
Geometric Nelder-Mead Algorithm
for the Permutation Representation

Alberto Moraglio and Julian Togelius

Abstract— The Nelder-Mead Algorithm (NMA) is an almost
half-century old method for numerical optimization, and it is
a close relative of Particle Swarm Optimization (PSO) and
Differential Evolution (DE). In recent work, PSO, DE and NMA
have been generalized using a formal geometric framework that
treats solution representations in a uniform way. These formal
algorithms can be used as templates to derive rigorously specific
PSO, DE and NMA for both continuous and combinatorial
spaces retaining the same geometric interpretation of the search
dynamics of the original algorithms across representations. In
previous work, a geometric NMA was derived for the binary
string representation. In this paper, we advance this line of
research and derive formally a specific NMA for the permutation
representation. The result is a Nelder-Mead Algorithm searching
the space of permutations by acting directly on this representa-
tion. We present initial experimental results for the new algorithm
on the Traveling Salesman Problem. The peculiar geometry of
the permutation space seems to affect the performance of the
geometric NMA that does not perform as well as the NMA
for the binary string representation. We present a discussion
about the nature of permutation spaces that seeks to explain this
phenomenon. Further study is required to understand if this is a
fundamental limitation of the application of the geometric NMA
to permutation spaces.

I. I NTRODUCTION

The Nelder-Mead Algorithm published by Nelder and Mead
in 1965 [12], also known as the simplex method, is a numerical
optimization method which is, despite its age, the method of
choice for many practitioners. Contrasted with the majority
of classic methods for numerical optimization, it only uses
the values of the objective function without any derivative
information. The search done by NMA is based on geometric
operations (reflection, expansion, contraction and shrinking)
on a current set of points, seen as the corners of an-
dimensional polygon (a simplex), to determine what points
in space to evaluate next. The overall behaviour of the NMA
expands or focuses the search adaptively on the basis of the
topography of the fitness landscape.

Interestingly, the NMA can be seen as a form of
(population-based) evolutionary algorithm with special selec-
tion and reproduction operators [17]. Also, there are similari-
ties between the search operators employed by the NMA and
those of DE [16] and PSO [3] that have led a number of
authors to propose hybrid approaches (see for example [19]
and [4]). As the original versions of DE and PSO, NMA
requires the search space to be continuous and the points in
space to be represented as vectors of real numbers.

There are few extensions of DE and PSO to combinatorial
spaces [16] [15] [14] [2] [1] and to the space of genetic
programs [13]. Some of these works recast the search in

discrete spaces as continuous search via encoding the can-
didate solutions as vectors of real numbers and then applying
the traditional search algorithms to solve these continuous
problems. Other works present PSO and DE algorithms de-
fined on combinatorial spaces acting directly on the original
solution representation that, however, are only loosely related
to the traditional algorithms in that the original geometric
interpretation is lost in the transition from continuous to
combinatorial spaces. Furthermore, in the latter approaches
every time a new solution representation is considered, the
search algorithm needs to be rethought and adapted to the
new representation. To the authors’s best knowledge, apart
from very recent work of one of the authors [8], there are
no generalizations of the NMA to combinatorial spaces.

The searches done by PSO, DE and NMA have natural
geometric interpretations and can be understood as the motion
of points in space obtained by different but related linear
combinations of their current and past positions to determine
their new positions. Geometric Particle Swarm Optimization
(GPSO) [6], Geometric Differential Evolution (GDE) [11] and
Geometric Nelder-Mead Algorithm (GNMA) [8] are recently
devised formal generalizations of PSO, DE and NMA that, in
principle, can be specified to any solution representation while
retaining the original geometric interpretation of the dynamics
of the points in space across representations. In particular,
these formal algorithms can be applied to any search space
endowed with a distance and associated with any solution
representation to derive formally specific PSO, DE and NMA
for the target space and for the target representation.

Specific GPSOs were derived for different types of con-
tinuous spaces and for the Hamming space associated with
binary strings [7], for spaces associated with permutations [10]
and for spaces associated with genetic programs [18]. GDE
was specialized to the space of binary strings [11] and, very
recently, to the space of genetic programs [9]. GNMA was
specialized to the space of binary strings [8]. The derived
algorithms performed satisfactorily in experimental results.
This suggests that the generalization methodology employed
is a promising one. In this paper, we continue this line of
research and derive the Geometric Nelder-Mead Algorithm for
the space of permutations. Preliminary experimental results
indicate that the permutation-based GNMA does not perform
as well as the GNMA for binary strings, as unlike the latter,
the former is not really competitive with a genetic algorithm
and a stochastic local search based on the same search space.
The reason behind it seems to be related with the peculiar
geometric properties of the permutation space that forces the

GNMA towards a degenerate dynamic. Further investigation
is needed to elucidate if this is a fundamental limitation of the
application of the GNMA to permutation spaces.

The remaining part of the paper is organized as follows. Sec-
tion II reviews the original Nelder-Mead Algorithm and Sec-
tion III presents its formal geometric generalization. Section
IV presents specific GNMA search operators for permutations.
Section V reports experiments for GNMA for permutations on
the Traveling Salesman Problem and in Section VI presents an
analysis and a discussion. Section VII presents the conclusions
and future work.

II. CLASSIC NELDER-MEAD ALGORITHM

Algorithm 1 Nelder-Mead Algorithm
1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients
4: Output:x∗: the best solution found
5:
6: S ← createPop(n + 1)
7: while stop criterion not metdo
8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of then best points
10: m ← 1

n

P
i=0,n−1 S[i]

11: // Reflection: reflect the worst point overm
12: r ← m + α(m− S[n])
13: if f(S[0]) < f(r) < f(S[n]) then
14: S[n] ← r
15: else
16: if f(r) ≤ f(S[0]) then
17: // Expansion: try to search farther in this direction
18: e ← r + γ(r −m)
19: if f(e) < f(r) then
20: S[n] ← e
21: else
22: S[n] ← r
23: end if
24: else
25: b ← true
26: if f(r) ≥ f(S[n− 1]) then
27: // Contraction: a test point betweenr andm
28: c ← ρr + (1− ρ)m
29: if f(c) < f(r) then
30: S[n] ← c
31: b ← false
32: end if
33: end if
34: if b = true then
35: // Shrink towards the best solution candidateS[0]
36: for i from n down to1 do
37: S[i] ← S[0] + σ(S[i]− S[0])
38: end for
39: end if
40: end if
41: end if
42: end while
43: returnS[0]

In this section, we describe the traditional NMA [12] (see
Algorithm 1). The NMA usesn+1 points inRn. These points
form a type ofn-dimensional polygon, a simplex, which has
n + 1 points as vertices inRn. For example, the simplex is
a triangle inR2 and a tetrahedron inR3. The initial simplex
has to be non-degenerate, i.e., the points must not lie in the
same hyperplane. This allows the NMA to search in alln
dimensions. The method then performs a sequence of transfor-
mations of the simplex, which preserve non-degeneracy, aimed
at decreasing the function values at its vertices. At each step,
the transformation is determined by computing one or more

test points and comparing their function values. In Figure 1, we
illustrate the NMA transformations for the two-dimensional
case, where the simplexS consists of three points.

The optimization process described by Algorithm 1 starts
with creating a sample ofn + 1 random points in the search
space. Notice that apart from the creation of the initial simplex,
all further steps are deterministic and do not involve random
choices. In each loop iteration, the points in the simplexS are
arranged in ascending order according to their corresponding
objective values. Hence, the best solution candidate isS[0]
and the worst isS[n]. We then compute the centerm of then
best points and then reflect the worst candidate solutionS[n]
through this point, obtaining the new pointr as also illustrated
in Fig. 1(a). The reflection parameterα is usually set to 1. In
the case thatr is neither better thanS[0] nor as worse as
S[n], we directly replaceS[n] with it. If r is better than the
best solution candidateS[0], we expand the simplex further
into this promising direction. As sketched in Fig. 1(b), we
obtain the pointe with the expansion parameterγ set to 1.
We now take the best of these two points to replaceS[n]. If
r is no better thanS[n], the simplex is contracted by creating
a point c somewhere in betweenr and m. In Fig. 1(c), the
contraction parameterρ was set to1/2. We substituteS[n]
with c only if c is better thanr. When everything else fails, we
shrink the whole simplex by moving all points (exceptS[0])
into the direction of the current optimumS[0]. The shrinking
parameterσ normally has the value1/2, as is the case in the
example outlined in Fig. 1(d).

Fig. 1. One step of the NMA inR2 (figure modified from [20])

III. G EOMETRIC NELDER-MEAD ALGORITHM

In this section, we present how the general Geometric
Nelder-Mead Algorithm [8] (Algorithm 2) was derived from
the classic Nelder-Mead Algorithm (Algorithm 1). The gen-
eralization was obtained using a methodology to generalize
search algorithms for continuous spaces to combinatorial
spaces [11] based on the geometric framework introduced by
Moraglio [5], sketched in the following.

1) Given a search algorithm defined on continuous spaces,
one has to recast the definition of the search operators
expressing them explicitly in terms of Euclidean distance
between parents and offspring.

2) Then one has to substitute the Euclidean distance with a
generic metric, obtaining a formal search algorithm gen-
eralizing the original algorithm based on the continuous
space.

3) Next, one can consider a (discrete) representation and a
distance associated with it (a combinatorial space) and
use it in the definition of the formal search algorithm to
obtain a specific instance of the algorithm for this space.

4) Finally, one can use this geometric and declarative
description of the search operator to derive its opera-
tional definition in terms of manipulation of the specific
underlying representation.

This methodology was used to generalize PSO, DE and NMA
to any metric space, obtaining GPSO, GDE and GNMA, then
to derive the specific search operators for a number of spe-
cific representations and distances. In particular for GNMA,
the generalization of the classic Nelder-Mead Algorithm to
general metric spaces was done by recasting the search opera-
tions described in the previous section (reflection, expansion,
contraction and shrinking) as functions of the distance of
the underlying search space, thereby obtaining their abstract
geometric definitions, as explained below. Then, the specific
GNMA for the Hamming space associated with binary strings
was derived [8]. In Section IV, we derive the specific GNMA
for the space of permutations with swap distance by plugging
this distance in the abstract definition of the search operators.

Algorithm 2 Formal Nelder-Mead Algorithm
1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink coefficients
4: Output:x∗: the best solution candidate found
5:
6: S ← createPop(n + 1)
7: while stop criterion not metdo
8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of then best points
10: m ← CM(S[0], S[1], ..., S[n− 1])
11: // Reflection: reflect the worst point overm
12: r ← ER(S[n], m) with weights(α

1+α , 1
1+α)

13: if f(S[0]) < f(r) < f(S[n]) then
14: S[n] ← r
15: else
16: if f(r) ≤ f(S[0]) then
17: // Expansion: try to search farther in this direction
18: e ← ER(m, r) with weights(1

γ , γ−1
γ)

19: if f(e) < f(r) then
20: S[n] ← e
21: else
22: S[n] ← r
23: end if
24: else
25: b ← true
26: if f(r) ≥ f(S[n− 1]) then
27: // Contraction: a test point betweenr andm
28: c ← CX(r, m) with weights(ρ, 1− ρ)
29: if f(c) < f(r) then
30: S[n] ← c
31: b ← false
32: end if
33: end if
34: if b = true then
35: // Shrink towards the best solution candidateS[0]
36: for i from n down to1 do
37: S[i] ← CX(S[0], S[i]) with weights(1− σ, σ)
38: end for
39: end if
40: end if
41: end if
42: end while
43: returnS[0]

A. Geometric Generalization of the Nelder-Mead Algorithm

Using the notion of convex combinationCX, extension ray
ER and center of massCM we can generalize all search
operators of the classical Nelder-Mead Algorithm from the
Euclidean case to generic metric spaces because, as we will
see in the following section, these are geometric elements well-
defined on any metric space.

The graphical description of the search operations of NMA
(Fig. 1) leads directly to their geometric interpretation in terms
of convex combination and extension ray, as follows. The
reflection of the worst pointS[n] over M can be seen as
picking a point beyondM on the extension ray originating
in S[n] and passing throughM . The expansion operation can
be seen as picking a point beyondR on the extension ray
originating in M and passing throughR. The contraction
operation can be seen as picking a point in the segment
betweenR andM . The shrink of all pointsS[i] towards the
best in the populationS[0] can be seen as replacing each point
S[i] with a point in the segment betweenS[i] andS[0].

In the following, we rewrite the algebraic definitions of
the search operations of NMA to determine the weights
of the corresponding convex combination or extension ray
combination.

The definition of the reflection operation isr = m +
α(m−S[n]) (see Algorithm 1, line 12) and it can be rewritten
as m = α

1+αS[n] + 1
1+αr. Since the coefficients ofS[n]

and r are positive and sum up to 1 (forα ∈ [0, 1]), this
equation says thatm is the convex combination ofS[n] andr
with those coefficients. However, sincer is the unknown and
S[n] and m are given, we can determiner as the inverse
operation of the convex combination above, which is the
extension ray combination with origin inS[n] passing through
m and keeping the same weights(α

1+α , 1
1+α) of the convex

combination.
The definition of the expansion operation ise = r+γ(r−m)

(see Algorithm 1, line 18) and it can be rewritten asr =
1
γ m + γ−1

γ e, which for γ > 1 is a convex combination of
m ande returningr. Analogously as the reflection operation,
sincee is unknown andm andr are given, we can determine
e by the extension ray combination with origin inm passing
throughr with weights(1

γ , γ−1
γ).

The definition of the contraction operation isc = ρr +
(1 − ρ)m (see Algorithm 1, line 28), which forρ ∈ [0, 1]
is a convex combination ofr andm with weights(ρ, 1 − ρ)
returningc.

The definition of the shrink operation for a pointS[i] is
S[i]′ = S[0] + σ(S[i] − S[0]) (where S[i]′ denotesS[i] at
the next time step) (see Algorithm 1, line 37). This can be
rewritten asS[i]′ = (1−σ)S[0]+σS[i], which forσ ∈ [0, 1] is
a convex combination ofS[0] andS[i] with weights(1−σ, σ)
returningS[i]′.

By replacing in Algorithm 1 the original operations defined
on the Euclidean space with their generalized definitions we
obtain the definition of a Formal Nelder-Mead Algorithm valid
for any metric space (see Algorithm 2).

B. Convex Combination, Extension Ray and Center of Mass

Center of mass, segments and extension rays in the Eu-
clidean space and their weighted extensions can be expressed
in terms of distances, hence, these geometric objects can be
naturally generalized to generic metric spaces by replacing the
Euclidean distance with a generic metric.

Let (S, d) be a metric space. A (metric) segment is a set
of the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)}
wherex, y ∈ S. The notion of convex combination in metric
spaces was introduced in the GPSO framework [6]. The convex
combinationC = CX((A, WA), (B, WB)) of two pointsA
andB with weightsWA andWB (positive and summing up
to one) in a metric space endowed with distance functiond
returns the set of pointsC in the segment[A; B] such that
d(A,C)/d(A,B) = WB and d(B, C)/d(A,B) = WA (the
weights of the pointsA and B are inversely proportional to
their distances toC). When specified to Euclidean spaces, this
notion of convex combination coincides with the traditional
notion of convex combination of real vectors.

The extension rayER(A,B) in the Euclidean plane is a
semi-line originating inA and passing throughB (note that
ER(A, B) 6= ER(B,A)). The notion of extension ray in
metric spaces was introduced in the GDE framework [11]. The
weighted extension rayER is defined as the inverse operation
of the weighted convex combinationCX, as follows. The
weighted extension rayER((A,wab), (B, wbc)) of the points
A (origin) andB (through) and weightswab andwbc returns
those pointsC such that their convex combination withA
with weights wbc and wab, CX((A,wab), (C, wbc)), returns
the pointB.

The notion of center of mass was generalized to generic
metric spaces in the GNMA framework [8], as follows.
The center of massCM of a set of pointsp1, ..., pn in a
metric space(S, d) is the point p ∈ S that minimizes its
average distance to that set of points, i.e.CM(p1, ..., pn) =
argminp∈S

P
i=1...n d(pi,p)

n .

IV. GNMA SEARCH OPERATORS FOR PERMUTATIONS

In this section, we derive formally specific convex combina-
tion, extension ray recombination and center of mass operator
for the space of permutations. In this paper, we use the swap
distance between permutations as basis for the GNMA. These
specific operators can then be plugged in the formal GNMA
(algorithm 2) to obtain a specific GNMA for the space of
permutations, the permutation-based GNMA. Notice, however,
that in principle, we could choose any other distance between
permutations (e.g., adjacent swap distance, reversal distance,
insertion distance, etc.) as a basis of the GNMA. In that case,
for each distance, we would obtain a different permutation-
based GNMA.

A. Swap distance

The swap distance between two permutations is the mini-
mum number of swaps needed to order one permutation into
the order of the other permutation. It can be implemented as
in Algorithm 3.

Algorithm 3 Swap distance
1: inputs: permutationspa andpb

2: setdist = 0
3: for all position i in the permutationsdo
4: if pa(i) 6= pb(i) then
5: find pa(i) in pb and bej its position inpb

6: swap contents ofpb(i) andpb(j)
7: dist = dist + 1
8: end if
9: end for
10: returndist

B. Convex combination

Algorithm 4 presents a recombination operator for permu-
tations that was introduced in the GPSO framework [7]. This
operator produces an offspring by sorting by swaps the two
parent permutations one towards the other until they converge
to the same permutation. Which of the two permutations has
to be sorted toward the other at each position is controlled
by the contents of a random recombination mask generated
using the parents weights interpreted as probabilities of the
outcome of tossing a biased coin being the respective parent.
This operator is called ‘convex combination’ because it is
allegedly a convex combination for permutations under swap
distance. The following two theorems prove it.

Algorithm 4 Convex combination
1: inputs: permutationspa andpb, and their weightswa andwb

2: generate a recombination maskm randomly with ‘a’ and ‘b’ with probabilitieswa

andwb

3: for all position i in the permutationsdo
4: if pa(i) 6= pb(i) then
5: if m(i) = a then
6: find pa(i) in pb and bej its position inpb

7: swap contents ofpb(i) andpb(j)
8: else
9: find pb(i) in pa and bej its position inpa

10: swap contents ofpa(i) andpa(j)
11: end if
12: end if
13: end for
14: returnpa as offspring

Theorem 1:The convex combination in Algorithm 4 is a
geometric crossover under swap distance [7].

Additionally, in previous work [7], it was shown that the dis-
tances of the parents to the offspring are decreasing functions
of their weights in the convex combination. In the following,
we give a stronger result that says that that these distances
are inversely proportional to the corresponding weights, as
required by the refined definition of convex combination
introduced in the GNMA framework [8].

Theorem 2:The convex combination in Algorithm 4 is (in
expectation) a convex combination in the space of permuta-
tions endowed with swap distance.

Proof: The convex combination for permutations is a
geometric crossover under swap distance. Therefore, the off-
spring of the convex combination are in the segment between
parents as required to be a convex combination. To complete
the proof, we need to show that the weightswa andwb of the
convex combination are inversely proportional to the expected
distancesE[SD(pa, pc)], E[SD(pb, pc)] from the parentspa

andpb to their offspringpc, as follows.
The recombination maskm contains a set of independently

generated choices. The effect of each choice is sortingpa a
single swap towardspb with probability wb and sortingpb a
single swap towardspa with probability wa, whenpa andpb

differ at the current position. Whenpa andpb are equal at the
current position, the effect of the choice is to leavepa and
pb unchanged. When all choices in the maskm have been
appliedpa and pb have become equal in all positions, hence
converged to the offspringpc. Since the convex combination
operator is a geometric crossover, the offspringpc is on a
shortest path betweenpa andpb (shortest sorting trajectory by
swaps). The expected number of swap moves on the shortest
path from pa toward pb to reachpc, i.e., E[SD(pa, pc)], is
given by the number of swap moves on the shortest path, i.e.,
SD(pa, pb), multiplied by the probability that any swap move
on the shortest path was obtained by orderingpa toward pb,
i.e.,wb. HenceE[SD(pa, pc)] = SD(pa, pb)·wb. Analogously
for the other parent we obtain:E[SD(pb, pc)] = SD(pa, pb) ·
wa. Therefore, the expected distances of the parents to the
offspring are inversely proportional to their respective weights.

C. Extension ray

Algorithm 5 presents a recombination operator that is
allegedly the extension ray recombination for permutations
under swap distance. This operator produces an offspring
permutation by sorting by swaps parent permutationpb away
from parent permutationpa. The number of swaps away is
calculated in a way to obtain consistency between weights
and distances of the offspring to the parents as required
from the general definition of extension ray recombination in
metric space. The following theorem proves that this is indeed
an extension ray recombination for permutations under swap
distance.

Algorithm 5 Extension ray recombination
1: inputs: parentpa (origin point of the ray) andpb (passing through point of the ray),

with corresponding weightswab andwbc (both weights are between 0 and 1 and
sum up to 1)

2: output: a single offspringpc (a point on the extension ray beyondpb on the ray
originating inpa and passing throughpb)

3: compute the swap distanceSD(pa, pb) betweenpa andpb

4: set SD(pb, pc) = SD(pa, pb) · wab/wbc (compute the distance betweenpb

andpc using the weights)
5: set p = SD(pb, pc)/(n − 1 − SD(pa, pb)) (the probabilityp of swapping

elements away frompa andpb beyondpb)
6: setpc = pb

7: for all position i in the permutationsdo
8: if pc(i) = pa(i) and random(0,1)≤ p then
9: select at random a positionj
10: swap contents ofpc(i) andpc(j)
11: end if
12: end for
13: returnpc as offspring

Theorem 3:The extension ray recombination in Algorithm
5 is (in expectation) an extension ray operator in the space of
permutations endowed with swap distance.

Proof: First we prove thatpc = ER(pa, pb) by prov-
ing that pb is in the segment betweenpa and pc under

swap distance. Then we prove that the expected distances
E[SD(pa, pb)] and E[SD(pb, pc)] are inversely proportional
to the weightswab andwbc, respectively.

Every swap move applied topb that increases the Hamming
distance betweenpa and pb generate a permutationp′b such
that pb is on a swap shortest path betweenpa andp′b. This is
because (i)p′b is a swap away frompb, i.e., SD(pb, p

′
b) = 1

and (ii)p′b is a swap further away frompa sinceHD(pa, p′b) >
HD(pa, pb), i.e., SD(pa, pb) + 1 = SD(pa, p′b). Hence
SD(pa, pb)+SD(pb, p

′
b) = SD(pa, p′b). This construction can

be continued applying a swap move top′b obtaining ap′′b such
thatp′b andpb are on a swap shortest path betweenpa andp′′b .
Analogously, for any further reiteration, we obtainp(n)

b such
that pb is on a swap shortest path betweenpa andp

(n)
b . Since

the operatorER constructs the offspringpc (corresponding to
p
(n)
b) from parentspa andpb following the above procedure,

we have thatpb is in the segment betweenpa and pc under
swap distance.

The probabilityp is the probability of applying a swap away
from pa for each positioni, for which pa equalspb. The
wanted distanceSD(pb, pc) to have distances and weights of
parents inversely proportional is calculated from the weights
wab andwbc, and the known distanceSD(pa, pb). The proba-
bility p is then set toSD(pb, pc) over the number of positions
for which pa equalspb. This number is well estimated by
the maximum number of swaps away frompa that can be
applied topb. The last number is given by the length of the
diameter of the space (maximum swap distance between any
two permutations), which isn− 1 wheren is the number of
elements in the permutation, minus the swap distance between
pa andpb. Hence, the expected number of swaps away from
pb done equals the wanted distanceSD(pb, pc).

The extension ray recombination operator for permutations
cannot return points which are farther away than the diameter
of the space. When input weights require this, the point
actually returned by the operator is the farthest away point
on the extension ray.

D. Center of Mass

When specified to the Hamming space on binary strings
the center of massCM coincides with the multi-parental
recombination that returns the offspring by taking position-
wise the majority vote of the parents [8]. This result general-
izes straightforwardly to non-binary strings under Hamming
distance. Permutations can be seen as a particular type of
non-binary strings with interdependencies between elements.
The Hamming distance and the swap distance are intimately
related distances as a single swap to a permutation can change
its Hamming distance to another fixed permutation at most
of two. This may suggest that the center of mass operator
for permutations under swap distance, similarly to those for
binary strings, is a form of majority vote on permutations
which keeps adequately into account the interdependencies
between different dimensions in the permutation. A multi-
parental operator following this line of thinking is reported

Algorithm 6 Center of Mass Operator
1: inputs: parent permutationsP1, P2, ..., Pn

2: make a copy of the parents
3: for all position i in the parent permutationsdo
4: find the most frequent elementMFEi and its frequencyFi at positioni
5: end for
6: while all positions have not yet been considereddo
7: let ElMax be the element amongMFEi with the highest frequency at a single

position and bePosMax its position (break ties at random)
8: for all parentsPi do
9: do a swap inPi to position elementElMax in positionPosMax
10: end for
11: update the tables of most frequent elementMFEi and their frequencyFi

12: mark PosMax as a considered position
13: end while
14: return any of the parentPi (they are all converged to the same permutation)

in Algorithm 6. The next theorem shows that this is indeed a
center of mass operator.

Theorem 4:The operator in Algorithm 6 is a center of mass
operator in the space of permutations endowed with swap
distance.

Proof: From the definition of center of mass operator
CM , we have to prove that the offspring permutationP
returned byCM minimizes the average swap distance from
P to the parent permutationsP1, P2, ..., Pn, i.e.,P minimizesP

i=1...n sd(Pi,P)

n . Sincen is constant inP , this is equivalent to
finding the permutationP such that the sum of the distances
from P to all the parents is minimized.

The search operator proposed minimizes the sum of these
distances for the following reasoning. (i) The operator sorts
by swaps all parents toward the same permutationP , which
is then returned as output. The sum of the distances from the
output to the parents is then the total number of swaps needed
to sort all parents to the common permutation. (ii) To sort a
permutation towards another permutation using the minimum
number of swaps one needs to apply all the times a swap that
fixes at least a position in the permutation being sorted (put
the correct element, which matches the target permutation, in
the chosen position). A swap with this characteristic is called
sorting swap. The permutation is sorted when all positions
have been fixed. (iii) If the permutationP was known and
fixed, the order in which the positions are considered to be
matched toP is irrelevant and one obtains the minimum
number of swaps as long as all the time sorting swaps are
employed. This would sort each parent permutations toP
on the minimum sorting trajectory, so the total number of
swaps employed to sort all parents is the minimum. (iv)
However sinceP is the unknown to be determined, one
can chose the contents of each position ofP in a way that
the increment to the sum of the minimum sorting trajectory
(under construction) from each parent toP is as small as
possible. The minimum increment is obtained by choosing to
fix the maximum occurring elementElMax in the position in
which it occurs the most (PosMax), as done by the proposed
operator. This is, in fact, the choice that minimizes the number
of sorting swaps to apply to all the parents to fix one element
to a position (to fixElMax at PosMax) because it is the
position (and element) that is already the most correct (no

need to sort it) across all parents and positions.
Unlike for the Euclidean case in which the simplex is

maintained non-degenerate throughout the search process, so
guaranteeing that any dimension is actually being searched,
this does not hold true for the cases of the Hamming space
and permutation spaces. To counteract the degeneracy of
the simplex, in the experiments we will use a randomized
version of theCM operator which uses the frequency of
the most frequent element at each position in the parents
as the probability of the offspring to have that element at
that position rather than fixing that element deterministically
(fixing deterministicallyPosMax to the elementElMax).
The expected offspring of the randomized operator is the one
obtained with the Algorithm 6, but the variance of the output
gives a greater chance to the search of staying open in all
dimensions.

Now we have operational definitions of convex combination,
extension ray and center of mass for the space of permutations
under swap distance. These space-specific operators can be
plugged in the formal GNMA (Algorithm 2) to obtain a
specific GNMA for the space of permutations.

V. EXPERIMENTS

We have tested the permutation-based GNMA on randomly
generated instances of the Travelling Salesman Problem (TSP),
which is perhaps the most famous permutation-based op-
timization problem. We do not expect the GNMA to be
comparable in performance with the state-of-the-art search
algorithms customized to such a well-studied problem. Also,
the neighborhood structure on the TSP that works best with
local search heuristics is that based on the 2-opt move which
reverses the order of the elements in a continuous section of
the permutation. Analogously to the swap move, this move
gives rise to a distance between permutations (known as
reversal distance). This would be perhaps the most suitable
distance to use as a base for GNMA when applied to TSP. We
will test this in future work.

Local search heuristics based on the swap move are known
to do reasonably well on the TSP. Also, genetic algorithms
with the PMX crossover operator for permutation, which is
known to be a geometric crossover under swap distance, does
reasonably well on the TSP. Therefore, as a reference, we
compare the GNMA on the swap space with a stochastic hill-
climber based on the swap move, with a genetic algorithm with
rank-based selection, PMX crossover and swap mutation, and
with our recently derived Geometric Differential Evolution.

The TSP instances used in our experiments are randomly
generated with length 50. The distance between each pair of
cities lies between 0 and 1, and the instances are symmetric
but not Euclidean. Twenty TSP instances were generated at the
beginning of the experiments; every algorithm configuration
is run once per instance, and the fitness averaged over all
instances.

Moderately extensive tuning experiments were performed
for the population-based algorithms. All algorithms (GNMA,
GDE, GA and hill climber) each run lasted 100000 (hundred

thousand) function evaluations. For GNMA, GDE GA, popula-
tion sizes of 10, 20, 50, 100, 1000 were tried, with the number
of generations set to100000/popsize. For GA and GDE, their
two respective key parameters were varied between 0 and 1
in increments of 0.2; for GNMA, the parameters areF and
Cr. For the GA, these parameters were defined as the elite
proportion (how large part of the rank-ordered population is
used as the elite; the lesser fit rest of the population is replaced
each generation) and mutation probability (the probability that
a new offspring is created through swap mutation from the
previous individual at the same position in the population
rather than using PMX crossover of two randomly selected
individuals in the population). We note that some extreme
settings yield degenerate versions of both algorithms.

For GNMA, the following parameters were tuned in addi-
tion to the population size (tested values in parenthesis): Alpha
(1.0, 1.9), Gamma (2.0), Rho (0.8, 0.9, 0.95), Sigma (0.8, 0.9,
0.95).

Alas, for the hillclimber, there is nothing to tune.

Algorithm Fitness Population Parameters
Hillclimber 5.37 - -
GA 5.13 10 elite 0.2, mut 0.6
GDE 5.35 10 F 0.0, Cr 0.2
GNMA 6.65 500 α1.0, Γ2.0, ρ0.8, Σ0.9

TABLE I

RESULTS ONTSPINSTANCES OF SIZE50. LOWER FITNESSES ARE BETTER.

The results in table I show that while GNMA does find
reasonably good solutions (a typical best fitness of the first
generation is around 20), it is not competitive with the GA,
GDE nor even the hillclimber.

VI. D ISCUSSION

In the previous section, we have presented initial experi-
mental results. The new algorithm does not seem to perform
as well as a genetic algorithm and a stochastic local search
defined on the same search space and representation. This
is a rather surprising result as the Geometric Nelder-Mead
Algorithm specified to binary strings under Hamming distance
performed significantly better than a genetic algorithm on NK-
landscapes [8], showing that, in principle, the GNMA may
work well when applied to combinatorial spaces.

At first, we tested the permutation-based NMA with stan-
dard parameter settings of the classic NMA (α = 1, γ = 2, ρ =
0.5, σ = 0.5 and population size = genome size + 1) that
worked well for the GNMA on binary strings. However, for
the permutation-based GNMA we found that there was a very
quick loss of diversity in the population that led to a very
early stop of the search and to rather poor performances. This
was quite surprising as there is no sign of diversity loss in
the population when both the classic NMA and the GNMA
on binary strings are run with the same parameter setting.

As all specific GNMA are really the instantiation of the
same search dynamics to different search spaces, we were left
to wonder about the cause of this lack of consistency among

the dynamics of the permutation-based GNMA with those of
the classic NMA and the GNMA on binary strings. There are
two possibilities to explain the quick convergence: (i) some
special feature of the topography of the fitness landscape of
the TSP; (ii) some special feature of the specific geometry
of the permutation space under swap distance. The second
possibility seems to be the reason behind the inconsistency
regarding the diversity in the population, as explained in the
following.

When we sample two binary strings uniformly at random,
they are likely to be at half of the maximal Hamming distance
for strings of that size (i.e., half of the size of the diameter
of the search space). This is because the probability at each
position in the two strings to have the same bit is 0.5. For non-
binary strings based on alphabets with higher cardinalities than
two, the Hamming distance between strings sampled uniformly
at random tends to be likely to be closer to the maximal
Hamming distance for strings of that size as the cardinality
of the alphabet gets higher. This is because the probability
at each position in the two strings to have the same symbol
diminishes (rapidly) with the size of the alphabet. So, this leads
to the rather counter-intuitive result that non-binary strings
sampled at random are likely to be at maximal distance from
each other. An analogous result holds for permutations under
swap distance due to the intimate relation between Hamming
distance for permutations and swap distance between permu-
tations. The situation for points sampled uniformly at random
in the Euclidean space is similar to the case of binary strings.
So, under this particular aspect, the permutation space under
swap distance differs substantially from both the Hamming
space for binary strings and Euclidean space. This difference
in the search space affects heavily the dynamics of the NMA,
as explained in the following.

The geometric operations of the NMA can be classified
in two types: explorative operations – reflection and expan-
sion – which have the effect of expanding the simplex, and
exploitative operations – contraction and shrinking – which
have the effect of reducing the simplex. Explorative operations
are based on the extension ray operation and exploitative
operations are based on the convex combination operation.
When an explorative operation is applied to two points in
space sampled uniformly at random, we obtain two very
different behaviors depending on whether the two points are at
a maximal distance or not. This is because when we apply the
extension ray operator to them, say with originA and passing
throughB, if A and B are at a maximal distance, there are
no points in the space belonging to the extension ray except
for the pointB, which is then the one returned. Clearly, this
is a degenerate case.

This, in fact, explains why the reflection and expansion
operations in the initial population in the permutations space
are not explorative enough, whereas they are explorative in
the case of binary strings and continuous spaces. This is
essentially because the center of mass of a set of random
permutations (i.e., the initial simplex) can be seen as if it
were a permutation sampled at random in itself. Also the worse

permutation in the initial population is sampled at random. So,
for permutations, the center of mass and the worse element of
the population are likely to be at a maximal distance. There-
fore, the reflection operation cannot return a point beyond
the center of mass (exploration) but it can only return the
center of mass (fixation/convergence). So, the operation that
should have been in charge of exploring, actually it does quite
the opposite. Then, the remaining operations also will push
toward convergence as they are designed to do so. This does
not happen in the Hamming space for binary strings as the
initial center of mass and the worst individual are likely to be
at half of the maximum distance of the space. So, there can be
initial exploration as the extension ray operator does not return
a degenerate point, and quite the opposite, there is actually
plenty of points in the extension ray between two randomly
chosen binary strings. This is similar to what happens in the
case of the original NMA on continuous space.

To compensate for this lack of diversity we can set pa-
rameters to preserve diversity in the initial phase of the run
by considering larger populations and very mild convergence
setting (for shrinking and contraction). This seems to preserve
diversity and produce better performance as shown in the
experimental section, that however, are still inferior to those
of stochastic local search and of a genetic algorithm. A more
systematic study of the parameters and analysis of the behavior
of the NMA is needed to understand if this is a fundamental
limit of the GNMA on the permutation representation (and
non-binary string representations) or not. To do so we will
test the GNMA also on other permutation-based problems.

VII. C ONCLUSIONS

The Geometric Nelder-Mead Algorithm is a generalization
of the classical Nelder-Mead Algorithm to general metric
spaces. In particular, it applies to combinatorial spaces. The
permutation representation is an important representation rel-
evant to many combinatorial optimization problems. In this
paper we have demonstrated how to specify the general Ge-
ometric Nelder-Mead Algorithm to the space of permutations
under swap distance. From preliminary experimental results
on the TSP, the new algorithm does not seem to perform
as well as a genetic algorithm and a stochastic local search
defined on the same search space and representation. This
is a rather surprising result as the Geometric Nelder-Mead
Algorithm specified to binary strings under Hamming distance
performed significantly better than a genetic algorithm on NK-
landscapes [8], showing that, in principle, the GNMA may
work well when applied to combinatorial spaces. The reason
behind it seems to be related with the peculiar geometric
properties of the permutation space that forces the GNMA
towards a degenerate dynamic. This does not happen with
the traditional NMA and the binary GNMA. However, further
investigation is needed to elucidate if this is a fundamental
limitation of the application of the GNMA to permutation
spaces. More generally, this investigation will shed light on
the applicability of any formal geometric algorithm – including
GDE and GPSO – to any permutation-based problem.

As additional future work, we will test this new algo-
rithm more thoroughly and on a number of combinatorial
optimization problems. Also, we will derive the GNMA for
permutations under other distances, such as adjacent-swap
distance and reversal distance, which may be more suitable
to particular classes of problems, e.g., scheduling problems.
Finally, as GNMA is a close relative of GPSO and GDE,
we will present the three algorithms in a common theoretical
framework highlighting their commonalities and differences
and we will compare them experimentally to find out which of
their characteristics are better suited to which type of problems
and representations.

REFERENCES

[1] M. Clerc, Discrete particle swarm optimization, illustrated by the trav-
eling salesman problem, New Optimization Techniques in Engineering,
Springer, 2004, pp. 219–239.

[2] J. Kennedy and R. C. Eberhart,A discrete binary version of the particle
swarm algorithm, IEEE Transactions on Systems, Man, and Cybernetics
5 (1997), 4104–4108.

[3] , Swarm intelligence, Morgan Kaufmann, 2001.
[4] Changtong Luo and Bo Yu,Low dimensional simplex evolution a hybrid

heuristic for global optimization, Eighth International Conference on
Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing, vol. 2, 2007, pp. 470–474.

[5] A. Moraglio, Towards a geometric unification of evolutionary algo-
rithms, Ph.D. thesis, University of Essex, 2007.

[6] A. Moraglio, C. Di Chio, and R. Poli,Geometric particle swarm
optimization, European Conference on Genetic Programming, 2007,
pp. 125–136.

[7] A. Moraglio, C. Di Chio, J. Togelius, and R. Poli,Geometric particle
swarm optimization, Journal of Artificial Evolution and Applications
2008 (2008), Article ID 143624.

[8] A. Moraglio and C.G. Johnson,Geometric generalization of the nelder-
mead algorithm, Proceedings of the 10th European Conference on
Evolutionary Computation in Combinatorial Optimization, 2010.

[9] A. Moraglio and S. Silva,Geometric differential evolution on the space
of genetic programs, Proceedings of the 13th European Conference on
Genetic Programming, 2010.

[10] A. Moraglio and J. Togelius,Geometric pso for the sudoku puzzle,
Proceedings of the Genetic and Evolutionary Computation Conference,
2007, pp. 118–125.

[11] Alberto Moraglio and Julian Togelius,Geometric differential evolution,
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, 2009, pp. 1705–1712.

[12] John Ashworth Nelder and Roger A. Mead,A simplex method for
function minimization, Computer Journal7 (1965), 308–313.

[13] Michael O’Neill and Anthony Brabazon,Grammatical differential evo-
lution, Proceedings of the 2006 International Conference on Artificial
Intelligence, CSREA Press, 2006, pp. 231–236.

[14] G. C. Onwubolu and D. Davendra (eds.),Differential evolution: A
handbook for global permutation-based combinatorial optimization,
Springer, 2009.

[15] G. Pampara, A.P. Engelbrecht, and N. Franken,Binary differential
evolution, IEEE Congress on Evolutionary Computation, 2006.

[16] K. V. Price, R. M. Storm, and J. A. Lampinen,Differential evolution:
A practical approach to global optimization, Springer, 2005.

[17] Tetsuyuki Takahama and Setsuko Sakai,Constrained optimization by
applying theα-constrained method to the nonlinear simplex method
with mutations, IEEE Transactions on Evolutionary Computation9(5)
(2005), 437–451.

[18] Julian Togelius, Renzo De Nardi, and Alberto Moraglio,Geometric pso
+ gp = particle swarm programming, Proceedings of the Congress on
Evolutionary Comptutation (CEC), 2008.

[19] Fang Wang and Yuhui Qiu,Empirical study of hybrid particle swarm
optimizers with the simplex method operator, Proceedings of the 5th In-
ternational Conference on Intelligent Systems Design and Applications,
2005, pp. 308–313.

[20] Thomas Weise,Global optimization algorithms - theory and application,
on-line ebook, 2009.

