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ABSTRACT
Geometric Particle Swarm Optimization (GPSO) is a re-
cently introduced formal generalization of traditional Par-
ticle Swarm Optimization (PSO) that applies naturally to
both continuous and combinatorial spaces. Differential Evo-
lution (DE) is similar to PSO but it uses different equations
governing the motion of the particles. This paper generalizes
the DE algorithm to combinatorial search spaces extending
its geometric interpretation to these spaces, analogously as
what was done for the traditional PSO algorithm. Using this
formal algorithm, Geometric Differential Evolution (GDE),
we formally derive the specific GDE for the Hamming space
associated with binary strings and present experimental re-
sults on a standard benchmark of problems.

1. INTRODUCTION
Two relatively recent additions to the Evolutionary Algo-
rithms (EAs) family are Particle Swarm Optimization [4],
inspired to the flocking behavior of swarms of birds, and
Differential Evolution [12], which is similar to PSO, but it
uses different equations governing the motion of the par-
ticles. Despite their relatedness, DE is known to produce
consistently better performance than PSO on many prob-
lems. In fact, DE is one of the most competitive EAs for
continuous optimization [12].

In their initial inception, both PSO and DE were defined
only for continuous problems. In both algorithms, the mo-
tion of particles is produced by linear combinations of points
in space and has a natural geometric interpretation. There
are only few extensions of DE to combinatorial spaces [12]
[11] [1] [10]. Some of these works recast combinatorial opti-
mization problems as continuous optimization problems and
then apply the traditional DE algorithm to solve these con-
tinuous problems. Other works present DE algorithms de-
fined directly on combinatorial spaces that, however, are
only loosely related to the traditional DE in that the original
geometric interpretation is lost in the transition from con-
tinuous to combinatorial spaces. Furthermore, every time a

new solution representation is considered, the DE algorithm
needs to be rethought and adapted to the new representa-
tion.

GPSO [7] is a recently devised formal generalization of PSO
that retains a simple geometric interpretation of the dy-
namics of the particles in space. GPSO can be applied to
any search space endowed with a distance and associated
with any solution representation to derive formally a spe-
cific GPSO for the target space. Recently, specific GPSOs
were derived for different types of continuous spaces and for
the Hamming space associated with binary strings [8], for
spaces associated with permutations [9] and for spaces asso-
ciated with Genetic Programming trees [14].

The objective of the present paper is to generalize the DE
algorithm to combinatorial spaces extending its geometric
interpretation to these spaces, analogously to what was done
for the traditional PSO algorithm, derive the specific GDE
for the Hamming space associated with binary strings and
present experimental results on standard benchmark prob-
lems.

2. THE GEOMETRY OF REPRESENTATIONS
In this section, we introduce the ideas behind a recent formal
theory of representations [6] which forms the context for the
generalization of DE presented in the following sections.

Familiar geometric shapes in the Euclidean plane such as
circles, ellipses, segments, semi-lines, triangles and convex
polygons can be defined using distances between points in
space. For example, a circle is the locus of points from which
the distance to the centre c is a given constant value, the
radius r. By replacing in the definition of a shape, say a cir-
cle, the Euclidean distance with a different distance, say the
Hamming distance, we obtain the definition of a circle in the
Hamming space. A circle in the Hamming space looks quite
different from a circle in the Euclidean plane, however they
both share the same geometric definition. Analogously, if
we replace the Euclidean distance with the Manhattan dis-
tance, we obtain the definition of a circle in the Manhattan
space. A number of simple geometric shapes based on the
Manhattan distance in the plane have been derived explic-
itly (see Taxicab Geometry [5]). We can in fact replace the
Euclidean distance in the definition of any geometric shape
with any distance meeting a minimum number of require-
ments (metric), obtaining the corresponding shape in a space
with a different geometry. We can also raise the level of ab-



straction and replace the Euclidean distance with a generic
metric, obtaining an abstract shape, such as for example an
abstract circle. An abstract circle captures what is common
to all circles across all possible geometries. Any property
of an abstract circle is also a property of any space-specific
circle.

Search algorithms can be viewed from a geometric perspec-
tive. The search space is seen as a geometric space with a
notion of distance between points, and candidate solutions
are points in the space. For example, search spaces asso-
ciated with combinatorial optimization problems are com-
monly represented as graphs in which nodes corresponds
to candidate solutions and edges between solutions corre-
spond to neighbour candidate solutions. We can endow
these spaces with a distance between solutions equal to the
length of the shortest path between their corresponding nodes
in the graph. Geometric search operators are defined using
geometric shapes to delimit the region of search space where
to sample offspring solutions relative to the positions of par-
ent solutions. For example, geometric crossover is a search
operator that takes two parent solutions in input corre-
sponding to the end-points of a segment, and returns points
sampled at random within the segment as offspring solu-
tions. The specific distance associated with the search space
at hand is used in the definition of segment to determine the
specific geometric crossover for that space. Therefore, each
search space is associated with a different space-specific ge-
ometric crossover. However, all geometric crossovers have
the same abstract geometric definition.

In analytic geometry, in which points of the Cartesian plane
are in one-to-one correspondence with pairs of numbers,
their coordinates, the same geometric shape can be equiva-
lently expressed geometrically as a set of points in the plane,
or algebraically, by an equation whose solutions are the co-
ordinates of its points. This is an important duality which
allows us to treat geometric shapes as equations and vice
versa. There is an analogous duality that holds for geometric
search operators. Candidate solutions can be seen as points
in space, geometric view, or equivalently, as syntactic con-
figurations of a certain type, algebraic view. For example, a
candidate solution in the Hamming space can be considered
as a point in space or as a binary string corresponding to
that point. The binary string can then be thought as being
the coordinates of the point in the Hamming space. This
allows us to think of a search operator equivalently as (i) an
algorithmic procedure which manipulates the syntax of the
parent solutions to obtain the syntactic configurations of the
offspring solutions using well-defined representation-specific
operations (algebraic view), or (ii) a geometric description
which specifies what points in the space can be returned as
offspring for the given parent points and with what prob-
ability (geometric view). For example, uniform crossover
for binary strings [13] is a recombination operator that pro-
duces offspring binary strings by inheriting at each position
in the binary string the bit of one parent string or of the
other parent string with the same probability. This is an
algebraic view of the uniform crossover that tells how to
manipulate the parent strings to obtain the offspring string.
Equivalently, the same operator can be defined geometrically
as the geometric crossover based on the Hamming distance
that takes offspring uniformly at random in the segment be-

tween parents.

There are two important differences between these two def-
initions of the same operator. The geometric definition is
declarative, it defines what offspring the operator returns
given their parents without explicitly telling how to actually
generate the offspring from the parents. The algebraic defi-
nition, on the other hand, is operational, since it defines the
search operator by telling for each combination of parents
how to build the corresponding offspring. The second impor-
tant difference is that the geometric description of a search
operator is representation-independent and refers only indi-
rectly to the specific solution representation via a distance
defined on such representation (i.e. edit distances such as
the Hamming distance which can be defined on the binary
string representation as the minimum number of bit-flips to
obtain one string from the other). In contrast, the algebraic
definition of a search operator is representation-dependent
and uses operations which are well-defined on the specific
solution representation but that may not be well-defined on
other representations (e.g. bit-flip on a binary string is not
well-defined on a permutation).

The duality of the geometric search operators has surprising
and important consequences [6]. One of them is the pos-
sibility of principled generalization of search algorithms for
continuous spaces to combinatorial spaces, as sketched in the
following. Given a search algorithm defined on continuous
spaces, recast the definition of the search operators express-
ing them explicitly in terms of Euclidean distance between
parents and offspring. Substitute the Euclidean distance
with a generic metric, obtaining a formal search algorithm
generalizing the original algorithm based on the continuous
space. Consider a (discrete) representation and a distance
associated with it (a combinatorial space) and use it in the
definition of the formal search algorithm to obtain a specific
instance of the algorithm for this space. Use this geometric
and declarative description of the search operator to derive
its algebraic and operational definition in terms of manipu-
lation of the underlying representation. As mentioned in the
introduction, we applied this methodology to generalize PSO
to any metric space and derived the specific search operators
for a number of representations. In the following sections,
we use it to generalize DE. This methodology can be used
to generalize to combinatorial spaces other algorithms nat-
urally based on a notion of distance. This includes search
algorithms such as Response Surface Methods, Estimation
of Distribution Algorithms and Lipschitz Optimization al-
gorithms, and also Machine Learning algorithms.

3. CLASSIC DIFFERENTIAL EVOLUTION
In this section, we describe the traditional DE [12] (see al-
gorithm 1).

The characteristic that sets DE apart from other evolution-
ary algorithms is the presence of the differential mutation
operator (see line 5 of algorithm 1). This operator creates
a mutant vector U by perturbing a vector X3 picked at
random from the current population with the scaled dif-
ference of other two randomly selected population vectors
F · (X1 − X2). This operation is understood being impor-
tant because it adapts the mutation direction and its step
size to the level of convergence and spatial distribution of the



Algorithm 1 DE with differential mutation and discrete
crossover
1: initialize population of Np real vectors at random
2: while stop criterion not met do
3: for all vector X(i) in the population do
4: pick at random 3 distinct vectors from the current

population X1, X2, X3
5: create mutant vector U = X3+F ·(X1−X2) where

F is the scale factor parameter
6: set V as the result of the discrete recombination of

U and X(i) with probability Cr
7: if f(V ) ≥ f(X(i)) then
8: set the ith vector in the next population Y (i) = V
9: else

10: set Y (i) = X(i)
11: end if
12: end for
13: for all vector X(i) in the population do
14: set X(i) = Y (i)
15: end for
16: end while

current population. The mutant vector is then recombined
with the currently considered vector X(i) using discrete re-
combination and the resulting vector V replaces the current
vector in the next population if it has better fitness.

The differential mutation parameter F , known as scale fac-
tor, is a positive real normally between 0 and 1, but it can
take also values greater than 1. The recombination probabil-
ity parameter Cr takes values in [0, 1]. It is the probability,
for each position in the vector X(i), of the offspring V in-
heriting the value of the mutant vector U . When Cr = 1,
the algorithm 1 degenerates to a DE algorithm with dif-
ferential mutation only (because V = U). When F = 0,
the algorithm 1 degenerates to a DE algorithm with dis-
crete crossover only, as U = X3. The population size Np

normally varies from 10 to 100.

4. GEOMETRIC DIFFERENTIAL
EVOLUTION

Following the methodology outlined in section 2, in this sec-
tion we generalize the classic DE algorithm to general metric
spaces. To do this, we recast differential mutation and dis-
crete recombination as functions of the distance of the un-
derlying search space, thereby obtaining their abstract geo-
metric definitions. Then, in section 5, we derive the specific
DE for the Hamming space associated with binary strings
by plugging this distance in the abstract definition of the
search operators.

Figure 1: Construction of U using vectors.

4.1 Generalization of differential mutation
Let X1, X2, X3 be real vectors and F ≥ 0 a scalar. The
differential mutation operator produces a new vector U as
follows:

U = X3 + F · (X1 − X2) (1)

The algebraic operations on real vectors in equation 1 can
be represented graphically [12] as in figure 1. Real vectors
are represented as points. The term X1−X2 is represented
as a vector originating in X2 and reaching X1. The multi-
plication with the scaling factor F produces a vector with
the same origin and direction but with a different length.
The addition of X3 to the scaled vector corresponds to the
translation of the origin of the scaled vector from X2 to X3
keeping invariant its direction and length. The point of the
(graphical) vector so obtained corresponds to the real vector
U .

Unfortunately, this graphical interpretation of equation 1
in terms of operations on vectors does not help us to gen-
eralize equation 1 to general metric spaces because the no-
tions of vector and operations on vectors are not well-defined
at this level of generality. In the following, we propose a
generalization based on interpreting equation 1 in terms of
segments and extension rays, which are geometric elements
well-defined on any metric space. To do that, we need to
rewrite equation 1 in terms of only convex combinations of
two vectors, which are the algebraic dual of segments. A
convex combination of a set of vectors is a linear combi-
nation of these vectors provided that their weights are all
positive and sum up to one.

Equation 1 can be rewritten as:

U + F · X2 = X3 + F · X1 (2)

By dividing both sides by 1 + F and letting W = 1

1+F
we

have:

W · U + (1 − W ) · X2 = W · X3 + (1 − W ) · X1 (3)

Both sides of equation 3 are convex combinations of two
vectors. On the left-hand side, the vectors U and X2 have
coefficients W and 1 − W , respectively. These coefficients
sum up to one and are both positive because W ∈ [0, 1] for
F ≥ 0. Analogously, the right-hand side is a convex combi-
nation of the vectors X3 and X1 with the same coefficients.



Figure 2: Construction of U using convex combina-
tion and extension ray.

There is a interesting duality between the algebraic notion
of convex combination of two vectors and the geometric no-
tion of segment in the Euclidean space. Vectors represent
points in space. The points PC corresponding to the vec-
tors C obtained by any convex combination of two vectors
A and B lay in the line segment between their corresponding
points PA and PB . The vice versa also holds true: the vec-
tor C corresponding to a point PC in the segment [PA, PB ]
can be obtained as a convex combination of the vectors A
and B. The weights WA and WB in the convex combina-
tion localize the point on the segment [PA, PB ]: distances to
PC from PA and PB are inversely proportional to the corre-
sponding weights, WA and WB. So, the weight of a vector
can be thought geometrically as attraction force towards its
corresponding point.

This duality allows for a geometric interpretation of equa-
tion 3 in terms of convex combinations (see figure 2). Let us
call E the vector obtained by the convex combinations on
both sides of equation 3. Geometrically the point E must be
the intersection point of the segments [U, X2] and [X1, X3].
The distances from E to the endpoints of these segments
can be determined from equation 3 as they are inversely
proportional to their respective weights. Since the point U
is unknown (but its weight is known), it can be determined
geometrically by firstly determine E as convex combination
of X1 and X3; then, by projecting X2 beyond E (extension
ray) obtaining a point U such that the proportions of the dis-
tances of X2 and U to the point E is inversely proportional
to their weights. In the Euclidean space, the constructions
of U using vectors (figure 1) and convex combinations (figure
2) are equivalent (algebraically, hence geometrically).

Segments and extension rays in the Euclidean space and
their weighted extensions can be expressed in terms of dis-
tances, hence, these geometric objects can be naturally gen-
eralized to generic metric spaces by replacing the Euclidean
distance with a generic metric. We will present their ab-
stract definitions in section 5 before specifying these opera-
tors for the Hamming distance on binary strings.

The differential mutation operator U = DM(X1, X2, X3)
with scale factor F can now be defined for any metric space

following the construction of U presented in figure 2 as fol-
lows:

1. Compute W = 1

1+F

2. Get E as the convex combination CX(X1, X3) with
weights (1 − W, W ) (generalizing E = (1 − W ) · X1 +
W · X3)

3. Get U as the extension ray ER(X2, E) with weights
(W, 1−W ) (generalizing U = (E − (1−W ) · X2)/W )

4.2 Generalization of discrete recombination
After applying differential mutation, the DE algorithm ap-
plies discrete recombination to U and X(i) generating V .
Discrete recombination is a geometric crossover under Ham-
ming distance for real vectors [6]. The Hamming distance
(HD) for real vectors is defined analogously to the Hamming
distance between binary strings: it is the number of sites
with mismatching values across the two vectors. From its
definition, we can derive that the Cr parameter of the dis-
crete recombination is proportional to the expected number
of values that V inherits from U . Therefore, E[HD(U, V )] =
Cr·HD(U, X(i)) and E[HD(X(i), V )] = (1−Cr)·HD(U,X(i)).
Consequently, Cr and 1 − Cr can be interpreted as the
weights of U and X(i), respectively, of the convex combina-
tion that returns V in the space of real vectors endowed with
Hamming distance. In order to generalize the discrete re-
combination, by replacing hamming distance with a generic
metric, we obtain the abstract convex combination opera-
tor CX introduced in the previous section. So, we have
that the generalized discrete recombination of U and X(i)
with probability parameter Cr generating V is as follows:
V = CX(U, X(i)) with weights (Cr, 1 − Cr).

In the classic DE (algorithm 1), replacing the original differ-
ential mutation and discrete recombination operators with
their generalizations, we obtain the formal Geometric Differ-
ential Evolution (see algorithm 2). When this formal algo-
rithm is specified on the Euclidean space, the resulting Eu-
clidean GDE does not coincide with the classic DE. This is
because, whereas the original differential mutation operator
can be expressed as a function of the Euclidean distance, the
original discrete recombination operator can be expressed as
a function of the Hamming distance for real vectors, not of
the Euclidean distance. The Euclidean GDE coincides with
an existing variant of traditional DE [12], which has the same
differential mutation operator but in which the discrete re-
combination is replaced with blend crossover. Interestingly,
blend crossover lives in the same space as differential muta-
tion and their joint behavior has a geometric interpretation
in space.

5. BINARY GDE
In this section, we present definitions of convex combination
and extension ray and their weighted extensions in general
metric spaces, and derive formally their specifications to the
Hamming space for binary strings. These specific operators
can be plugged in the formal GDE (algorithm 2) to obtain
a specific GDE for the Hamming space, the Binary GDE.



Algorithm 2 Formal Geometric Differential Evolution

1: initialize population of Np configurations at random
2: while stop criterion not met do
3: for all configuration X(i) in the population do
4: pick at random 3 distinct configurations from the

current population X1, X2, X3
5: set W = 1

1+F
where F is the scale factor parameter

6: create intermediate configuration E as the convex
combination CX(X1, X3) with weights (1−W, W )

7: create mutant configuration U as the extension ray
ER(X2, E) with weights (W, 1 − W )

8: create candidate configuration V as the convex com-
bination CX(U, X(i)) with weights (Cr, 1 − Cr)
where Cr is the recombination parameter

9: if f(V ) ≥ f(X(i)) then
10: set the ith configuration in the next population

Y (i) = V
11: else
12: set Y (i) = X(i)
13: end if
14: end for
15: for all configuration X(i) in the population do
16: set X(i) = Y (i)
17: end for
18: end while

5.1 Convex combination
The notion of convex combination in metric spaces was in-
troduced in the GPSO framework [7]. The convex com-
bination C = CX((A, WA), (B, WB)) of two points A and
B with weights WA and WB (positive and summing up to
one) in a metric space endowed with distance function d re-
turns the set of points C such that d(A,C)/d(A, B) = WB

and d(B, C)/d(A, B) = WA (the weights of the points A
and B are inversely proportional to their distances to C).
When specified to Euclidean spaces, this notion of convex
combination coincides with the traditional notion of convex
combination of real vectors. In the Euclidean space, C is
uniquely determined, however this is not the case for all
metric spaces. In particular, it does not hold for Hamming
spaces. When CX is specified to Hamming spaces on bi-
nary strings, we obtain the recombination operator outlined
in algorithm 3 [7]. This algorithm returns offspring C such
that d(A,C)/d(B, C) = WB/WA in expectation. This dif-
fers from the Euclidean case where this ratio is guaranteed.

Algorithm 3 Binary Convex Combination Operator

1: inputs: binary strings A and B and weights WA and WB

(weights must be positive and sum up to 1)
2: for all position i in the strings do
3: if random(0,1) ≤ WA then
4: set C(i) to A(i)
5: else
6: set C(i) to B(i)
7: end if
8: end for
9: return string C as offspring

5.2 Extension ray
Let (S, d) be a metric space. A (metric) segment is a set of
the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where

x, y ∈ S are called end-points of the segment. The extension
ray ER(A,B) in the Euclidean plane is a semi-line originat-
ing in A and passing through B (note that ER(A,B) 6=
ER(B,A)). The extension ray in a metric space can be
defined indirectly using metric segments, as follows.

Definition 1. Given points A and B, the (metric) ex-
tension ray ER(A,B) is the set of points C that satisfy
C ∈ [A, B] or B ∈ [A, C].

In this paper, only the part of the extension ray beyond
B will be of interest because the point C that we want to
determine, which is, the offspring of the differential mutation
operator, is never between A and B by construction.

In the following, we define the weighted extension ray for
general metric spaces consistently with the geometric inter-
pretation presented in section 4.1. The weighted extension
ray ER is defined as the inverse operation of the weighted
convex combination CX, as follows.

Definition 2. The weighted extension ray ER((A,wab), (B, wbc))
of the points A (origin) and B (through) and weights wab and
wbc returns those points C such that their convex combina-
tion with A with weights wbc and wab, CX((A, wab), (C, wbc)),
returns the point B.

Notice that from this definition follows that the weights wab

and wbc in ER are positive real numbers between 0 and 1
and sum up to 1 because they must respect this condition
in CX.

The set of points returned by the weighted extension ray
ER can be characterized in terms of distances to the input
points of ER, as follows.

Lemma 1. The points C returned by the weighted exten-
sion ray ER((A,wab), (B, wbc)) are those points which are
at a distance d(A,B) · wab/wbc from B and at a distance
d(A,B)/wbc from A.

Proof. From the definition of weighted extension ray we
have that B = CX((A,wab), (C,wbc))). Hence, d(A, C) =
d(A,B) + d(B, C) and the distances d(A,B) and d(B, C)
are inversely proportional to the weights wab and wbc. Con-
sequently, d(A, C) = d(A, B)/wbc and substituting it in
d(B, C) = d(A, C) − d(A, B) we get d(B, C) = d(A, B) ·
wab/wbc, since wab + wbc + 1.

This characterization may be useful to construct procedures
to implement the weighted extension ray for specific spaces.
We used it, together with representation-specific properties
of the extension ray in the Hamming space on binary strings,
in the derivation of the Binary Extension Ray Recombina-
tion (algorithm 4).

In order to gain an intuitive understanding of how an ex-
tension ray looks like in the Hamming space, let us consider



an example of extension ray originating in A = 110011 and
passing through B = 111001.

The relation C ∈ [A, B] is satisfied by those C that match
the schema S1 = 11 ∗ 0 ∗ 1. This is the set of the possible
offspring of A and B that can be obtained by recombining
them using the uniform crossover.

The relation B ∈ [A, C] is satisfied by all those C that match
S2 = ∗ ∗ 1 ∗ 0∗. This is the set of all those C that when
recombined with A using the uniform crossover can produce
B as offspring.

The following theorem characterizes the extension ray in the
Hamming space in terms of schemata.

Theorem 2. Let A and B be fixed binary strings in the
Hamming space:

1. the relation C ∈ [A, B] is satisfied by those strings C
that match the schema obtained by keeping the common
bits in A and B and inserting ∗ where the bits of A and
B do not match.

2. the relation B ∈ [A, C] is satisfied by all those strings
C that match the schema obtained by inserting ∗ where
the bits are common in A and B and inserting the bits
coming from B where the bits of A and B do not match.

Proof. Proof of statement 1 : the schema so defined cor-
responds to the set of the possible offspring of A and B
that can be obtained by recombining them using the uni-
form crossover. This crossover operator corresponds to the
uniform geometric crossover under Hamming distance which
returns offspring in the segment between parents.

Proof of statement 2 : all C matching the schema S defined
in this statement recombined with A can produce B as off-
spring. This is because at each position (in A, B and C)
when in the schema S there is ∗ the bit in B at that posi-
tion can be inherited from A. When in the schema there is
a bit (0 or 1) the bit in B at that position can be inherited
from C. Furthermore, only the strings C matching S can
produce B when C is recombined with A.

Using the characterization of the weighted extension ray in
terms of distances (lemma 1) and the characterization of the
extension ray in the Hamming space in terms of schemata
(theorem 2), we were able to derive the weighted extension
ray recombination for this space (see algorithm 4). Theorem
3 proves that this recombination operator conforms to the
definition of weighted extension ray for the Hamming space.

Theorem 3. Given parents A and B, the recombination
in algorithm 4 returns an offspring C such that
E[HD(B, C)]/HD(A, B) = WAB/WBC , where E[HD(B, C)]
is the expected Hamming distance between B and the off-
spring C. Therefore, in expectation, this recombination op-
erator conforms to the geometric definition of weighted ex-
tension ray under Hamming distance.

Algorithm 4 Binary Extension Ray Recombination

1: inputs: binary strings A (origin) and B (through) of
length n and weights WAB and WBC (weights must be
positive and sum up to 1)

2: set HD(A, B) as Hamming distance between A and B
3: set HD(B, C) as HD(A, B) · wAB/wBC (compute the

distance between B and C using the weights)
4: set p as HD(B, C)/(n − HD(A,B)) (this is the proba-

bility of flipping bits away from A and B beyond B)
5: for all position i in the strings do
6: set C(i) = B(i)
7: if B(i) = A(i) and random(0,1) ≤ p then
8: set C(i) to the complement of B(i)
9: end if

10: end for
11: return string C as offspring

Proof. This can be shown as follows. The number of
bits in which A and B differ are HD(A, B). The number
of bits in which A and B do not differ is n − HD(A, B).
For the bits in which A and B differ, the string C equals
B. For each bit in which A and B do not differ, C does
not equal B with probability p. So, the expected distance
between B and C is E[HD(B,C)] = (n − HD(A,B)) · p.
By substituting p = HD(B,C)/(n − HD(A, B)), we have
E[HD(B, C)] = HD(B,C) = HD(A,B) · WAB/WBC . So,
E[HD(B, C)]/HD(A, B) = WAB/WBC .

6. EXPERIMENTS
We implemented the GDE algorithm for binary spaces within
a Java framework,1 and investigated its performance on some
benchmark problems. The proposed algorithm was com-
pared with three other algorithms:

• cGA: A canonical Genetic Algorithm, with roulette
wheel fitness-proportionate selection, uniform crossover
and bitflip mutation.

• tGA: a Genetic Algorithm with truncation selection,
with a selection threshold of popsize/2.

• ES: A µ+λ Evolution Strategy, with µ = λ = popsize/2
and bitflip mutation.

For the first benchmark suite, we also compared it with:

• BPSO: Discrete Binary PSO of Kennedy and Eber-
hart, using the results presented in [3].

For the ES and GAs, the bitflip mutation works as follows:
each bit in the chromosome is considered, and with prob-
ability p this bit is flipped. In the experiments involving
these algorithms, this parameter was systematically varied
between 0.0 and 0.5 in increments of 0.01. For the experi-
ments involving GDE, the key parameters F and Cr were
systematically varied between 0.0 and 1.0 in increments of
0.1.

1Source code is available upon request from the second au-
thor.



In all experiments, the length of any single run was set to
4000 function evaluations, in order to be directly comparable
with the results of Kennedy and Eberhart. For GDE, GA
and ES the population size was varied systematically: sizes
of 10, 20, 40, 80 and 160 were tried, with the numbers of
generations limited appropriately: 400, 200, 100, 50 and 25.

6.1 Spears-DeJong functions
We used three of the same benchmark problems that Kennedy
and Eberhart tested their binary PSO on. These are William
Spears’ binary versions of DeJong’s functions f1, f2 and
f3.2 (We did not use f4 and f5 due to unresolved differ-
ences between different versions of the code, which might
be due to differing numerical precision in different systems;
further, Kennedy and Eberhart do not report precise results
for f4.)

Each configuration (parameters and population size) was
tested twenty times, and the average best score of each run
was recorded, as well as how many of the runs that reached
the global optimum. The results are summarized in table 1.
The parameters were optimized separately for each combi-
nation of benchmark function and algorithm, and only the
results of the best configuration are reported here. The best
parameter settings found are reported in tables 2 and 3.

The GDE algorithm appears to work best with small popula-
tion sizes, 10 or 20 individuals (and thus more generations).
On f1, there is a clear preference for high values (e.g. 0.9)
of both F and Cr, whereas on f2 the algorithm seems to
work best with values of around 0.3 for both parameters.

In comparison, both GAs always work best with large pop-
ulations and relatively high mutation rates (>0.1). The ES
seems to be relatively insensitive to population size, as long
as the mutation rate is in the region 0.05–0.1.

The compressed fitness structure of f1 and f2, with many
local optima with values differing from the global optimum
only in the third decimal, is apparently a bad match with
fitness-proportional selection; the landscape of f3 has sim-
ilar characteristics but to a lesser degree. Therefore, the
results of the canonical GA are the worst on all problems.

Both the evolution strategy and the GA with truncation se-
lection are strictly better on all benchmarks than the canon-
ical GA; binary PSO is better than ES in that it reaches
optimum more often on f1 and f2; and GDE is the best
algorithm overall, as it is as good as BPSO on f2 and f3
but reaches the global optimum almost twice as often on f1.

6.2 NK Landscapes
In order to more systematically test the behaviour of GDE
on landscapes with varying amount of epistasis, we per-
formed additional experiments using NK fitness landscapes,
as proposed by Kauffman [2]. NK landscapes have two
paramters: N , the number of dimensions, was fixed to 100
in our experiments; K, the number of dependencies on other
loci per locus was varied between 0 and 4. The parameters
of the algorithms (mutation rate, F and Cr) were varied in

2The original c source code of these functions can be found
at http://www.cs.uwyo.edu/∼wspears/functs/dejong.c

Algorithm f1 (78.6) f2 (3905.93) f3 (55.0)
BPSO - 10 - 4 - 20
GDE 78.5999 19 3905.9296 4 55.0 20
cGA 78.2152 0 3905.8052 0 52.1 1
tGA 78.5993 4 3905.9266 2 55.0 20
ES 78.5998 7 3905.9291 2 55.0 20

Table 1: Results on the Spears-DeJong benchmark
suite. The maxima of the functions are reported
next to their names. For each combination of algo-
rithm and problem, the results of the best param-
eterization of that combination are reported. The
first number is the best fitness of the last genera-
tion, averaged over 20 runs. The second number is
the number of those runs that reached the global
optimum.

Function pop/gen F Cr
f1 10/400 0.9 0.8
f2 20/200 0.3 0.3
f3 * * *

Table 2: Best parameter settings found for GDE
on the Spears-DeJong benchmarks. The asterisks
denote that many combinations are optimal.

the same way as with the Spears-DeJong experiments above.
All evolutionary runs lasted for 10000 function evaluations,
which were allocated either as population size 100 and 100
generations or as population size 10 and 1000 generations.

The results in table 4 show that GDE is a very competitive
algorithm overall. For population size 100, GDE is the best
of the four algorithms for K of 1, 2 and 3, and a close second
for K of 0 and 4. For population size 10, GDE is the best
algorithm for all K except K = 0. The results further show
that the ES and the GA with truncation selection performs
significantly better than the canonical GA for all K.

Table 5 shows the best parameter settings for GDE for dif-
ferent K. Apparently, for low K larger population sizes are
preferred, and for higher K smaller populations do better.
Interestingly, for all K the best configuration is very low F
and medium to high Cr. Table 6 presents the best parame-
ter settings found for ES and GA. A very clear trend is that
ES works best with small populations and bots GAs with
larger populations; ES also generally prefers lower mutation
rate than the GAs.

7. CONCLUSIONS
In this paper, we have generalized DE from continuous to
generic combinatorial spaces by extending the geometric in-
terpretation of the classic DE to general metric spaces. The
algorithm obtained (GDE) can then be formally specified
for specific spaces and specific representations. We have
illustrated this by deriving the specific GDE for the Ham-
ming space associated with binary strings. The binary GDE
compared on a standard benchmark against a set of classic
evolutionary algorithms performed best in the comparison.

In future work, we will extensively test the binary GDE on a
larger set of benchmark functions. Also, we will specify the



cGA pop/gen mutation
f1 160/25 0.12
f2 160/25 0.16
f3 80/50 0.39
tGA pop/gen mutation
f1 80/50 0.29
f2 80/50 0.1
f3 80/50 0.45
ES pop/gen mutation
f1 10/400 0.13
f2 160/25 0.1
f3 * *

Table 3: Best parameter settings found for GA (with
truncation and roulette-wheel selection) and ES on
the Spears-DeJong benchmarks. The asterisks de-
note that many combinations are optimal.

10 K = 0 K = 1 K = 2 K = 3 K = 4 K = 5
GDE 0.623 0.730 0.732 0.758 0.751 0.741
cGA 0.521 0.509 0.515 0.536 0.519 0.517
tGA 0.597 0.621 0.613 0.621 0.641 0.641
ES 0.667 0.721 0.746 0.740 0.736 0.727
100 K = 0 K = 1 K = 2 K = 3 K = 4 K = 5
GDE 0.665 0.750 0.738 0.756 0.736 0.719
cGA 0.552 0.594 0.613 0.610 0.600 0.610
tGA 0.664 0.707 0.713 0.736 0.737 0.730
ES 0.677 0.696 0.710 0.717 0.717 0.720

Table 4: Results on the NK landscape benchmark.
Average maximum fitness at the last generation for
each algorithm using K values between 0 and 5, using
population sizes of both 10 and 100. 50 runs were
performed for each configuration.

formal GDE for search spaces associated with permutations
and test it on hard combinatorial optimization problems.
Differential Evolution is similar to other classical derivation-
free methods for continuous optimization that make use of
geometric constructions of points to determine the next can-
didate solution (e.g. Nelder and Mead method and Con-
trolled Random Search method). We will use the same
technique to generalize these algorithms to general metric
spaces.
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