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ABSTRACT

Self-Adaptive Systems (SASs) relect on both their state and on

the environment and change their behavior to satisfy the expected

objectives. Cloud systems are self-adaptive by nature, especially

considering the resources used in a pay-as-you-go manner. Satisfy-

ing trustworthiness (worthiness of a service based on evidences of

its trust) properties also demands self-adaptation capabilities. Un-

fortunately, developers lack an easy-to-use platform to support the

assessment of such properties and to execute the required adaptions.

This paper presents TMA, a platform that implements a MAPE-K

control loop for cloud systems, supported by a distributed moni-

toring system based on probes. Quality Models are used to express

trustworthiness properties, resulting in scores, which are used to

plan adaptations through evaluation rules. These plans are executed

by actuators. A demo shows the scaling up/down of the number of

containers in a cloud application of a set of web services from TPC

Benchmarks, as a result of changes observed in the environment.
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1 INTRODUCTION

Cloud applications are deployed through models such as Infrastruc-

ture as a Service (IaaS), Platform as a Service (PaaS), or Software as

a Service (SaaS), and the clients pay per the use of the resources [16].

During the life cycle of an application, several versions with new

features are released to production. Clients usually have applica-

tions ofered to their end-users in a SaaS model, but they may also

sell the use of such applications to their own customers. In this con-

text, it is important to monitor cloud applications and services both

at design-time (in the developed source code), and at run-time to

detect potential inconsistencies as early as possible, thus avoiding

losses.

In Cloud computing, trustworthiness can be deined as the wor-

thiness of a service and its provider for being trusted [15], thus

including a multitude of properties (e.g., reliability, availability, se-

curity, privacy, dependability, etc. [17]). Continuously monitoring

and assessing the trustworthiness of cloud systems is not trivial

due to many factors, such as the number of properties involved

in trustworthiness. Also, trust is a subjective concept that is built

based on guarantees, experiences, transparency, and accountability.

A trustworthiness life cycle can be deined to assess cloud applica-

tions both before (design-time) and after (run-time) deployment: at

design-time, the source code can be analysed; and at run-time, the

cloud applications need to be monitored, and adaptations may be

performed. However, current self-adaptive capabilities are rather

limited and based only on CPU usage andmemory consumption [10].

This demo paper intends to contribute to the assessment and

improvement of the trustworthiness of cloud applications,

considering the relevant properties and a trustworthiness life cycle

inspired on theMAPE-K cycle [11]. The TMA platform supports these

activities by providing a solution for Cloud applications that

require self-adaptation for maintaining/achieving trustwor-

thiness without the need for creating a managing element

from scratch. Compared to existing solutions (e.g., HPA [10]), our

proposal adds lexibility that allows the user to prepare their sys-

tems to adapt according to a wide range of properties. The interface

between the cloud application and TMA is supported by probes to

monitor the status of the application, and by actuators to perform

the adaptations [11]. Quality Models (QM) aggregate data collected

https://doi.org/10.1145/3387939.3391608
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from the cloud application, and generate trustworthiness scores. A

basic trustworthiness model is explained in [15], and a privacy QM

can be seen in [5].

TMA supports the task of engineering more reliable software

systems, as it provides developers and owners of the applications

with an easy way to monitor and maintain the key properties of

the system. Each MAPE-K component is designed as a microser-

vice [13] that can be easily deployed in a container-based system

(e.g., Kubernetes, Docker Swarm).

A usage scenario shows the applicability and lexibility of the

platform. In practice, we monitor resource consumption (CPU us-

age and memory consumption) and performance (response time

and throughput) of a Cloud application. TMA calculates its trustwor-

thiness level, and adaptations are made when needed. The scale

up/down actions of the application server are dispatched according

to the workload. Results allow observing how the scores can guide

the system adaptation.

The remaining of this paper is structured as follows. Section 2

presents background and related work. Architecture and imple-

mentation details are presented in Section 3. The usage scenario is

presented in Section 4, and the results and discussion in Section 5.

Finally, Section 6 concludes the paper and presents future steps.

Further information about TMA can be found online:

ś http://tma.dei.uc.pt/

2 BACKGROUND AND RELATED WORK

The most used adaptation control loop was introduced by IBM [11]

and is named MAPE-K. Its name is an acronym for ive components:

Monitor, Analyze, Plan, Execute, and Knowledge. The Monitor is

responsible for collecting details about the managed resource, while

Analyze reasons over the data collected in the previous phase. De-

cisions are made in the Plan to achieve the goal and objectives.

Execute is responsible for interacting with the managed element

(for example, a Cloud Application) to assure that the adaptations

are made. Finally, Knowledge is a repository that supports other

phases. The component that implements the adaptation control

loop is called managing element [2].

All the interaction between the managing element and the man-

aged element happens through themanageability endpoints. Sensors

or Probes are used to send all the data from the managed element

to the managing element. Efectors or Actuators perform the adap-

tations on the managed element.

There are diferent approaches to promote self-adaptation, such

as the architecture-based solution used by Rainbow [8]. It adds the

adaptation control loop in the architectural layer, while probes and

efectors stay in the system layer along with the managed element.

The architecture-based self-adaptation allows a global perspective

of the system, and system-level properties and integrity constraints

are exposed.

In a cloud environment, some self-adaptation features are found.

For instance, the infrastructure provider Amazon Web Services

has the AWS Auto Scaling service [1], which provides a rule-based

autoscaling service for the resources deployed on the Amazon

Cloud. For container-based systems (e.g., Kubernetes [9], Docker

Swarm [7], Apache Mesos [3]), orchestrator frameworks are usually

responsible for autoscaling features. For instance, Horizontal Pod

Autoscaler (HPA) [10] for systems deployed using Kubernetes. Both

Amazon AWS and Kubernetes HPA usually use metrics of memory

consumption and CPU usage to support the scaling.

Our solution diferentiates from existing ones in terms of lex-

ibility (of monitoring and adaptation and on supporting diverse

systems). Also, we introduce Quality Models (QMs) to aggregate

diverse metrics according to user-deined preferences, and that sim-

pliies the task of decision-making based on several properties. In

practice, it is useful in scenarios that require: 1) more diverse or

more complex adaptations; 2) the analysis of diverse trustworthi-

ness properties and scores (e.g., security, privacy, dependability, and

coherence); and 3) the computation of scores that require inputs

from multiple levels of the managed element (e.g., at the client level,

service level).

3 TMA-PLATFORM ARCHITECTURE

The TMA-Platform supports the trustworthiness assessment that

involves diferent attributes, properties, and characteristics, which

vary depending on the objectives of the system that is being as-

sessed [15]. Our trustworthiness framework for cloud applications

is composed of:

• A deinition of the relevant properties and metrics used to

characterize trustworthiness;

• A trustworthiness lifecycle (Fig. 1), inspired in the MAPE-K

cycle and that covers two main phases: design-time (applica-

tion in development), and run-time (application in use);

• Amonitoring platform that receivesmeasurements and events

from the managed application;

• Measurement instruments that allow which gathering the

information to be used (measurements and events);

• Quality Models (QMs) that deine how the measurements

will be used to compute the scores;

• Actuators that implement the adaptation logic are included

in the managed system and allow adaptations that aim at

improving the system trustworthiness.

Design-Time  Run-Time 
Run 

trustworthiness
 tests

Build

Accepted
Trustworthiness

Unaccepted 
Trustworthiness

Measure
Deploy the

platform
Deploy

Execute

Run dynamic 
trustworthiness
tests

Monitor

Trigger 
adaptations

Planning

Evaluate 
trustworthiness

Analyze

Perform 
Adaptations

Figure 1: Lifecycle of Trustworthiness Assessment

A platform to support the trustworthiness monitoring and as-

sessment of Cloud applications was developed. Figure 2 presents

a high-level architecture of the TMA platform, which follows a mi-

croservice architecture [18], where each component represents one

MAPE-K function [11]. Each one of the components is deployed into

a container inside a Kubernetes pod. Kubernetes is an open-source

system that allows automatizing the deployment and management

of container-based applications [9]. Kubernetes starts the contain-

ers and deploys them according to the speciication of the pod

(wrapper deined by Kubernetes and its base unit of management).
The implementation details of each component are described in

the following sections. To assure that the communication among

http://tma.dei.uc.pt/
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Figure 2: Architecture and Interfaces of TMA.

the components is handled in a reliable way, a fault-tolerant mech-

anism is used. The FaultTolerantQueue is implemented using

Apache Kafka, which allows creating topics that the components

can subscribe to consume the messages [4]. Details on how to cre-

ate a probe and an actuator are described in Sections 3.1 and 3.4,

respectively. A Docker image and a YAML (YAML Ain’t Markup

Language) ile were created for each component of the TMA, to

support the deployment into a Kubernetes cluster. The YAML ile

contains the speciication of a Kubernetes object, and Kubernetes

uses it to decide what to deploy (e.g., the image container that will

be used and the ports that will be open to be invoked). We auto-

mate the platform deployment through bash scripts and recipes

(https://github.com/eubr-atmosphere/tma-yaml).

3.1 Monitor Component

The Monitor component provides a RESTful API interface for

the probes to post JSON messages (observations) of the managed

element (i.e., the Cloud Application) to TMA. The content of the

message contains its data type, which can be: i) measurement (e.g.,

execution time, memory allocated, CPU in use, response time) or

ii) event: (e.g., the scale up process has started). Measurements are

numeric values that will be used to calculate the scores based on a

Quality Model (QM), while events are evidence of the occurrence

of a fact. The service is deployed using the web microframework

Flask [21]. The data pushed by probes through this interface is

enqueued in the monitor topic to assure that it will be stored in

the Knowledge component in a reliable way. TMA is also prepared

to receive the results of design-time assessment tasks, in which

performance and scalability requirements are not so stringent.

This component validates all data collected by probes according

to a JSON schema. SSL/TLS encryption is used to secure communi-

cation between the probes and the Monitor component. Hence, all

probesmust have theMonitor digital certiicate, acquired during the

initial registration of the probe in the platform. Later, when a probe

sends data to the Monitor, its certiicate is used to authenticate.

In addition to the data type (measurement or event), the JSON

message contains value, and time of the observation. If the data re-

ceived are valid, theMonitor sends them to the FaultTolerantQueue

through an Apache Kafka topic named monitor. Otherwise, the

data are discarded, and an error message is returned to the probe.

The QueueListener subcomponent is implemented through the

DataLoader component. It pulls data from the monitor topic and

executes the data normalization process, so the data are correctly

inserted in the Knowledge database.

A few probes were developed to demonstrate and validate the

TMA platform, and libraries to develop new probes were created

for Java, Python, and C#, as well as a Docker image. Using the

supporting tools described above, we make available 12 concrete

probes for diferent measurements and information about them can

be found online (tma.dei.uc.pt/probes). The ones listed below are

used in the usage scenario (see Section 4):

• probe-k8s-metrics-server ś gathers information about pods

and nodes in a Kubernetes cluster. It collects measurements

of CPU usage andmemory consumption using the monitoring

open-source componentmetrics-server (github.com/kubernetes-

incubator/metrics-server), which replaces the deprecated

Heapster [9];

• probe-client-java ś collects performance metrics of a client

that performs REST requests to a server. It is able to monitor

response time, throughput, and rate of served requests under a

predeined threshold.

3.2 Analyze Component

The Analyze component is responsible for reasoning over the

data gathered by the Monitor component, and aggregating the

measurements into a trustworthiness score. The data are read from

the Knowledge component, and the scores are calculated and stored.

Several aspects may be considered to support the decision-making

(adaptation) process. Hence, a combination of diferent sources of

information is necessary.

A way of doing this is through a Quality Model (QM), by aggre-

gating the measurements and come upwith a score. The focus of the

Analyze component is on trustworthiness properties. Hence, the

integration of QMs of various trustworthiness properties (security,

privacy, coherence, isolation, stability, fairness, transparency, and

dependability) allows forming complex trustworthiness QMs [17].

They can be used to compute trustworthiness scores. A Dashboard

that allows users to analyze information at runtime and adjust the

parameters of the QMs and thresholds (objectives) is also available.

The Performance QM is used as an example, and the data are

obtained through the probe-client-java probe (described in Sec-

tion 3.1). This probe is deployed on the client-side, and it collects

measurements from the user perspective. The leaf attributes con-

tain either values obtained from the probe (e.g., throughput - A1,

response time - A2, or rate request under contracted - A3), or ob-

tained from the calculation of values by the probes (e.g., rate served

requests - A4, which is the division of throughput by demand).

Among the leaf attributes, some of them are beneit (throughput

- A1 and rate served requests - A4), and others are cost attributes

(response time - A2 and rate requests under contracted - A3). They

are represented in Figure 3 with diferent colors: beneit attributes

in green, and cost attributes in orange.

An adjustment needs to be done in the cost attribute to be inter-

preted as a beneit attribute since the performance score should be

interpreted as a beneit attribute. As all the attributes are normalized

and are in a 0-to-1 range, the transformation is done through the

following formula: bene f it_attribute = 1 − cost_attribute . After

the transformations, the attributes can be combined.

https://github.com/eubr-atmosphere/tma-yaml
http://tma.dei.uc.pt/probes
https://github.com/kubernetes-incubator/metrics-server
https://github.com/kubernetes-incubator/metrics-server
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w1 = 0.5

A1: Throughput
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Operator: +

Figure 3: Performance QualityModel used for this usage sce-

nario

The irst partial score is System Performance (A5). It is composed

of the throughput (A1), and response time (A2). The second partial

score is the Service Performance (A6), with attributes rate request

under contracted - A3, and rate served requests - A4. The inal score

is obtained with the formula:

score = 0.25 ∗ (0.5 ∗A1 + 0.5 ∗A2) + 0.75(0.5 ∗A3 + 0.5 ∗A4)

As the Service Performance partial score is more important, it

received weight w6 = 0.75, while the System Performance partial

score has weight ofw5 = 0.25. This score is calculated every second.

Additionally, the Analyze component needs to know the follow-

ing conigurations in advance: i) periodicity of calculation, and ii)

observation window.

3.3 Planning Component

The Planning component is responsible for checking the scores

and coming up with a plan in case an adaptation is needed. An

adaptation plan is a set of actions to achieve the required goals or

to recover the desired trustworthiness levels. There are diferent

adaptation decision approaches, e.g., models, rules/policies, goals,

or utility [12]. A rule-based approach [14] is used by the TMA.

TMA uses the business rules management system Drools [19],

which is a Java-based tool. It provides an easy-to-read and easy-to-

understand language to specify rules, with conditions and actions

in case the conditions are met. The decision to adapt is made based

on the score calculated by the Analyze component. If the score is

either above or below a threshold, an adaptation is dispatched. In

case the user needs to extend it, a Java class can be created and

invoked by the rules.

A Drools rule used by TMA is shown on Listing 1. The performance

score (calculated using the QM detailed in Section 3.2) is used to

specify the condition through the when directive. When the score

value exceeds the threshold of 0.08, and the number of pods is

smaller than 2, an adaptation is dispatched to increase the number

of pods to 2. The adaptation plan is speciied through the then

directive. Details about the execution of the plan are presented in

Section 3.4.

Listing 1: Scale up Drools rule example

rule "Score validation - Wildfly Scale up"

when

$score: TrustworthinessScore ( performanceScore.score >

0.08, podCount < 2 )

then

Action action = new Action(1, "scale", 9, 5);

action.addConfiguration(

new Configuration(

2, "metadata.name", "wildfly"));

action.addConfiguration(

new Configuration(

3, "spec.replicas", "2"));

AdaptationManager.performAdaptation( action ,

AdaptationManager.obtainMetricData($score) );

end

A similar rule is needed to scale down the number of pods. In

that case, a diferent, lower bound threshold should be used.

3.4 Execute Component

The Execute component is responsible for invoking the actions of

the adaptation plan deined by the Planning component and notiied

through the execute topic. The TMA interacts with the management

element (target of the adaptations) through the Actuators. Each

actuator provides a RESTful API service invoked by the Execute

component. All communication is secure, and all the messages are

encrypted using the keys of both the Executor component and the

actuator to be used.

Currently, two libraries are provided to ease the communica-

tion with actuators developed in Java and Python. Three actuators

are available: i) kubernetes-actuator: used to scale up and scale

down Kubernetes pods; ii) email-actuator: used to send e-mail

notiications when the scores are not in the expected thresholds;

and iii) api-actuator: used to interact with a third-party API.

This actuator kubernetes-actuator is used in the scenario pre-

sented in Section 4, and it was developed using the Actuator Java

Library. Complete usage instructions and demos are available online

in http://tma.dei.uc.pt/.

3.5 Knowledge

The Knowledge component is responsible for storing all the data,

such as measurements and events, QM deinitions, trustworthiness

scores, information about the application architecture, resources

and assets available, and adaptation plans. Its implementation con-

tains a MySQL DBMS (knowledge database) and a block-storage solu-

tion Ceph.

Data collected by the probes are inserted in the corresponding

table. The TMA database follows a star schema as the one shown

on Figure 4. The fact table Data contains the basic numerical facts

provided by the probes, and the dimensions include all the dif-

ferent perspectives needed to characterize them. The remaining

information about the architecture is represented in the Resource

and Probe tables. The Description table contains the speciica-

tion about either the measurements or events provided by each

probe. Finally, the Time dimension is represented in the conceptual

diagram, but the information about the time is stored directly in

the Data table (for performance reasons).

Figure 4: Data model used by TMA for the Monitor Compo-

nent.

The model used by the Execute component relects the data to

dispatch the adaptations, and it can be seen online1 (not included

1http://tma.dei.uc.pt/planning.html

http://tma.dei.uc.pt/
http://tma.dei.uc.pt/planning.html
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here due to space constraints). Information about the actuator as

well as the actions that they can perform is stored in the tables

represented in the adaptation model.

An application called Adminwas developed to ease the conigura-

tion of the platform via the knowledge database. It allows register-

ing probes and actuators to the database, besides information about

the architecture of the managed element. It is split between two

diferent components: the REST API and the GUI. Both components

are deployed as a Kubernetes pod.

The REST API is implemented in Java, using the Spring frame-

work to expose the REST services. The API takes care of every

request and proceeds to update the Knowledge database. The GUI

provides user-friendly interface that allows the TMA administrator

to invoke the REST API service. Features such as adding a probe,

adding an actuator and coniguring their actions, and adding the

resources of the managed system are available in this application.

4 USAGE SCENARIO: SCALING CONTAINERS

The usage scenario presented in this section shows one application

that consists of a set of web services from TPC Benchmarks [22].

To store the data, both the web application server Wildly [20]

and MySQL database are used. We focus on performance-related

experiments as these are the ones that have alternatives even if

limited (e.g., HPA), and they are easy to understand. However, TMA

can be used with other metrics such as dependability, privacy, and

security.

The experiment consists of varying the request workload to

the application and observing the adaptations and the scores. Four

diferent scenarios are used: A:No adaptation; B: Using Kubernetes

HPA [10]; C: Using TMA with Performance QM; D: Using TMA with

Resource Consumption QM.

The application is deployed on Kubernetes. It is conigured us-

ing the controller StatefulSet from Kubernetes, which guarantees

the order in which the pods are created and scaled. As it is using

the StatefulSet controller, every time the number of pods changes

through a scale action, a pod is either created or deleted when the

remaining ones are running properly to avoid disruptions in the

service. This solution allows scaling the number of pods, as the

requests are sent to the same endpoint. All the load is balanced

among the pods by Kubernetes.

For this usage scenario, only one Wildly pod is initially created.

When the workload increases, more pods are created to balance the

load. The MySQL database does not scale during the experiment.

All the experimentswere performed in amachinewith the follow-

ing coniguration: CPU: Intel(R) Xeon(R) Gold 5118 CPU 2.30GHz

x 24;Memory: 96GB DDR4 RAM; Disk: Dell SSD PERC H330 Adp

1TB. This server, used to create Virtual Machines (VMs), uses the

tool Infrastructure Manager (IM) [6]. IM automates the deployment

and coniguration of VMs. For the usage scenario, 4 VMs were cre-

ated for the Kubernetes cluster (each VM with 4 CPU cores, 16GB

of Memory, and 200GB of disk storage):

• Master Node: instance that contains the master node of

the Kubernetes cluster. It allows creating Kubernetes objects

(e.g., working nodes, pods, volume storage);

• Working Node (2 instances): instances where the pods

with Docker containers are deployed and run. After joining

the cluster through the master node, pods can be deployed

in the working nodes by the master node;

• Storage Node: instance where the block storage is conig-

ured (Ceph [23]). As data stored in the pods are ephemeral,

there is a need for a persistent solution.

When both the managed element and the TMA are properly set

up, the experiment is started. The scenario consists of varying the

demand of requests to the application (requests per second - rps)

for 30 minutes. Each slot runs for three minutes, and the demands

of each slot vary.

During the phases of the experiment, two scores were calcu-

lated: i) the Performance Score, and ii) the Resource Consumption

per Pod Score. They are used to decide when scale up or scale

down actions are needed. The Performance QM was detailed in the

Section 3.2. The Resource Consumption per Pod QM, which uses

the probe probe-k8s-metrics-server, is not fully detailed due

to space constraints. The formulas to calculate the score are listed

below:

A1 = cpu_pod/cpu_node

A2 =memory_pod/memory_node

score = (0.65 ∗A1 + 0.35 ∗A2)/pod_count

The values cpu_node and memory_node are constants known

in advance. All the others are obtained through the probe called

probe-k8s-metrics-server.

5 RESULTS AND DISCUSSION

Figure 5 (a) shows the run chart of the scores when no adaptation

mechanism is enabled. The performance score is presented in red, as

well as their partial sub-scores (dashed lines). Between instant 105

and 160, the performance score drops, as one replica cannot handle a

load of 2,500 rps. The blue line presents the resource consumption per

pod score, which varies based on both the CPU usage and memory.

If the data are analyzed, the score is linearly related to the CPU

usage, which is inluenced by the demand (rps).

Diferent from the previous experiment, Kubernetes HPA [10] is

used as an adaptation approach, and one chart is shown on Figure 5

(b). As it can be seen on the performance score, it does not vary so

much, although there are some peaks. Throughout this experiment,

a new pod is created. However, even when the demand decreases,

and when no demand is present, the number of pods remains equals

to two. Regarding the resource consumption per pod score line, there

is a peak around instant 61. This is related to the scaling promoted

by HPA, which happened some instants earlier. When a new pod is

created, both CPU usage and memory are high. Consequently, the

score increases. When the pod set up stabilizes, the values also go

back to normal.

The remaining run charts show the results when the adaptation

is dispatched by the platform. Every time a score calculated through

a QM is either above an upper threshold or below a lower threshold,

an adaptation plan is created. The adaptation plan is executed by

the Execute component, which invokes the kubernetes-actuator.

It is irst invoked when the score exceeds the upper threshold.

Figure 5 (c) shows the scores during an experiment execution

using the performance QM, and the peaks on the resource consump-

tion per pod score chart represent the creation of the new pods. As

the performance score is being used to decide about the adaptation

actions, it varies more during the experiment.
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(d)

Figure 5: Charts of the Resource Consumption per pod

and Performance Scores during one experiment of the TPC

Benchmark usage scenario. (a) without adaptations; (b) with adaptations dis-

patched by HPA; (c) adaptations using the Performance QM; (d) adaptations using the Re-

source Consumption per pod QM.

The adaptations triggered by the resource consumption per pod

QM have similar behavior as the performance QM. When the adap-

tations are performed using the resource consumption QM, four

adaptations are performed (two scale up, two scale down). Figure 5

(d) shows the scores during one execution. The two peaks on the res.

consump. per pod score chart represent the creation of the new pods.

Diferent from the adaptation with HPA, the scale down happens.

Consequently, the scores fall when no demand is being performed

and the resources are not allocated when they are idle. Also, the

performance score does not vary so much, but there are some peaks

during the higher load of the experiment.

The Table 1 shows the average response time (top of the cell) and

the average throughput (bottom of the cell) per slot coniguration.

The stars (*) represent the slots when an adaptation happens (either

scale up or scale down). It can be noticed that only one adaptation

happens in the HPA coniguration, while the adaptations using the

platform scale up and scale down during the experiment.

The response time values show that the mean is higher when no

adaption is performed. In conigurations B, C, and D, the response

time is lower, because a new replica is created, which means that

the requests are distributed by the two replicas. This decrease can

be observed with more impact in slots V and VI when the response

time decreases about 2.5 milliseconds.

The throughput values show that the mean is higher in conig-

urations that automatically creates a new replica of the service.

With two replicas, the service can handle loads of slots V and VI

(2,500 and 2,000rps respectively), which increases the mean in the

conigurations B, C, and D in comparison with coniguration A.

Table 1: Average response time and throughput of each con-

iguration (A - No Adaptation, B - HPA, C - Performance, D - Resource Consumption)

Response time (ms) / Throughput (rps)

Slot Demand A B C D

I 150
4.64

149.94

4.77

149.97

4.59

149.97

4.58

149.97

II 300
4.37

299.82

4.42

299.89

4.50

299.53

4.54

299.62

III 650
4.68

649.62

5.22

649.92 *

4.85

649.02

4.85

649.93

IV 1000
5.40

999.59

6.37

998.30

6.18

998.19 *

5.89

996.10 *

V 2500
6.40

1403.63

3.61

2499.71

2.88

2499.96

3.21

2499.51

VI 2000
6.38

1451.96

3.81

1996.14

2.69

1999.2

3.37

1999.13

VII 650
5.95

649.03

4.75

649.94

5.04

649.94 *

5.04

649.93 *

VIII 1000
5.39

998.81

5.32

999.62

4.87

999.82 *

4.82

999.09 *

IX 650
4.69

649.94

4.67

649.96

4.93

649.92 *

4.86

649.95 *

X 300
4.37

299.66

4.42

299.87

4.58

298.93

4.45

299.82

Average
920

(100.0%)

5.23

755.20

(82.1%)

4.73

919.33

(99.9%)

4.51

919.45

(99.9%)

4.56

919.31

(99.9%)

6 CONCLUSION AND FUTUREWORK

A usage scenario of self-adaptation in a cloud application was pre-

sented. It is supported by a trustworthiness TMA-platform, which

consists of an assessment lifecycle, a monitoring platform, and

measurement instruments (probes) and adaptation services, and

it allows deining a trustworthiness level for the cloud applica-

tions. Quality models (QMs), which are deined using attributes,

weights, operators, and thresholds, are used to portray the trust-

worthiness level of a cloud application. The attributes relect the

measurement of trustworthiness sub-properties. As future work,

we plan to develop other trustworthiness QM and allow the user

to add new models according to the need. We also plan to create

design-time scores to be integrated into the Continuous Integration

(CI) worklow.
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