obtaining the new poings also illustrated
in Fig. 1(a). The reflection parameteris usually set to 1. In
the case that is neither better tharb[0] nor as worse as

II. CLASSIC NELDER-MEAD ALGORITHM

Algorithm 1 Nelder-Mead Algorithm

1:1 t: f: the objective function t . . . .
3 ot e of paire i (6 Sirarex S[n], we directly replaceS[n] with it. If r is better than the
3: Input: a, p, v, o reflection, expansion, contraction and shrink coefficients best solution candidaté’[o], we expand the simplex further
4: Output:z*: the best solution found . . s . . . .
5 into this promising direction. As sketched in Fig. 1(b), we
6: S — createPop(n + 1) obtain the pointe with the expansion parameter set to 1.
7: while stop criterion not metio .
8 S« sortPop(S, f) We now take the best of these two points to repl&¢e]. If
196 /I Center ghmass: dege[rr?ine the center of mass ofrttest points r is no better tharb[n], the simplex is contracted by creating
Lomee— o g % . : :
11/l Reflection: refiect the worst point oven. a pointc somewhere in between and m. In Fig. .1(c), the
155 r— m+ a(m — S[n)) contraction parametep was set tol/2. We substituteS[n|
14; i J;([f;][oﬂf F(r) < f(S[n]) then with ¢ only if ¢ is better than. When everything else fails, we
: else shrin e whole simplex moving all points (exc
%g I o hrink the whol lex b I t 0
© o if £(r) < £(S[0]) then . - ; Lo
17 J1 Expansion: try to search farther in this direction into the direction of the current optlmuﬁi[()_]. The shr|n_k|ng
13: e—r+y(r—m) parametew normally has the valué/2, as is the case in the
: if f(e) < f(r)then f f :
20 S([fl)] = G(T) example outlined in Fig. 1(d).
21: else
22: S[n] —r [
23: end if E
24: else o .SM .S[-l .S['-I .SM
25: b «— true R
26: if f(r) > f(S[n —1]) then ; Sip¢
27: /I Contraction: a test point betweenand m ’ ]
2% 7 L b
: if f(c) < f(r) then
30: S[n] < ¢ S[?] .8[31 %[2] .S[z] S[?} .Fi[z| ‘aﬁ Fizr .8[31
31: b — lse
32: end if false (a) Reflection (b) Expansion (c) Contraction (d) Shrinking
33: end if
34: if b = truethen Fig. 1. One step of the NMA irR? (figure modified from [20])
35: /I Shrink towards the best solution candida&t]
36: for ¢ from n down to1 do
37 S[i] — S[0] + o(S[i] — S[0])
ggi meﬂ for 1. GEOMETRIC NELDER-MEAD ALGORITHM
. enda |
325 enzni? if In this section, we present how the general Geometric
42: end while Nelder-Mead Algorithm [8] (Algorithm 2) was derived from
43: return S[0] the classic Nelder-Mead Algorithm (Algorithm 1). The gen-

eralization was obtained using a methodology to generalize

In this section, we describe the traditional NMA [12] (se€earch algorithms for continuous spaces to combinatorial

Algorithm 1). The NMA uses:+1 points inR™. These points sPaces [11] based on the geometric framework introduced by
form a type ofn-dimensional polygon, a simplex, which hadvioraglio [5], sketched in the following.

n + 1 points as vertices iRR". For example, the simplex is 1) Given a search algorithm defined on continuous spaces,

a triangle inR? and a tetrahedron iR3. The initial simplex one has to recast the definition of the search operators
has to be non-degenerate, i.e., the points must not lie in the expressing them explicitly in terms of Euclidean distance
same hyperplane. This allows the NMA to search inrall between parents and offspring.

dimensions. The method then performs a sequence of transfor2) Then one has to substitute the Euclidean distance with a
mations of the simplex, which preserve non-degeneracy, aimed generic metric, obtaining a formal search algorithm gen-
at decreasing the function values at its vertices. At each step, eralizing the original algorithm based on the continuous
the transformation is determined by computing one or more  space.



3) Next, one can consider a (discrete) representation andaGeometric Generalization of the Nelder-Mead Algorithm
distance associated with it (a combinatorial space) and

use it in the definition of the formal search algorithm t% .
obtain a specific instance of the algorithm for this spaceR and center of mas§’Al we can generalize all search
perators of the classical Nelder-Mead Algorithm from the

. : . -0
4) Finally, one can use this geometric and declaratlvgD . . . .
uclidean case to generic metric spaces because, as we will

description of the search operator to derive its opera- _. . ; ;
. L . : .. See in the following section, these are geometric elements well-
tional definition in terms of manipulation of the specific

underlying representation defined on any metric space.
' The graphical description of the search operations of NMA

This methodology was used to generalize PSO, DE and NMARig. 1) leads directly to their geometric interpretation in terms
to any metric space, obtaining GPSO, GDE and GNMA, thasf convex combination and extension ray, as follows. The
to derive the specific search operators for a number of speflection of the worst pointS[n| over M can be seen as
cific representations and distances. In particular for GNM#Aijcking a point beyond\/ on the extension ray originating
the generalization of the classic Nelder-Mead Algorithm tim S[n] and passing through/. The expansion operation can
general metric spaces was done by recasting the search opleeaseen as picking a point beyorit on the extension ray
tions described in the previous section (reflection, expansiatiginating in A/ and passing througtR. The contraction
contraction and shrinking) as functions of the distance operation can be seen as picking a point in the segment
the underlying search space, thereby obtaining their abstrbetweenR and M. The shrink of all pointsS[i] towards the
geometric definitions, as explained below. Then, the specifiest in the populatio¥[0] can be seen as replacing each point
GNMA for the Hamming space associated with binary string$[:] with a point in the segment betweéii| and S[0].
was derived [8]. In Section IV, we derive the specific GNMA In the following, we rewrite the algebraic definitions of
for the space of permutations with swap distance by pluggifige search operations of NMA to determine the weights
this distance in the abstract definition of the search operatasé.the corresponding convex combination or extension ray
combination.
Algorithm 2 Formal Nelder-Mead Algorithm The definition of th_e reﬂec_tion operati_on is=m +
~Input. f- the objective funcion to minimize a(m—Sin]) (see Algorithm 1, .Ilne 12) and it can be rewritten
 Input: n + 1: number of points in the simplex _ N asm = ﬁS[n] + H_%T. Since the coefficients of[n]
e e e otrs o 1 e sk coefeents andl 1 are positive and sum up to 1 (far < [0,1]), this
equation says thah is the convex combination &f[n] andr
with those coefficients. However, sineds the unknown and
S[n] and m are given, we can determine as the inverse
operation of the convex combination above, which is the
extension ray combination with origin ifijn] passing through
m and keeping the same weights$; ) of the convex
combination.
The definition of the expansion operatioreis= r+~(r—m)

Using the notion of convex combinati@riX, extension ray

S «— createPop(n + 1)

: while stop criterion not meto

S «— sortPop(S, f)

/I Center of mass: determine the center of mass ofrtleest points
10: m « CM(S[0], S[1],...,S[n —1])

11: /I Reflection: reflect the worst point oven

12:  r — ER(S[n],m) with weights (5, 195 )
13: if £(S[0]) < f(r) < f(S[n]) then

14: S[n] —r

15: else

16: if f(r) < f(S[0]) then

oNURWNE

1
’ 1+«

17: /1 Expansion: try to search farther in this direction (see Algorithm 1, line 18) and it can be rewritten as=

18: e < ER(m,r) with weights (1, 25+) L + 2=Le, which for 4y > 1 is a convex combination of

19: if f(e) < f(r) then ol . . .

20: Sln) — e m ande returningr. Analogously as the reflection operation,

g% e'sg[ ] sincee is unknown andn andr are given, we can determine

23 end if e by the extension ray combination with origin in passing

24:  else throughr with weights (£, 2=1).

25: b «— true . RN . . .

26: it f(r) > f(S[n — 1]) then The definition of the contraction operation is= pr +

%; /(,{ S"’gj‘(c(“rojn? fest ‘x’;?gthf?’;ff“f”;’)m _(1 — p)m (see Algorithm 1, line 28), which fop € [0,1]

29: if f(c) < f(r) then is a convex combination of andm with weights(p, 1 — p)

30: S — H

B : [ﬁ]fal; returninge. | | -

32 end if The definition of the shrink operation for a pois{i] is

eV e ethen Sli)' = S[0] + o(S[i] — S[0]) (where S[i]" denotesS[i] at

gg: /I Shrink towards the best solution candidat)] the next time step) (see Algorithm 1, line 37). This can be
: for i f down to1 d ; . : ; :

37: Sl X (8101, Shl) with weights(1 — o, o) rewritten asS[i]’ = (1—0)S5[0]+0.5[i], which foro € [0,1] is

38: end for a convex combination of[0] and.S[i] with weights(1 —oc, o)

B onatt returning S[:]’.

41: end if By replacing in Algorithm 1 the original operations defined

42: end while

43: return S[0]

on the Euclidean space with their generalized definitions we
obtain the definition of a Formal Nelder-Mead Algorithm valid
for any metric space (see Algorithm 2).



B. Convex Combination, Extension Ray and Center of Mady/gorithm 3 Swap distance

. . L ts: tati a d
Center of mass, segments and extension rays in the ELiiputs: permutationg. andp,

clidean space and their weighted extensions can be expres8eldr all positioni in the permutationsio
in terms of distances, hence, these geometric objects can e " B e e its posiion inps
naturally generalized to generic metric spaces by replacing the  swap contents ops (i) andpy (5)
Euclidean distance with a generic metric. & st = dist 41

Let (S,d) be a metric space. A (metric) segment is a set end for
of the form [z;y] = {z € Sld(z,2) + d(z,y) = d(z,y)} 2rumdist
wherez,y € S. The notion of convex combination in metric
spaces was introduced in the GPSO framework [6]. The convex o
combinationC = CX((A,Wa4),(B,Wg)) of two pointsA *- Convex combination
and B with weightsW, and W (positive and summing up Algorithm 4 presents a recombination operator for permu-
to one) in a metric space endowed with distance functiontations that was introduced in the GPSO framework [7]. This
returns the set of point§’ in the segmenfA; B] such that operator produces an offspring by sorting by swaps the two
d(A,C)/d(A,B) = Wg andd(B,C)/d(A,B) = W4 (the parent permutations one towards the other until they converge
weights of the pointsd and B are inversely proportional to to the same permutation. Which of the two permutations has
their distances t@’). When specified to Euclidean spaces, thi® be sorted toward the other at each position is controlled
notion of convex combination coincides with the traditiondby the contents of a random recombination mask generated
notion of convex combination of real vectors. using the parents weights interpreted as probabilities of the

The extension rayv R(A, B) in the Euclidean plane is a outcome of tossing a biased coin being the respective parent.
semi-line originating inA and passing througl (note that This operator is called ‘convex combination’ because it is
ER(A,B) # ER(B,A)). The notion of extension ray in allegedly a convex combination for permutations under swap
metric spaces was introduced in the GDE framework [11]. Thilistance. The following two theorems prove it.
weighted extension ra R is defined as the inverse operation
of the weighted convex combinatiof X, as follows. The Algorithm 4 Convex combination
weighted extension raff R((A4, wap), (B, wp:)) Of the points 1: inputs: permutationg,, andp,,, and their weightsv, andw;
A (origin) and B (through) and Weightﬂjab andwy,. returns 2. gﬁgir]ite a recombination mask randomly with ‘a’ and ‘b’ with probabilitiesw,,
those pointsC' such that their convex combination with  3: for all positioni in the permutationsio
with weights wy. and wgp, CX ((A,wap), (C,wy.)), returns g if pa (i) # po (i) then
6

if m(i) = a then

the pointB. find p, (i) in p, and bej its position inp;

The notion of center of mass was generalized to generfc ~_ Swap contents oby (i) andp, (7)
metric spaces in the GNMA framework [8], as follows.o: find py (i) in pa and bej its position inp,
The center of mas€'M of a set of pointsp;,...,p, in @ 19. _ SKap contents oba (i) andpa (7)

metric space(S,d) is the pointp € S that minimizes its 12: endif

average distance tg?( tha)lt set of points, C&V/ (py,....pn) = 13 fgtﬁrf;’; s offspring
i=1...n PP ¢

argminpe g —=ten——2m,

IV. GNMA SEARCH OPERATORS FOR PERMUTATIONS Theorem 1:The convex combination in Algorithm 4 is a

In this section, we derive formally specific convex combingd€ometric crossover under swap distance [7].
tion, extension ray recombination and center of mass operatofdditionally, in previous work [7], it was shown that the dis-
for the space of permutations. In this paper, we use the swapces of the parents to the offspring are decreasing functions
distance between permutations as basis for the GNMA. The¥etheir weights in the convex combination. In the following,
Speciﬁc Operators can then be p|ugged in the formal GNMWe give a Stronger result that says that that these distances
(algorithm 2) to obtain a specific GNMA for the space oft'® inversely proportional to the corresponding weights, as
permutations, the permutation-based GNMA. Notice, howevégauired by the refined definition of convex combination
that in principle, we could choose any other distance betwe@oduced in the GNMA framework [8].
permutations (e.g., adjacent swap distance, reversal distancdheorem 2:The convex combination in Algorithm 4 is (in
insertion distance, etc.) as a basis of the GNMA. In that cagXpectation) a convex combination in the space of permuta-
for each distance, we would obtain a different permutatiofions endowed with swap distance.

based GNMA. Proof: The convex combination for permutations is a
] geometric crossover under swap distance. Therefore, the off-
A. Swap distance spring of the convex combination are in the segment between

The swap distance between two permutations is the miparents as required to be a convex combination. To complete
mum number of swaps needed to order one permutation itke proof, we need to show that the weights andw, of the
the order of the other permutation. It can be implemented esnvex combination are inversely proportional to the expected
in Algorithm 3. distancesE[SD(pq, pc)|, E[SD(ps,p.)] from the parentyp,



and p, to their offspringp., as follows. swap distance. Then we prove that the expected distances
The recombination mask contains a set of independentlyE[SD(p,,p»)] and E[SD(py, p.)] are inversely proportional
generated choices. The effect of each choice is sopgiing to the weightsw,, andwy., respectively.
single swap towardg; with probability w, and sortingp, a Every swap move applied tg, that increases the Hamming
single swap towardg, with probability w,, whenp, andp, distance betweep, andp, generate a permutatiopf, such
differ at the current position. Whem, andp, are equal at the that p;, is on a swap shortest path betwgenandp;. This is
current position, the effect of the choice is to legyeand because (i} is a swap away fromp,, i.e., SD(py,p;) = 1
p» unchanged. When all choices in the maskhave been and (i) p;, is a swap further away from, sinceH D(pq, p;,) >
appliedp, andp, have become equal in all positions, henc& D(p,,py), i.e., SD(ps,p») + 1 = SD(p,,p,). Hence
converged to the offspring.. Since the convex combinationSD(p,, py)+SD(ps, p},) = SD(pa,p}). This construction can
operator is a geometric crossover, the offspringis on a be continued applying a swap movegpobtaining ap; such
shortest path between, andp, (shortest sorting trajectory by thatp; andp, are on a swap shortest path betweerandp; .
swaps). The expected number of swap moves on the shorigsalogously, for any further reiteration, we obtaiff”’ such
path fromp, toward p, to reachp, i.e., E[SD(pa;pc)], IS thatp, is on a swap shortest path betwagnandp.™ . Since
given by the number of swap moves on the shortest path, ie operato? R constructs the offspring. (corresponding to
SD(pa; ps), multiplied by the probability that any swap Move, (™) from parentsp, andp, following the above procedure,
on the shortest path was obtained by ordenipgowardps, \ye have thay, is in the segment betweemn, and p. under
i.e.,wy. HenceE[SD(pa,pc)] = SD(pa, pp)-wp. Analogously swap distance.

for the other parent we obtait[SD(py, pc)l = SD(pa; 1) The probabilityp is the probability of applying a swap away
w,. Therefore, the expected distances of the parents to . for each positioni, for which p, equalsp,. The

offspring are inversely proportional to their respective WEightv':Vanted distanc& D(py, p..) to have distances and weights of

parents inversely proportional is calculated from the weights
wqp aNdwy,., and the known distanc&€D (p,, py). The proba-
bility p is then set t&5D(ps, p.) over the number of positions

Algorithm 5 presents a recombination operator that r which p, equalsp,. This number is well estimated by
allegedly the extension ray recombination for permutatiolse maximum number of swaps away fropg that can be
under swap distance. This operator produces an offspriggplied top,. The last number is given by the length of the
permutation by sorting by swaps parent permutafipraway diameter of the space (maximum swap distance between any
from parent permutatiom,. The number of swaps away istwo permutations), which is — 1 wheren is the number of
calculated in a way to obtain consistency between weighifements in the permutation, minus the swap distance between
and distances of the offspring to the parents as requirgd andp,. Hence, the expected number of swaps away from
from the general definition of extension ray recombination if, done equals the wanted distan§® (ps, p..). m
metric space. The following theorem proves that this is indeedThe extension ray recombination operator for permutations
an extension ray recombination for permutations under swggnnot return points which are farther away than the diameter
distance. of the space. When input weights require this, the point
actually returned by the operator is the farthest away point
on the extension ray.

C. Extension ray

Algorithm 5 Extension ray recombination

1: inputs: parenp,, (origin point of the ray) ang; (passing through point of the ray),
with corresponding weights,;, and wp. (both weights are between 0 and 1 and

sum up to 1) D. Center of Mass
2: output: a single offspringy'C (a point on the extension ray beyond on the ray
originating inp, and passing through;) When specified to the Hamming space on binary strings
3: compute the swap distanceD (p, , p») betweenp, andp, .. . .
4: et SD(py, pe) = SD(pa,py) - Wap/wee (compute the distance between the cen_ter_of mas€’M coincides WIFh the mulltl—parer!t_al
andp. using the weights) N _ recombination that returns the offspring by taking position-
5: setp = SD(py.pc)/(n — 1 ~ oipap)) (the probabiilyp of SWapPing ;e the majority vote of the parents [8]. This result general
elements away fromp, andp,; beyondp, . -
6 setpe =p, _ izes straightforwardly to non-binary strings under Hamming
g: for.all positon: i the permurationsio distance. Permutations can be seen as a particular type of
8: if pc(i) = pa(4) and random(0,1K p then .
9 select at random a position non-binary strings with interdependencies between elements.
10: swap contents op. (i) andp.(5) h . di d th di Lo |
11°  end if The Hamming distance and the swap distance are intimately
12: end for related distances as a single swap to a permutation can change

13: returnp,. as offspring

its Hamming distance to another fixed permutation at most
of two. This may suggest that the center of mass operator
Theorem 3:The extension ray recombination in Algorithmfor permutations under swap distance, similarly to those for
5 is (in expectation) an extension ray operator in the spacehlifary strings, is a form of majority vote on permutations
permutations endowed with swap distance. which keeps adequately into account the interdependencies
Proof: First we prove thap. = ER(p.,p») by prov- between different dimensions in the permutation. A multi-
ing that p, is in the segment betweep, and p. under parental operator following this line of thinking is reported



Algorithm 6 Center of Mass Operator need to sort it) across all parents and positions. [

1 inputs: parent permutation8y , P, ..., Pr Unlike for the Euclidean case in which the simplex is

2: make a copy of the parents . .

3: for all positioni in the parent permutatioro maintained non-degenerate throughout the search process, so
g: f(;n? the most frequent elemedt! F'E; and its frequencyF; at position: guaranteeing that any dimension is actually being searched,
. end for . .

6: while all positions have not yet been considents this does not hold true for the cases of the Hamming space

7: let ElMax be the element amondyf F E; with the highest frequency at a single and perm utation spaces. To counteract the degeneracy of
position and bePosM az its position (break ties at random)

8: for all parentsP; do the simplex, in the experiments we will use a randomized
p . v e . e .
196 do a swap Inf to position elementzifaz in position PosMa: version of theC'M operator which uses the frequency of
:end for L X
11:  update the tables of most frequent elemdit £2; and their frequencyr'; the most frequent element at each position in the parents
g enm;';“fzosMW as a considered position as the probability of the offspring to have that element at

14: return any of the parenP; (they are all converged to the same permutation) that position rather than ﬁXing that element determiniStica”y
(fixing deterministically PosMax to the elementEiMazx).
The expected offspring of the randomized operator is the one

in Algorithm 6. Th t th h that this is ind Olobtained with the Algorithm 6, but the variance of the output
In Algortnm ©. The next theorem sShows that this IS indee @ves a greater chance to the search of staying open in all

center of mass operator. dimensions
Theorem 4:The operator in Algorithm 6 is a center of mass Ny we have operational definitions of convex combination,
operator in the space of permutations endowed with sWapension ray and center of mass for the space of permutations
distance. o under swap distance. These space-specific operators can be
Proof: From the definition of center of mass operatoplugged in the formal GNMA (Algorithm 2) to obtain a

CM, we have to prove that the offspring permutatiéh specific GNMA for the space of permutations.
returned byC M minimizes the average swap distance from

PR to the parent permutation®,, P, ..., P, i.e., P minimizes V. EXPERIMENTS

":1"'”'”5‘1(1)“13). Sincen is constant inP, this is equivalentto  We have tested the permutation-based GNMA on randomly
finding the permutatior” such that the sum of the distancegenerated instances of the Travelling Salesman Problem (TSP),
from P to all the parents is minimized. which is perhaps the most famous permutation-based op-

The search operator proposed minimizes the sum of thdggization problem. We do not expect the GNMA to be
distances for the following reasoning. (i) The operator sort®@mparable in performance with the state-of-the-art search
by swaps all parents toward the same permutaffprwhich algorithms customized to such a well-studied problem. Also,
is then returned as output. The sum of the distances from the neighborhood structure on the TSP that works best with
output to the parents is then the total number of swaps needechl search heuristics is that based on the 2-opt move which
to sort all parents to the common permutation. (ii) To sort r@verses the order of the elements in a continuous section of
permutation towards another permutation using the minimuttme permutation. Analogously to the swap move, this move
number of swaps one needs to apply all the times a swap thates rise to a distance between permutations (known as
fixes at least a position in the permutation being sorted (pversal distance). This would be perhaps the most suitable
the correct element, which matches the target permutation,distance to use as a base for GNMA when applied to TSP. We
the chosen position). A swap with this characteristic is calledll test this in future work.
sorting swap. The permutation is sorted when all positionsLocal search heuristics based on the swap move are known
have been fixed. (iii) If the permutatio® was known and to do reasonably well on the TSP. Also, genetic algorithms
fixed, the order in which the positions are considered to béth the PMX crossover operator for permutation, which is
matched toP is irrelevant and one obtains the minimunknown to be a geometric crossover under swap distance, does
number of swaps as long as all the time sorting swaps aeasonably well on the TSP. Therefore, as a reference, we
employed. This would sort each parent permutationsPto compare the GNMA on the swap space with a stochastic hill-
on the minimum sorting trajectory, so the total number afimber based on the swap move, with a genetic algorithm with
swaps employed to sort all parents is the minimum. (ivank-based selection, PMX crossover and swap mutation, and
However sinceP is the unknown to be determined, onewith our recently derived Geometric Differential Evolution.
can chose the contents of each positionfoin a way that  The TSP instances used in our experiments are randomly
the increment to the sum of the minimum sorting trajectoryenerated with length 50. The distance between each pair of
(under construction) from each parent fd is as small as cities lies between 0 and 1, and the instances are symmetric
possible. The minimum increment is obtained by choosing but not Euclidean. Twenty TSP instances were generated at the
fix the maximum occurring eleme! M ax in the position in beginning of the experiments; every algorithm configuration
which it occurs the mostHosMax), as done by the proposedis run once per instance, and the fithess averaged over all
operator. This is, in fact, the choice that minimizes the numbimstances.
of sorting swaps to apply to all the parents to fix one elementModerately extensive tuning experiments were performed
to a position (to fixEiMax at PosMax) because it is the for the population-based algorithms. All algorithms (GNMA,
position (and element) that is already the most correct (&DE, GA and hill climber) each run lasted 100000 (hundred




thousand) function evaluations. For GNMA, GDE GA, populathe dynamics of the permutation-based GNMA with those of
tion sizes of 10, 20, 50, 100, 1000 were tried, with the numbtre classic NMA and the GNMA on binary strings. There are
of generations set tb00000/popsize. For GA and GDE, their two possibilities to explain the quick convergence: (i) some
two respective key parameters were varied between 0 andpkcial feature of the topography of the fithess landscape of
in increments of 0.2; for GNMA, the parameters dreand the TSP; (ii) some special feature of the specific geometry
Cr. For the GA, these parameters were defined as the elifethe permutation space under swap distance. The second
proportion (how large part of the rank-ordered population @ossibility seems to be the reason behind the inconsistency
used as the elite; the lesser fit rest of the population is replagedarding the diversity in the population, as explained in the
each generation) and mutation probability (the probability thédllowing.
a new offspring is created through swap mutation from the When we sample two binary strings uniformly at random,
previous individual at the same position in the populatiothey are likely to be at half of the maximal Hamming distance
rather than using PMX crossover of two randomly selectddr strings of that size (i.e., half of the size of the diameter
individuals in the population). We note that some extrenaf the search space). This is because the probability at each
settings yield degenerate versions of both algorithms. position in the two strings to have the same bit is 0.5. For non-
For GNMA, the following parameters were tuned in addibinary strings based on alphabets with higher cardinalities than
tion to the population size (tested values in parenthesis): Alptveo, the Hamming distance between strings sampled uniformly
(1.0, 1.9), Gamma (2.0), Rho (0.8, 0.9, 0.95), Sigma (0.8, 0&, random tends to be likely to be closer to the maximal

0.95). Hamming distance for strings of that size as the cardinality
Alas, for the hillclimber, there is nothing to tune. of the alphabet gets higher. This is because the probability
at each position in the two strings to have the same symbol

Algorithm | Fitness | Population | Parameters diminishes (rapidly) with the size of the alphabet. So, this leads
gﬂd'mber gi; - e 02 08 to the rather counter-intuitive result that non-binary strings
GDE 535 10 F 00, Croz2 sampled at random are likely to be at maximal distance from
GNMA 6.65 500 al.0, 2.0, p0.8, 30.9 each other. An analogous result holds for permutations under
TABLE | swap distance due to the intimate relation between Hamming

RESULTS ONTSPINSTANCES OF SIZE50. LOWER FITNESSES ARe BeTTer  distance for permutations and swap distance between permu-
tations. The situation for points sampled uniformly at random
in the Euclidean space is similar to the case of binary strings.

The results in table | show that while GNMA does findso, under this particular aspect, the permutation space under
reasonably good solutions (a typical best fitness of the fiswap distance differs substantially from both the Hamming
generation is around 20), it is not competitive with the GAspace for binary strings and Euclidean space. This difference

GDE nor even the hillclimber. in the search space affects heavily the dynamics of the NMA,

as explained in the following.

The geometric operations of the NMA can be classified
In the previous section, we have presented initial expem two types: explorative operations — reflection and expan-
mental results. The new algorithm does not seem to perfosion — which have the effect of expanding the simplex, and
as well as a genetic algorithm and a stochastic local seaetploitative operations — contraction and shrinking — which
defined on the same search space and representation. Thige the effect of reducing the simplex. Explorative operations
is a rather surprising result as the Geometric Nelder-Meate based on the extension ray operation and exploitative

Algorithm specified to binary strings under Hamming distanagperations are based on the convex combination operation.

performed significantly better than a genetic algorithm on NKA/hen an explorative operation is applied to two points in

landscapes [8], showing that, in principle, the GNMA magpace sampled uniformly at random, we obtain two very

work well when applied to combinatorial spaces. different behaviors depending on whether the two points are at
At first, we tested the permutation-based NMA with stare maximal distance or not. This is because when we apply the

dard parameter settings of the classic NMA=£ 1,y = 2,p = extension ray operator to them, say with origirand passing

0.5,0 = 0.5 and population size = genome size + 1) thahrough B, if A and B are at a maximal distance, there are

worked well for the GNMA on binary strings. However, forno points in the space belonging to the extension ray except

the permutation-based GNMA we found that there was a vefigr the point B, which is then the one returned. Clearly, this
quick loss of diversity in the population that led to a verys a degenerate case.

early stop of the search and to rather poor performances. Thi§his, in fact, explains why the reflection and expansion

was quite surprising as there is no sign of diversity loss wperations in the initial population in the permutations space

the population when both the classic NMA and the GNMAre not explorative enough, whereas they are explorative in
on binary strings are run with the same parameter setting. the case of binary strings and continuous spaces. This is
As all specific GNMA are really the instantiation of theessentially because the center of mass of a set of random
same search dynamics to different search spaces, we weregefinutations (i.e., the initial simplex) can be seen as if it
to wonder about the cause of this lack of consistency amowgre a permutation sampled at random in itself. Also the worse

VI. DISCUSSION



permutation in the initial population is sampled at random. So, As additional future work, we will test this new algo-
for permutations, the center of mass and the worse elementittim more thoroughly and on a number of combinatorial
the population are likely to be at a maximal distance. Thereptimization problems. Also, we will derive the GNMA for
fore, the reflection operation cannot return a point beyomeermutations under other distances, such as adjacent-swap
the center of mass (exploration) but it can only return thdistance and reversal distance, which may be more suitable
center of mass (fixation/convergence). So, the operation tihatparticular classes of problems, e.g., scheduling problems.
should have been in charge of exploring, actually it does quiEnally, as GNMA is a close relative of GPSO and GDE,
the opposite. Then, the remaining operations also will pusie will present the three algorithms in a common theoretical
toward convergence as they are designed to do so. This dframework highlighting their commonalities and differences
not happen in the Hamming space for binary strings as thad we will compare them experimentally to find out which of
initial center of mass and the worst individual are likely to béheir characteristics are better suited to which type of problems
at half of the maximum distance of the space. So, there candra representations.
initial exploration as the extension ray operator does not return

a degenerate point, and quite the opposite, there is actuall _ _ .
M. Clerc, Discrete particle swarm optimization, illustrated by the trav-

plenty of _pomts Ir_] the exFer!sm_n r_ay between two rand_oml eling salesman problenNew Optimization Techniques in Engineering,
chosen binary strings. This is similar to what happens in the Springer, 2004, pp. 219-239.

case of the original NMA on continuous space. [2] J. Kennedy and R. C. Eberha#,discrete binary version of the particle

. . . swarm algorithm IEEE Transactions on Systems, Man, and Cybernetics
To compensate for this lack of diversity we can set pa- g (1997) 4104-4108.

rameters to preserve diversity in the initial phase of the rurs] , Swarm intelligenceMorgan Kaufmann, 2001.
by considering larger populations and very mild convergenc[é] Changtong Luo and Bo Yu,ow dimensional simplex evolution a hybrid

. L . . heuristic for global optimizationEighth International Conference on
setting (for shrinking and contraction). This seems to preserve Software Engineering, Artificial Intelligence, Networking, and Paral-

diversity and produce better performance as shown in the el/Distributed Computing, vol. 2, 2007, pp. 470-474.
experimental section, that however, are still inferior to thoséd] A. Moraglio, Towards a geometric unification of evolutionary algo-

. . . rithms, Ph.D. thesis, University of Essex, 2007.
of stochastic local search and of a genetic algorithm. A MOTR) A Moragiio, C. Di Chio, and R. PoliGeometric particle swarm
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