
1

1

Fault Injection for
Online Failure Prediction

Assessment and Improvement

A focus on data

v.1.4
(2018, March)

Ivano Irrera

Ph.D.

Departamento de Engenharia Informática
Universidade de Coimbra

Coimbra, Portugal

Abstract. This document is intended to provide a guide for understanding the data collected
by Ivano Irrera during his Ph.D. at the Department of Informatics Engineering of the Coimbra
University, Portugal, relative to the period that goes from 2009 to 2015. The data were
intended to study the efficacy of using Fault Injection technique for assessing and improving
Online Failure Prediction technique, a technique that allows forecasting failures occurring in a
system monitoring the current system state (i.e., collecting data) and using models to predict
future failure events.
The data were collected from several Windows XP-based systems, installed on hardware and
in virtualized environments (the latter involved both to address limitations in using Fault
Injection, and to follow the trend of software systems to be virtualized), running few different
workloads.
Such Failure Data are divided in Failure Data, i.e., data collected during runs in which a
failure event was detected, and Golden Data, i.e., data collected during runs in which no
failure event was detected. Fault Injection technique was used to induce such systems to fail,
thus helping to collecting Failure Data to train Failure Prediction models, and assessing
Failure Prediction models’ prediction performance, among others.

2

2

1 Online Failure Prediction and Fault Injection

Failure Prediction is a technique proposed in the past to predict failures by analyzing the
system architecture and the development processes, or by learning from past failure data (e.g., the
time between successive failures). Such technique evolved into Online Failure Prediction, which
correlates past failure data with the current system state, increasing the quality of the prediction. In
practice, the prediction of an incoming failure allows performing mitigation actions, such as
saving data or restarting parts of a system, to lessen possible hazards.

Fault injection, on the other side, is an experiment-based approach that deliberately introduces
faults into a computer system in a way that emulates real faults, with the goal of observing its
behavior.

The objective of Ivano Irrera’s Ph.D. thesis, titled “Fault Injection for Online Failure
Prediction Assessment and improvement”, was to address the difficulty in collecting Failure-
related data from a particular system, when a Failure Prediction model needs to be used. The
central idea is to use Fault Injection to generate Failure-related Data in a controlled time frame,
without having to wait for the system to fail: in this way, ideally, Failure-related data can be
collected in short time. In fact, a failure is caused by a fault, thus emulating the presence of faults
increases the probability of driving the system to a failure.

In particular, the thesis had the following specific objectives:

1. Using Fault Injection to improve the deployment of Online Failure Prediction models
on a particular system installation, and evaluating their figures of merit, using fault
injection to generate the Failure-related data needed to achieve such goals.

2. Using Fault Injection to support the continuous adaptation of failure prediction in
dynamic systems, as such systems does change over time, and failure prediction models
are needed to be updated with up-to-date failure-related data.

3. Using Fault Injection to identify the best variables to be used to predict failures. The
selection of the system parameters to monitor is not trivial, as the number of variables can
be very high and the ones to be used are not known a priori. Focusing on the best ones is
essential to correctly use a predictor and to improve its performance.

Failure-related data, in this context, are data collected from a specific software system using
runtime monitoring of parameters or variables that portray the system state. Data are made of
several variables, each variable made up of numerical values from the Real Numbers domain, each
value associated to a timestamp, thus giving values a specific order.

In the context of this thesis, we injected Software faults, i.e., flaws that are present in software
(caused by programming errors, design flaws, etc.), which may be the cause of software system
failures. For the practical evaluation of the proposed theses, we used a tool implemented at the
University of Coimbra, making use of the G-SWFIT recommendations (“Emulation of Software
Faults: A Field Data Study and a Practical Approach”, IEEE Transactions on Software

3

3

Engineering, 2006, link) to define and inject software faults directly in running Windows OSs'
processes, as well as to remove an injected fault.

Furthermore, we adopted the Online Failure Prediction characterization model from Salfner
and Malek (“A survey of Online Failure Prediction models”, ACM Computing Surveys 2010,
link). According to the adopted characterization, the failure prediction task consists of assessing if,
at a time t, a failure is going to occur within a precise time, called lead-time ∆tl. The prediction can
be valid in a given time window, called prediction window ∆tp. The variation of the parameters ∆tl
and ∆tp influences the performance of the prediction. In practice, at time t, a model (or predictor)
should predict if a failure is going to occur in the interval [t+∆tl, t+∆tl+∆tp]. As shown in Figure 1,
a prediction performed at time t targets the Prediction Window starting at time t+∆tl, and lasting
∆tp.

Figure 1. The Online Failure Prediction problem characterization

The prediction can be valid until t+∆tl+∆tp. As mentioned before, the predictor is built from a

set of past data. As an example, considering a classifier as prediction system, one can assume that
these data are a set of observations x=<f1, f2, ..., fn> of a target system. The prediction task is then
to predict, from the observed features xnew =<f1, f2, ..., fn-1, ?>, the target variable fn, which can be
either “failure” or “no failure” or, in general, a continuous measure indicating how much failure
prone the current system state is. Thus, given previously unseen observation matrix xnew with an
unknown class label at time t, the prediction about the occurrence of a failure in the interval
[t+∆tl, t+∆tl+∆tp] is given by fn=Cl(xnew), where Cl is the predictor. In particular, a prediction at
time t is correct if the target event occurs at least once within the prediction period ∆tp.

2 The experimental evaluation environment and approach

To demonstrate the effectiveness of Fault Injection in assisting Failure Prediction, during this
Ph.D. work we made use of an experimental evaluation environment made of a system that is
injected with faults, and a machine controlling the injection and collecting data. In particular, such
environment (represented in Figure 2) is made of a Target system, that is targeted by fault
injection and from which the data are collected, and a Controller system (independent from the
target system), whose responsibility were the collection of data, the management of fault injection
and the restoring of the target system to a previous fault-free state, and so on. The collected
Failure-related data are stored in a database on the Controller System.

4

4

Target system Controller system

Figure 2. The experimental evaluation environment

A typical case study of the actual Ph.D. thesis work is based on an environment that includes a

Windows XP SP3 machine (the target system), installed in a virtual machine running on top of a
hypervisor (VMWare vSphere server or XEN server, in this work), or directly on the hardware.
The controller machine is in charge of controlling the experiments and analyzing the failure data
coming from the system. A typical configuration of the machines used is as follows:

1) Machine #1 (target): Intel i5-650@3.60GHz machine, 8GB RAM, running a Windows

XP OS (SP3) in a VMWare vSphere server based on ESXi v5.0. Running the target
system as a virtual machine on a VMWare vSphere server gave us the possibility of
saving the state of the system at the beginning of the fault injection campaign, and
restoring that saved state at the end of each run. This check-pointing functionality copies
the configuration of the virtual machine, as well as the data contained in the virtualized
storage disk and its running state (e.g., state and data of the processes in execution, values
contained in the CPU registries, etc.).

2) Machine #2 (controller): Intel i5-650@3.60GHz machine, 8GB RAM, running a
Windows XP OS (SP3), used to: (a) control the experiments (start/stop the experiments),
(b) remotely command and control the fault injection tool, (c) force the reboot of the
machines in case of failures (including in hanging situations), (d) collect the data and
store them in a Microsoft SQL Server 2008, and (e) analyze data.

A detailed description of the specific setups used in the context of this Ph.D. can be found in

Section 0.

The approach we defined for generating failure data through injecting faults includes a
procedure and a set of components for controlling the fault injection process, collecting the data
and building the dataset. Software faults are injected while the target system executes one or more
operations (a group of these is called a workload), in a way that allows capturing the dynamics that
lead to failures by monitoring several variables (numerical data, events, etc.). In practice, the
approach includes the following components:

1. Fault injector and faultload: faults are defined and organized in a faultload. A fault

injector emulates specific faults by modifying one or more components of the target
system. The choice of the faultload is of utmost importance as it influences the data

5

5

generated, ultimately impacting on the overall results (different faults may lead to
different types of failures).

2. Workload: for collecting information about the system behavior, faults must be injected
while the target system runs a workload, and this procedure should be repeated several
times. The workload is the set of operations that the target system performs in the field
(realistic workload) or, alternatively, it may be a set of synthetic operations (a synthetic
workload) that represents the usual tasks of the system, built specifically for failure data
generation and collection. A synthetic workload is useful when the system has not been
deployed yet, or when it is not possible to inject faults in the target system and/or the
workload cannot be replicated.

3. Monitoring and data collection infrastructure: an infrastructure is used to gather the
data that characterizes the behavior of the target system in the context of the observed
failure events, while running a workload and injecting faults. Depending on the failure
prediction mechanisms under study, besides failure-related data, one may need to collect
also failure-free data. What is important is the data to include only the most relevant
information for predicting failures.

The components above are the fundamental parts of the experimental procedure, which is

divided in four phases (see also Figure 3):

1. Definitions and set-up: in this phase are defined the failures to predict, the system

information to be monitored (e.g., a set of numerical variables or a set of events in the
logs, including failure events), the workload and the faultload, and a set of parameters
characterizing the scope of the failure prediction. This comprises building the concrete
faultload to inject, installing and configuring the workload emulation tool, and installing
and configuring the data monitoring and collection infrastructure and the fault injection
tool. Other tasks include defining and setting up the target system and the controller
system.

2. Data generation and collection: this is the core phase of the approach, where the data
are collected while the target system executes the workload and faults are injected by a
fault injection tool. This data may correspond to fault-free situations (Golden Data)
and/or situations in which a failure is observed (Failure Data). Data collection is done
during several time intervals and in each interval the monitoring infrastructure collects
the values of the variables portraying the state of the target system.

3. Dataset building: the data collected are organized in datasets for being consumed later
by the failure prediction models. This process depends on the failure prediction system to
be trained (e.g., training anomaly detection systems only requires Golden Data), as well
as on the types of failures being predicted. In particular, the monitored data are associated
with the failures observed in Phase 2 considering the failure prediction parameters
specified in Phase 1.

6

6

4. Failure data accuracy estimation analysis: accuracy is the property of the generated
failure data to be similar to data that would be obtained in a real scenario. Due to the
scarcity of real data, we estimate the correlation between synthetic and real failure data by
applying metrics (specific of each condition) to two or more, independently generated,
synthetic failure datasets. We use the concepts of weak accuracy and/or strong accuracy,
as sufficient conditions for the generated failure data to be considered accurate. Strong
accuracy metrics are applied directly on the datasets, while the weak accuracy metrics are
applied to the prediction performance of the models trained with independent synthetic
datasets.

Figure 3. The four phases of the failure data generation

3 Failure Data Generation, Collection and Organization

The Failure Data Generation and Collection phase (phase 2) takes place throughout several
time intervals (as shown in Figure 3), referred to as runs, during which the monitoring
infrastructure collects the set of variables selected while the target system executes the operations
defined by the workload. The number of runs, as well as their duration, depends on several
parameters, such as the time needed to execute the workload, the specific set-up environment and
the prediction parameters (e.g., for predicting a failure one hour in advance, each run must last for
at least one hour).

Collected data can be divided into Failure Data, Golden Data, and Non-Failure Data. Failure
data are data obtained by injecting faults during several runs (eventually evolving into failures),
while Golden data are gathered when no faults are injected and no failures are observed1. Finally,
Non-Failure Data are relative to non-failing runs, i.e. runs in which a fault was injected but no
failure was observed in the defined time frame. The use of each kind of data depends on the

1 In fact, no fault is injected and no failure is observed does not mean that no fault was activated, as

there is not guarantee that no residual faults are present in the system.

7

7

prediction models that will consume the generated data (e.g., anomaly detection based models just
need golden data, while classifiers need both types of data).

A run with no faults injected and no failures observed is called Golden Run (GR), and the
corresponding data are Golden Data (GD). An execution in which faults are injected is called
Fault Injection Run (FIR). If a failure is observed during a fault injection run then it is a Failing
Run, and the data monitored are Failure Data (FD). Non-Failure Data (NFD) are associated Non-
Failing Runs. Although this kind of data may also provide information about the system failing
behavior, their use was out of the scope of the thesis.

In each failing run, the failure event must be detected and later associated to the collected
Failure Data. For this, different failure detectors (models that recognize failure patterns when
they occur) may be needed.

When more than one failure mode or more than one workload is considered, the runs (and thus
the failure data) can be grouped into Scenarios. In this work, the scenarios are identified by a
failure mode ! and a workload W, or the tuple <Workload, Failure mode>.

Figure 3.1. Failure data generation, collection and data organization phases

As detailed in Figure 3.1 the data are generated as follows:

1. Each run starts by booting the target system and waiting for it to reach a steady state,
before the workload is executed. Having the system in a steady state means that it is ready
for executing the workload in the best way possible, which is recommended, albeit not
mandatory. The instant in which the system achieves its steady state is referred to as T0.

2. The workload and the monitoring tools are then started. The instant in which the
workload execution starts is referred to as TW, while TM identifies the time at which the
monitoring system is executed. The data collection may start at time TM or TW, depending
on the specific needs (e.g., if data from the beginning of the workload execution are
needed, the monitoring must be started before the workload). In practice, data is

8

8

composed of data samples collected from the different variables at a given instant of time,
according to a specific sampling rate s.

3. In a Fault Injection Run (FIR), a fault is injected at time TFI while the target system is
executing the workload and the monitoring tool is collecting data. In a Golden Run (GR)
the system executes the workload, but no fault is injected.

4. The run finishes when a failure (TF, FIR only) is detected (the failure detector associates
the failure to the time TF), or after the workload has completed its execution (TW_END) or a
maximum run execution time TMAX is achieved. In such cases, two situations are possible:
a) In the case of Golden Runs (GRs), if no failure is detected in the interval [T0;

T0+TMAX], the data relative to the run are considered Golden Data (GDRi, Golden
Data relative to the i-th run). It is worth noting that a failure occurring in a Golden
run is caused by an actual residual fault of the target system (i.e., not an injected one)
and the data should also be considered as Failure Data.

b) For Fault Injection Runs (FIRs), if no failure is detected in the interval [T0+TFI;
T0+TMAX], the run is considered to be failure-free, and the relative data to be Non-
Failure Data (NFDRi, relative to the i-th run). On the other hand, if a failure is
detected in such interval, the collected data are considered Failure Data (FDRi,
relative to the i-th run).

5. After completing a run (and collecting the corresponding data), the target system must be
restored to a state in which no faults injected are present. This ranges from rebooting, in
the cases where the fault does not permanently affected parts of the system (e.g., data or
files), to the correction of fault effects (e.g., substituting files previously backed-up) or
the re-installation of the entire target system2.

3.1 Failure Prediction Dataset building

For being used by failure prediction models, the collected Golden Data and Failure Data are to
be organized in datasets and associated to information about the failures observed during each
run.

Datasets are made of a concatenation of variables’ values relative to different GRs and FIRs.
As an example, a dataset can be made of V variables, which values were collected at a rate of 1
value/s in 10 GRs for VN seconds, thus making a |V|x10·|VN| matrix. Successively, data are
associated to the observed failures by labeling each data sample composing the collected data.
Data labeling is a technique that associates a numerical label (e.g., 0, 1, etc.) to each data sample
(i.e., a set of values of each monitored variable), depending on the meaning that each label has in
the particular modeling or prediction scenario (e.g., a sample is labeled 0 if the target system was
working correctly at the moment of the sample’s collection, or conversely is labeled 1 if the
system was presenting an erratic behavior). In this particular context, data is labeled according to

2 Virtualization is a solution that allows restoring the target system (both software and – emulated –

hardware), by using check-pointing and restoring operations.

9

9

the failure time TF and the failure prediction lead-time and prediction window (∆tl, ∆tp),
defined in the failure prediction problem characterization adopted (as presented in Section 1). A
detail about labeling according to such model is presented in Figure 4: Starting from the failure
time TFailure, the label 1 is put backwards until covering the interval [TFailure - ∆TL+∆TP; TFailure]. It is
worth noting that a different label could be used for identifying the different intervals ∆TL,∆TP,
etc.

Figure 4. Example of labeling a single run (only one variable showed),

according to the failure time TFailure

Data from a given run r is composed of n different variables vr = <vr
1, vr

2, …, vr
n>, where vr

i is
the i-th variable collected from the target system. For each time instant k, each variable vr

i has a
given value vr

i(k), representing a variable value collected at the time instant k. Hence, a data
sample relative to time k is defined as:

(1) vr(k) = <vr
1(k), vr

2(k), …, vr
n(k)>

A data sample vr(k) collected during a Golden Run (when no failure occurred), is associated a
label lr(k)=0, for each time k. On the other hand, given Tr

F the time at which a failure was detected
during the Failure Run r, and the prediction indexes (∆tl, ∆tp) (valid for all the runs), a label lr(k)=1

10

10

is associated to a data sample vr(k) if a failure occurred in the interval [Tr
F-(∆tl+∆tp), Tr

F-∆tl],
otherwise it is 03. Hence, for each time instant k and each run r, a labeled sample is:

(2) vr*(k) = <vr
1(k), vr

2(k), …, vr
n(k), lr(k)>

Collected data labeled according to the failure prediction indexes (∆tl, ∆tp) and the failure time
Tr

F can be considered a dataset. More generally, several couples (∆tl, ∆tp) can be specified, and
varying the values of ∆tl and ∆tp let the labels associated to each data sample to change
accordingly. In this case, being ∆tl=<∆tl1 , ∆tl2 , …, ∆tlL> and ∆tp=<∆tp1 , ∆tp2 , …, ∆tpP>, one can
define a dataset with which N sets of labels are associated, where N =|∆tl|x|∆tp|, or alternatively,
define N different datasets, each one associated to a specific tuple (∆tl, ∆tp). Such dataset can be
built once and used for training and testing a failure prediction model using a couple (∆tl, ∆tp) at a
time, or together in a meta-model fashion. It is worth noting that a dataset made of Golden Data
will present 0s for all the values of the couple (∆tl, ∆tp).

In addition to this, different types of failures can affect the target system, and several different
workloads can be used as well. Failure types and workloads define a single scenario, and each
scenario <Workload, Failure mode> is associated to a different set of data, as data reflect different
failure modes and workloads (see Figure 5). In the context of this specific Ph.D. work, failure
prediction models are trained and tested using data from a single scenario.

Figure 5. Datasets and scenarios (two workloads and two failure modes)

3 It must be noted that the label values chosen can be any two different numerical values (other

widely used values for labeling data are (-1, +1) – especially when using Support Vector Machine
classifiers – (5, 10), and so on).

11

11

For training and validating failure prediction models, data must be organized into training
datasets (TDSs) and testing datasets (TTDSs), whose goal is to support the assessment of
prediction performance. Such division is usually based on grouping single data samples. However,
in our work we decided to group Golden and Failure Data in training and testing datasets by
considering the runs to which they belong to, thus implementing a runs-wise dataset. The reason
that stays behind this decision is that the collected data represents time series and the division in
samples may alter the continuity and ordering among samples, which may finally impact the
prediction performance (e.g., when training regression models).

An example of dataset is presented in Figure 6 (a) and (b): Figure 6 (a) represents data
collected from the i-th Fault Injection Run and labeled with N different couples of (∆tl, ∆tp) values,
while Figure 6 (b) presents a dataset made of GRG Golden Runs and FIRF Fault Injection Runs,
highlighting the difference between labeling Golden and Failure Data, being the first labeled with
only 0s and the latter with 0s and 1s.

4 Experiments characterization and used testbeds

In this section, we present the characterization of the experimental evaluations performed in this
Ph.D. work.

We adopted a Windows-based software fault injection tool implemented at University of
Coimbra following the G-SWFIT recommendations for the fault injection task. Such tool is able to
inject software faults at machine-code level both in binary files and in running processes (user-
mode only). However, due to the fact that the Windows OS includes a protection for avoiding
certain system files from being changed, the fault injector was limited to inject software faults in
running processes of the operating system, but faults were injected before starting the collection of
data, thus simulating residual faults from the perspective of the data collection process.

The faultload is based on the fault types defined by G-SWFIT recommendations. Based on
previous experience, we mostly focused the fault injection on the code of the svchost.exe process
and of the linked dynamic library kernel32.dll (containing functions for handling the OS
memory usage), which are key resources of the Windows XP OS. The fault injection tool was able
to automatically generate thousands of code mutants by analyzing the fault locations matching a
specific pattern depending on the type of software fault, being each fault identified by the tuple
<fault type, fault location, code mutant>. In order to design a feasible experiment, a subset of the
faults was selected based on the relevance of their locations (details on the number of faults
injected and their impact are presented in the next subsection). For this, we used a profiling tool
(Luke Stackwalker), which helped identifying the functions and modules executed along several
runs of the workloads considered. As previously discussed, the selection of the most executed
modules of the target system does not invalidate the representativeness of the injected software
faults.

12

12

Regarding the failures, we empirically focused on Crashes and Hangs, which are the two
failure modes observed injecting faults in a part of the Windows XP OS, by using the G-SWFIT
tool. A failure detector able to detect the occurrence of the two failure modes mentioned above
was implemented. In practice, the detector continuously monitors the target system to detect
failures in the following way:

1. a crash is detected when the system does not respond to a ping (implementing an
heartbeat mechanism) for a certain time Tmax_ping. The failure time TF is obtained by
considering the first time instant in which the system became unresponsive;

2. a hang is detected if the target system responds to a ping, but it hangs on executing a
given set of operations. Again, the failure time TF is obtained by considering the first time
instant in which the system became unresponsive, identified by the time instant when the
first not executed operations were sent to the system4.

The Target system runs several different workloads, namely:

1. WinRAR application (WKL1), compressing a file using the RAR algorithm with the low
compression option;

2. COSBI OpenSourceMark computer benchmarking suite (WKL2), a more complex
workload that includes computation and input/output intensive tests, compression
algorithms, disk and memory accesses, etc. (we consider that these workloads include
generic operations that computer systems perform frequently, being thus adequate for the
present case study). Tomcat application server, which executes the workload of the TPC-
W benchmark;

3. Tomcat application server (WKL3), which executes the workload of the TPC-W
benchmark (details in the dissertation associated to this Ph.D. thesis work). Three
versions of the Tomcat application server were used, namely 6.0.36 (WKL31), 7.0.19
(WKL32), 7.0.40 (WKL33).

The combination <Workload, Failure mode> allows defining four different scenarios for the

analysis: <WKL1, Crash (FM1)>, <WKL1, Hang (FM2)>, <WKL2, Crash (FM1)>, and <WKL2,
Hang (FM2)>, etc.

Regarding the variables to monitor, we typically considered at set of variables reflecting the
state of the operating system and the usage of the hardware resources, as the symptoms of the
failures considered may manifest at the OS and at lower levels (e.g., an increase in the number of
context switches/s). In most of the cases, we monitored 233 numerical variables, at the sample rate
of one value per second, using the Logman tool that is included in Windows OSs family, and
afterwards conducted a three-step feature selection to reduce the number of variables. Some of the

4 In the case of a Hang failure, in absence of the information about the time of failure detected, one can

estimate the failure time by using the value of the timeout given to the request to the Target to reboot (usually
60 seconds in average, value used in all the campaigns), and the duration of the experiment. Hence, the
occurrence time of a Hang failure can be estimated to be Texp-60.

13

13

variables were not considered in our analyses, as the ones having a constant or null value in all the
runs, and successively variables having a linear correlation coefficient (Pearson’s coefficient)
greater than 0.9 between each other.

The failure prediction model used in the context of this Ph.D. work was SVM (Support Vector
Machine), the state of the art among classification models. In particular, the libSVM libraries
implementing the SVM predictor were used.

The specific setups used in the context of this Ph.D. thesis were the following:

1. “Towards Identifying the Best Variables for Failure Prediction using Injection of
Realistic Software Faults” (PRDC 2010, link): a single Controller machine running
Windows OS and Microsoft SQL Server, and a single Target machine running Windows
XP SP3 OS

2. “Assessing the Impact of Virtualization on the Generation of Failure Prediction Data”,
(LADC 2013, link): a single Controller machine running Windows OS and Microsoft
SQL Server, and five Target machines, configured as follows:
• Machine #1: Intel i5-650@3.60GHz; 8GB RAM; Windows XP OS (SP3); no

virtualization (hosts the original system).
• Machines #2 and #3 (virtualized, Type II Hypervisors): Intel i5-650@3.60GHz;

8GB RAM; virtualized Windows XP OS (SP3). Machine#2 uses a Citrix XEN
server v5.6.10, and Machine#3 runs a VMWare vSphere server based on ESXi
v5.0. These provide two virtual versions hosted on top of Type II Hypervisors.

• Machines #4 and #5 (virtualized, Type I Hypervisors): Intel P4 HT@3.00GHz; 2GB
RAM; virtualized Windows XP OS (SP3). Machine#4 runs Oracle’s VirtualBox,
and Machine#5 runs VMWare Player, both on top of Windows XP OSs. These
provide two virtual versions hosted on top of Type I Hypervisors.

3. “The time dimension in predicting failures: a Case Study” (LADC 2013, link): a single
Controller machine running Windows OS and Microsoft SQL Server, and a single,
virtualized Target machine running on top of a Citrix XEN Server.

4. “On the need for training Failure Prediction algorithms in evolving software systems”
(HASE 2014, link): three virtualized Controller machines and three virtualized
Target machines running on top of a Citrix XEN Server. The controller machines ran a
Windows 7 OS and a Microsoft SQL Server, while target machines ran a Windows XP
SP3 OS. The machines are organized as in Figure 7.

14

14

Figure 7. Replicated, virtualized Targets and Controllers

5. “A Practical Approach for Generating Failure Data for Assessing and Comparing

Failure Prediction Algorithms” (PRDC 2014, link): a single Controller machine running
Windows OS and Microsoft SQL Server, and a single Target machine running Windows
XP SP3 OS.

6. “Adaptive Failure Prediction for Computer Systems: a Framework and a Case Study”
(HASE 2015, link): the framework was implemented using a single Controller, and a
virtualized Target machine running into a XEN server, and a Sandbox Hypervisor
made of a Citrix Xen Server, hosting a (virtualized) Replica of the Target machine,
used to inject faults and generate failure data. In Figure 8 a representation of the
framework.

Figure 8. The Adaptive Failure Prediction framework

15

15

5 Experimental evaluation: the collected data

Data were collected from Target System using Microsoft Logman monitoring tool, which is
natively included in Windows OSs family. All the data are stored in a Microsoft SQL Server
(2008-2010 versions) on the Controller machine, along with information about Fault Injection,
Failure Detection and Failure Prediction. Each database contains monitored data (in tables created
and operated by the Microsoft Logman monitoring tool), and data relative to the management of
Fault Injection and Failure Prediction, as faultloads, datasets, failure prediction parameters,
prediction assessment results, etc., stored in tables created on purpose.

Several different databases created were relative to a specific setup (e.g., VMWare
environment, XEN environment, real machine, etc.), and a specific campaign (e.g., 1000 GRs and
5000 FIRs, with faults injected in svchost.exe process). Each database, furthermore, has been
divided into sets, which are part of a whole campaign, for scalability and fault tolerance purposes:
in fact, if a database is corrupted, only a single set has to be re-executed. Few examples are in
Figure 9.

Figure 9. Example of different databases and several sets:
real_set_1, real_set_2, real_set_3, XEN_set_1

The Logman tool automatically organizes the data collected in three tables, CounterData,
CounterDetails and DisplayToID (see Table 1). Each monitored component is defined by the
tuple <Machine, Object, Instance, Counter>, where Counter is a single variable. Specifically:

• Machine identifies the physical machine where the collected information belongs (e.g.,

“Server_XYZ”);
• Object identifies a component (intended as macro-object) of a Machine, made of various

parts (micro-objects), for instance Memory, Operating System, Physical Disk, etc.;

16

16

• Instance identifies an instance of a particular Object. In fact, an object can have one or
more instances, as for example CPU, in a multicore system, can have the instantiation
“CPU0”, “CPU1”, etc. In the case an Object has one instance only, the Instance value is
“NULL”;

• Counter identifies a variable describing the properties of a particular Object, for instance
“page faults/s” belonging to the Memory object, or “written bytes/s” belonging to the
Physical Disk object.

The Logman tool automatically creates the tables above when the monitoring starts. For

scalability purposes, after each run has ended, we copy the current CounterData table to a
CounterData_N_TYPE table, where N is the number of the last experiment, and TYPE is the type
of experiment executed, which can be one between GR (Golden Run) and FIR (Fault Injection
Run).

An example of an actual Microsoft SQL database obtained from our case studies is in Figure
10.

 Figure 10 – Datasets and scenarios (two workloads and two failure modes)

The collected data are organized according to the Relational model. All data were stored in a
Microsoft SQL Server.

17

17

5.1 Data collected from 2009 to 2015

The data collected from the fault injection campaign have been stored in several databases,
divided in sets to be easily manageable and reduce the total size of data:

1. real_set_X, data collected from a real machine running a Windows XP OS, faults
injected in the svchost.exe process, running WKL1 and WKL2;

2. vSphere_set_X, data collected from a virtualized machine running on top of a
WMWare vSphere server (ESXi), running a Windows XP OS, faults injected in the
svchost.exe process, running WKL1 and WKL2;

3. XEN_set_X, data collected from a virtualized machine running on top of a Citrix
XEN server, running a Windows XP OS, faults injected in the svchost.exe process,
running WKL1 and WKL2;

4. XEN_Tomcat_set_X, data collected from a virtualized machine running on top of a
Citrix XEN server, running a Windows XP OS, faults injected in the svchost.exe
process, running WKL3x;

5. Training_set_X, data collected from a virtualized machine running on top of a Citrix
XEN server, running a Windows XP OS, faults injected in the svchost.exe process,
running WKL3x (data used for actual Failure Prediction Model
assessment/Benchmark – extended tables DB);

6. Simulation_set_X, data collected from a virtualized machine running on top of a
Citrix XEN server, running a Windows XP OS, faults injected in the svchost.exe
process, running WKL3x (data used for actual Failure Prediction Model
assessment/Benchmark – extended tables DB).

In the following, we present the details of the databases containing the data collected during the
period of the presented Ph.D. work.

18

18

Note:
• Tables organization = the particular set of tables used to organize the data, described

in paragraph 5.2
• Variables set = the particular set of information collected from the Target systems

(variables), described in paragraph 5.3

Earlier data

Name Date (GR, FIR)
Failures
(Hang, Crash,

Controller)
Workload Tables

org.
Var.
set Data

real_set_1 15-19/3/2012 (100, 500), (100, 500) (25, 2, 2) WKL1, WKL2 T1 V1 yes
real_set_2 13-28/10/2011 (2, 501), (2, 501) (18, 2, 0) WKL1, WKL2 T1 V1 yes
real_set_3 9-15/11/2011 (-, 500), (-, 500) (17, 2, 0) WKL1, WKL2 T1 V1 yes
real_set_4 17-23/11/2011 (500, 500), (500, 500) (19, 1, 3) WKL1, WKL2 T1 V1 yes
real_set_5 26/11-

4/12/2011
(-,500), (-,500) (20, 1, 0) WKL1, WKL2 T1 V1 yes

real_set_6 17-23/11/2011 (400, 500), (400, 500) (35, 3, 1) WKL1, WKL2 T1 V1 yes
vSphere_set_1 19/4-4/5/2012 (500, 500), (500, 500) (-, -, -) WKL1, WKL2 T1 V1 yes
vSphere_set_2 21/11-

1/12/2011
(500, -), (500, 500) (-, -, -) WKL1, WKL2 T1 V1 yes

vSphere_set_3 14-17/12/2011 (1, 500), (1, 500) (15, 0, 0) WKL1, WKL2 T1 V1 yes
vSphere_set_4 14-18/1/2011 (1, 500), (1, 500) (24, 3, 0) WKL1, WKL2 T1 V1 yes
vSphere_set_5 - - - - T1 V1 yes
vSphere_set_6 10-15/5/2011 (1, 500), (1, 500) (41, 3, 0) WKL1, WKL2 T1 V1 yes
XEN_set_1 16-24/3/2012 (100, 500), (100, 500) (60, 9, 162) WKL1, WKL2 T1 V1 yes

Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp

19

19

XEN server, Controller 1 (C1_)

Name Date (GR, FIR)
Failures

(Hang, Crash, TPCW,
Controller, OS)

Workload Tables
org.

Var.
set Data

XEN_Tomcat_set_1 26-28/5/2013 (6, 500) (15, 0, 0, 0, -) WKL31 T1 V2 yes
XEN_Tomcat_set_2 30/5-2/6/2013 (5, 500) (51, 0, 3, 16, -) WKL31 T1 V2 yes
XEN_Tomcat_set_3 2-5/6/2013 (5, 500) (5, 0, 15, 3, -) WKL31 T1 V2 yes
XEN_Tomcat_set_4 5-9/6/2013 (5, 500) (1, 0, 1, 9, -) WKL31 T1 V2 yes
XEN_Tomcat_set_5 12-14/6/2013 (5, 500) (2, 0, 0, 1, -) WKL31 T1 V2 yes
XEN_Tomcat_set_1 (extra) 3-11/9/2013 (25, 500) (13, 0, 17, 0, -) WKL331 T1/ T2 V2 yes
XEN_Tomcat_set_2 (extra) 13-24/9/2013 (25, 500) (0, 0, 9, 0, -) WKL331 T1/ T2 V2 yes
Op_Test_Training_3_set_1 22-25/8/2014 (20, 150) (0, 0, 0, 0, -) WKL33 T2 V2 yes
Op_Test_Training_3_set_2 25-26/8/2014 (-, -) (0, 0, 0, 0, -) WKL33 T2 V2 yes
Training_set_1 27-30/8/2014 (50, 250) (10, 8, 0, 0, -) WKL31 T2 V2 yes
Training_C1_set_1 8-12/9/2014 (50, 184) (16, 0, 0, 0, -) WKL33 T2 V2 yes
Simulation_C1 7-16/9/2014 (475, 450) (9, 0, 1, 0, -) WKL33 T2 V2 no
Simulation_C1_Oct_2014 15-29/10/2014 (50, 297) (15, 0, 1, 0, -) WKL31 T2 V2 no
Training_C1_Oct_2014_set_1 11-14/2/2015 (25, 250) (14, 0, 0, 0, -) WKL37 T2 V2 yes
Training_C1_Oct_2014 14-17/2/2015 (25, 250) (14, 0, 0, 0, -) WKL37 T2 V2 yes

Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp

XEN server, Controller 2 (C2_)

Name Date (GR, FIR)
Failures

(Hang, Crash, TPCW,
Controller, OS)

Workload Tables
org.

Var.
set Data

XEN_Tomcat_set_1 30/5-2/6/2013 (6, 500) (22, 0, 7, 0, -) WKL31 T1 T2 yes
XEN_Tomcat_set_2 2-6/6/2013 (5, 500) (52, 0, 7, 14, -) WKL31 T1 T2 yes
XEN_Tomcat_set_3 8-11/6/2013 (5, 500) (4, 0, 0, 9, -) WKL31 T1 T2 yes
XEN_Tomcat_set_4 12-14/6/2013 (5, 500) (2, 0, 1, 3, -) WKL31 T1 T2 yes
XEN_Tomcat_set_5 18-20/6/2013 (5, 500) (2, 0, 2, 4, -) WKL31 T1 T2 yes
XEN_Tomcat_set_1 (extra) 3-10/9/2013 (25, 500) (23, 0, 1, 0, -) WKL332 T1/ T2 T2 yes
XEN_Tomcat_set_2 (extra) 14-23/10/2013 (25, 500) (44, 0, 245, 0, -) WKL332 T1/ T2 T2 yes
Training_C2_set_1 8-10/9/2014 (50, 149) (10, 8, 0, 0, -) WKL35 T2 T2 yes
Simulation_C2_set_2 8-12/9/2014 (200, 200) (0, 0, 0, 0, -) WKL34 T2 T2 no
Simulation_C2 12-17/9/2014 (50, 187) (0, 0, 0, 0, -) WKL34 T2 T2 no

Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp

20

20

XEN server, Controller 3 (C3_)

Name Date (GR, FIR)
Failures

(Hang, Crash, TPCW,
Controller, OS)

Workload Tables
org.

Var.
set Data

XEN_Tomcat_set_1 26-28/5/2013 (5, 500) (23, 0, 0, 0, -) WKL31 T1 V2 yes
XEN_Tomcat_set_2 30/5-2/6/2013 (5, 500) (50, 0, 4, 0, -) WKL31 T1 V2 yes
XEN_Tomcat_set_3 2-5/6/2013 (5, 500) (4, 0, 0, 6, -) WKL31 T1 V2 yes
XEN_Tomcat_set_4 8-11/6/2013 (5, 500) (1, 0, 1, 20, -) WKL31 T1 V2 yes
XEN_Tomcat_set_5 14-17/6/2013 (5, 500) (1, 2, 0, 33, -) WKL31 T1 V2 yes
XEN_Tomcat_set_1 (extra) 3-11/9/2013 (25, 500) (23, 0, 3, 0, -) WKL333 T1/ T2 V2 yes
XEN_Tomcat_set_2 (extra) 23-25/9/2013 (25, 500) (0, 0, 67, 0, -) WKL333 T1/ T2 V2 yes
Simulation_C3_Oct_2014 15-22/10/2014 (50, 354) (19, 0, 0, 0, -) WKL31 T2 V2 no
Simulation_C3_set_1
_20140820_01_34_bak 16-18/8/2014 (50, 150) (4, 0, 80, 0, 7) WKL31

T2 V2 yes

Simulation_C3_set_1
_20140827_17_46_bak 24-26/8/2014 (75, 150) (29, 0, 0, 0, 8) WKL33

T2 V2 yes

Simulation_C3_set_2 8-11/9/2014 (100, 250) (17, 0, 0, 1, -) WKL33 T2 V2 no
Simulation_C3_set_3 13-16/9/2014 (50, 200) (12, 0, 0, 0, -) WKL33 T2 V2 no
Training_C3 8-11/9/2014 (50, 250) (27, 0, 1, 0, -) WKL33 T2 V2 yes
Training_C3_Oct_2014 8/3/2015 (25, 200) (0, 0, 1, 0, -) WKL37 T2 V2 no
Training_C1_set_1 3/8-2/9/2014 (25, 250) (10, 0, 0, 0, -) WKL34 T2 V2 yes

Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp

21

21

5.2 Organization of the collected data

The organization of the data collected is presented in paragraphs 5.2.1 and 5.2.2, the former
presenting and describing the tables contained in a first version of the databases, while the latter
presenting a successive version of the databases, presenting an extended set of collected
information, hence more tables.

5.2.1 First Database version (2009-2013) (T1)
In this paragraph we present the organization of the data collected from the earlier experiences

(2009-2013). The organization of data slightly changed with the latter experiences, and is
presented in the next paragraph.

To keep data integrity, primary keys, unique values and null rules were used, while no
referential integrity rule was used.

Table 1 – Collected data and other information: first version (reduced version), 9 tables.

 Benchmark Database tables Description Columns description

D
at

a
T

ab
le

s

The Microsoft Logman tool
creates the tables here
presented. The
CounterData table
contains, among other
data, the values of each
variable (CounterValue),
and the time at which the
value was registered
(CounterDateTime). Each
data is related to a single
Counter by a CounterID,
and each value is related to
a
(CounterID, RecordIndex)
tuple.

Details about each counter
(identified by CounterID
key) are contained in
CounterDetails table.

Finally, the DisplayToID
table (often removed from

CounterData

GUID
(Global Unique Identifier)
single logging session ID
(hexadecimal)

CounterID
monitored variable ID
([1…Nvar])

RecordIndex
sequence number of the
specific variable’s value
(sequential, [1…Tmax])

CounterDate
Time

timestamp of the specific
variable’s value
(YYYY-MM-DD
HH:MM:SS.mss)

CounterValue specific variable’s value
FirstValueA <not used>
FirstValueB <not used>
SecondValueA <not used>
SecondValueB <not used>
MultiCount <not used>

CounterDetails

CounterID
single monitored variable’s
ID ([1…Nvar])

MachineName name of the system from

22

22

the database) has
additional information
about the logging session,
identified by the GUID
(Global Unique Identifier),
as Log start and stop time,
number of records, etc.

A guide describing each
column and relative values
is available at Microsoft
Technet website.

which the variable was
collected (e.g., Lab-PC-1)

ObjectName
component of a system,
made of various parts (e.g.,
Memory, OS, Disk …)

CounterName
specific variable’s name,
belonging to an Object and a
Machine

CounterType <not used>
DefaultScale <not used>
InstanceName <not used>
InstanceIndex <not used>
ParentName <not used>
ParentObjectID <not used>
TimeBaseA <not used>
TimeBaseB <not used>

DisplayToID

GUID
(Global Unique Identifier)
single logging session ID
(hexadecimal)

RunID <not used>
DisplayString <not used>
LogStartTime <not used>
LogStopTime <not used>
NumberOf
Records

<not used>

MinutesToUTC <not used>
TimezoneName <not used>

23

23

Fa
ul

tlo
ad

 ta
bl

e

The Faultload table
contains, for each
experiment (identified by
tuple <Type, Experiment,
Workload>), the target of
the fault injection, external
library modules (dlls, if
used), and the fault
injection result, i.e., success
or error.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns])

Workload

workload used during the
specific run (e.g., WKL1)

Target

fault injection target in the
specific run (e.g., svchost.exe
process)

Module
specific fault injection target
(optional)

FaultType

type of fault injected,
according to
G-SWFIT recommendations
(e.g., MFC)

IntervalStart

<fault injection tool-specific
information>
index of the first location at
which a fault is injected

IntervalEnd

<fault injection tool-specific
information>
index of the last location at
which a fault is injected

Injection
1 = successful injection
0 = injection failure

Description injection tool output

Fault
specific fault (assembly-level
mutation code)

24

24

Ex
pe

ri
m

en
ts

 ta
bl

e

The Experiment table
collects the data about the
current run, including the
run sequence number, the
workload used, the type
(GR or FIR), the target of
the fault injection (e.g.,
svchost.exe), and the
“experiment finished” and
“target system ready”
flags.

This table is used to
synchronize Controller
system and the Target
system.

Type type of run (GR or FIR)

Number
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Target

fault injection target in the
specific run (e.g., svchost.exe
process)

exp_finished

flag indicating the current
run is complete
1 = completed
0 = not completed

Target_Ready

flag indicating the target is
ready for executing a new
run (e.g., if the target is still
booting, the flag is 0)
1 = ready (after ramp-up)
0 = not ready

T
im

es
ta

m
ps

 ta
bl

e

The Timestamps table
contains information about
the time at which a fault
was injected, in each
experiment.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Timestamp

time at which a fault is
injected, in a specific run
(YYYY-MM-DD
HH:MM:SS.mss)

W
or

kl
oa

d
ta

bl
e

The Workload table is a
custom table. It contains
additional information
about the workload used
(used for WKL1).

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Signature WKL1 results

Checksum
WKL1 error-control
checksum

25

25

Be
nc

hm
ar

k
ta

bl
e

The Benchmark table is a
custom table, containing
information about other
workloads (WKL2 and
WKL3x) used.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Test
WKL2 single test result or
WKL3 name

Score
WKL2 single test score or
WKL3 score

Time
WKL2 single test time or
WKL3 total time

TPCW_Result WKL3 result

R
eb

oo
t t

ab
le

The Reboot table contains
information about the
failure occurred to the
target system, as the failure
type.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Motivation

motivation of the target
system’s reboot

Target-side
Target = no failure occurred
Heartbeat5 = Crash failure
(Failure mode FM1, the
Target’s heartbeat stopped)
Reboot4 = Hang failure
(Failure mode FM2, Target
rebooted by the Controller)

Controller-side
Controller = failure or error
occurred to controller
machine
TPCW-RBE = TPCW client
error (client used by WKL3)

5 Corrected from a previous version, where the definitions of Crash and Hang were inverted

26

26

Fa
ilu

re
 M

od
es

 ta
bl

e

The FailureModes
contains information about
the failures occurred
during a certain
experiment.

This table is not actually
used.

Type

type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Result workload result
ExpDuration run duration

Heartbeat
Hang failure (Failure Mode
FM2)

Reboot
Crash failure (Failure Mode
FM1)

27

27

5.2.2 Latest Database version (2013-2015) (T2)
Databases were modified for addressing data organization drawbacks and limitations, and

provide support to Failure Prediction models and their training and assessment. In particular, Fault
Injection table, Faultload table and Reboot table were extended with additional information. On
the other hand, new tables added were StartingFaultload, FailurePredictor,
FailurePredictionVariables and OnlineFailurePredictionResults. In particular, the tables
StartingFaultload and Faultload are used to contain the entire faultload, and to keep trace of the
single specific fault injected in a single run.

The tables are presented in Table 2.

Table 2 – Collected data and other information: a newer, extended version (15 tables).

 Benchmark Database tables Description Columns description

D
at

a
T

ab
le

s

The Microsoft Logman
tool creates tables
presented aside. The
CounterData table
contains, among other
data, the values of each
variable (CounterValue),
and the time at which the
value was registered
(CounterDateTime). Each
data is related to a single
Counter by a CounterID,
and each value is related
to a (CounterID,
RecordIndex) tuple.

Details about each
counter (identified by
CounterID key) are
contained in
CounterDetails table.

Finally, the DisplayToID
tables has additional
information about each
value of a single Counter,
identified by the GUID
(Global Unique Identifier)

CounterData

GUID
(Global Unique Identifier)
single logging session ID
(hexadecimal)

CounterID
monitored variable ID
([1…Nvar])

RecordIndex
sequence number of the
specific variable’s value
(sequential, [1…Tmax])

CounterDate
Time

timestamp of the specific
variable’s value
(YYYY-MM-DD
HH:MM:SS.mss)

CounterValue specific variable’s value
FirstValueA <not used>
FirstValueB <not used>
SecondValueA <not used>
SecondValueB <not used>
MultiCount <not used>

CounterDetails

CounterID
single monitored variable’s
ID ([1…Nvar])

MachineName
name of the system from
which the variable was
collected (e.g., Lab-PC-1)

ObjectName
component of a system,
made of various parts (e.g.,

28

28

key, as Log start and stop
time, number of records,
etc.

A guide describing each
column and relative
values is available at
Microsoft Technet
website.

Memory, OS, Disk …)

CounterName
specific variable’s name,
belonging to an Object and
a Machine

CounterType <not used>
DefaultScale <not used>
InstanceName <not used>
InstanceIndex <not used>
ParentName <not used>
ParentObjectID <not used>
TimeBaseA <not used>
TimeBaseB <not used>

DisplayToID

GUID
(Global Unique Identifier)
single logging session ID
(hexadecimal)

CounterID
monitored variable ID
([1…Nvar])

RecordIndex

sequence number of the
specific variable’s collected
value (sequential,
[1…Tmax])

CounterDate
Time

timestamp of the specific
variable’s collected value
(YYYY-MM-DD
HH:MM:SS.mss)

CounterValue
specific variable’s collected
value

FirstValueA <not used>
FirstValueB <not used>
SecondValueA <not used>

29

29

Ex
pe

ri
m

en
ts

 ta
bl

e

The Experiment table
collects the data about
the current run, including
the run sequence
number, the workload
used, the type (GR or
FIR), the target of the
fault injection (e.g.,
svchost.exe), and the
“experiment finished”
and “target system
ready” flags.

Type type of run (GR or FIR)

Number
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Target

fault injection target in the
specific run (e.g.,
svchost.exe process)

exp_finished

flag indicating the current
run is complete
1 = completed
0 = not completed

Target_Ready

flag indicating the target is
ready for executing a new
run (e.g., if the target is still
booting, the flag is 0)
1 = ready (after ramp-up
time)
0 = not ready

Fa
ul

t I
nj

ec
tio

n
ta

bl
e

(Updated: added “Log” and
“Result”)

The Fault Injection table
(former Faultload)
contains, for each
experiment (identified by
tuple <Type, Experiment,
Workload>), the target of
the fault injection,
external library modules
(dlls, if used), and the
fault injection result, i.e.,
success or error.

This table is used to
synchronize Controller
system and the Target
system.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload workload used during the
specific run (e.g., WKL1)

Target
fault injection target in the
specific run (e.g.,
svchost.exe process)

Module specific fault injection
target (optional)

Log (former “Description”)
injection tool output

Result

Injection result

0 = Injection failed
1 = Injection succeded

30

30

T
im

es
ta

m
ps

 ta
bl

e

The Timestamps table
contains information
about the time at which a
fault was injected, for
each experiment.

Type

type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Timestamp

time at which a fault is
injected, in a specific run
(YYYY-MM-DD
HH:MM:SS.mss)

W
or

kl
oa

d
ta

bl
e

The Workload table is a
custom table. It contains
additional information
about the workload used
(used for WKL1).

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Signature WKL1 results

Checksum
WKL1 error-control
checksum

St
ar

tin
gF

au
ltl

oa
d

ta
bl

e

New

The StartingFaultload
table contains a set of
faults that can be injected
in the target system.
The information contained
into this table is specific to
the injection tool used in
this Ph.D. thesis work.

It is worth noting that the
set of all injectable faults
can be very large, thus
the user may have to
select a part of such
faults. This table is used
to build a Faultload table,
which contains the actual
faults to inject, as such
set can change when
using, for instance, a
different dataset.

ID fault numerical ID

Type
type of fault (e.g., MFC –
Missing function call, MIFS
– Missing IF statement, …)

Module target module (e.g.,
ntdll.dll)

ModuleFunction
target function (e.g.,
Memory Allocation),
number

Fault mutation operator

ActivationIndex

fault activation rate, which
can be found
experimentally (e.g., 8% for
MFC faults)

31

31

Fa
ul

tlo
ad

 ta
bl

e

(Updated: added
”FaultID”, details about
fault moved)

The Faultload table
contains the set of faults
that have to be effectively
injected. In this case, each
fault is identified with a
FaultID, and the details
about the faults, as well
as the effective code
mutant, is available in
the StartingFaultload
table.

Type type of run (FIR only)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload workload used during the
specific run (e.g., WKL1)

FaultID

ID of the fault injected in
the run (details about the
fault are in table
StartingFaultload)

Be
nc

hm
ar

k
ta

bl
e

The Benchmark table is a
custom table, containing
information about other
workloads (WKL2 and
WKL3x) used.

Experiment type of run (GR or FIR)

Type
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload workload used during the
specific run (e.g., WKL1)

Test
WKL2 single test result
or
WKL3 name

Score WKL2 single test score or
WKL3 score

Time WKL2 single test time or
WKL3 total time

TPCW_Result WKL3 result

32

32

R
eb

oo
t t

ab
le

(Updated: added “Info”)

The Reboot table
contains information
about the failure
occurred in the target
system, as the failure
type and the status of the
controls used to detect
the failure.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Motivation

motivation of the target
system’s reboot

Target-side
Target = no failure occurred
Heartbeat4 = Crash failure
(Failure mode FM1, the
Target’s heartbeat stopped)
Reboot4 = Hang failure
(Failure mode FM2, Target
rebooted by the Controller)

Controller-side
Controller = failure or error
occurred to controller
machine
TPCW-RBE = TPCW client
error (client used by WKL3)

Info

status of the controls used
to detect the failure
(containing the actual failure
detection rule for the specific
experiment)

33

33

Fa
ilu

re
 P

re
di

ct
or

 ta
bl

e

New

The FailurePredictor
table contains
information about the
failure prediction models
used. In particular, we
use an instantiation of a
predictor for each
parameter of the failure
prediction problem, i.e.,
for each defined value of
the tuple <delta_L,
delta_P, data features>.
The present table
contains the prediction
model (PredictionModel),
details about the training
process (e.g.,
DataFeatures,
DataMean/Deviation,
PredictionOptThreshold
and FM - the failure
mode to predict), and a
flag indicating if the
predictor was updated.

PredictorMetaID

ID associated to the
predictor type (e.g.,
SVM_time_window_
classifier_gaussian)

ModelID

ID associated to the
specific prediction scenario
(e.g.,
SVM_tw_3_FM2_10_10)

DataFeatures
variables used in the
specific prediction
execution

DataMean

mean of the data used in
the specific prediction
execution

DataDeviation
deviation of the data used
in the specific prediction
execution

PredictionMethod
description of the
prediction method (e.g.,
SVM)

PredictionModel
model obtained after the
training phase (predictor
status)

PredictionOpt
Threshold

predictor’s optimal
threshold (outputs of
classifiers are thresholded in
order to obtain one of the
output classes)

delta_L
value of ∆tL used in the
specific prediction
execution

delta_P
value of ∆tP used in the
specific prediction
execution

FM
type of failure predicted
(e.g., Hang – FM2)

PredictionOther
Parameters

other predictor’s
parameters

OtherInformation other predictor’s info

updated

0 = predictor not updated
in the specific prediction
execution
1 = predictor updated

34

34

Fa
ilu

re
 P

re
di

ct
io

n
V

ar
ia

bl
es

 ta
bl

e

New

The FailurePrediction
Variables table contains
information about the
variables that, among all
the ones monitored, were
used to train the
predictor. Each predictor
can have a different set of
variables, and that such
variables are associated
to each predictor
instantiation in the
FailurePrediction table
through the DataFeatures
column, containing a
vector of CounterID
values.

This table was actually not
used.

CounterID
single monitored variable’s
ID

ObjectName
monitored system
component (e.g., CPU,
Memory, Disk …)

CounterName
specific variable’s name
(e.g., exceptions/s)

InstanceName
specific object instance
name (e.g., CPU-1)

Fa
ilu

re
 M

od
es

 ta
bl

e

The FailureModes is a
help table containing
information about the
failures occurred during
a certain experiment. The
columns identify some
Failure Modes we take
into account for the
benchmark.

This table is not used.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

Result workload result
ExpDuration run duration

Heartbeat
Hang failure (Failure Mode
FM2)

Reboot
Crash failure (Failure
Mode FM1)

35

35

O
nl

in
e

Fa
il

ur
e

Pr
ed

ic
ti

on
 R

es
ul

ts
 ta

bl
e

New

The
OnlineFailurePrediction
Results table contains the
results of a single
predictor’s execution,
using data coming from a
single run.

Type type of run (GR or FIR)

Experiment
run's sequential number
([1…Nruns], “Experiment”
column in other tables)

Workload
workload used during the
specific run (e.g., WKL1)

PredictionMetaID

ID associated to the
predictor type (e.g.,
SVM_time_window_
classifier_gaussian)

ModelID

ID associated to the
specific prediction scenario
(e.g.,
SVM_tw_3_FM2_10_10)

PredictionValues raw prediction values
PredictionValues
Labelled

labelled prediction values

datasetLength length of the dataset

LabelledRun
labels associated to the
selected run

TP
predictor’s performance
associated to the selected run:
True positives

TN pp: True Negatives
FP pp: False Positives
FN pp: False Negatives
Precision pp: Precision
Recall pp: Recall
FMeasure pp: F-Measure

NegativePrecision
pp: Precision computed
according to non-failure
situations

NegativeRecall pp: NegativeRecall
NegativeFMeasure pp: NegativeFMeasure

CutOffThreshold
optimal threshold obtained
by ROC analysis

SE
standard error computed
between labeled data and
predictor’s output

ROCxr ROC x-axis values
ROCyr ROC y-axis values
ROCAUC ROC-AUC

1

1

5.3 Monitored data

In the following, we present the information collected from the Target systems, grouped in singular variables. In particular, in the first experiments we
collected 233 variables, and reduced this number to 170, pruning the variables that resulted in being not useful (e.g., constant-valued variables, variables with no
value at all, etc.), and differentiating some other (e.g., page faults/s from a specific process as “svchost.exe”, instead of from the total number of page faults
from all the running processes). The two sets are presented in Table 3, being V1 the earlier set with 233 variables, and V2 being the latter set with 170 variables.
Table 3 presents the two sets in a comparative fashion. Note that only the variables names are presented: the full description of each variable can be found in the
Performance Monitor tool, present in each Microsoft Windows’s family OSs.

Note:

• x = variable not present in the second set of variables V2

• diff = variable present in the second set, but associated to a different instance of the monitored object (differentiated)

Table 3

V1 (233 vars) V2 (170 vars)

ObjectName CounterName Instance
Name Notes ObjectName CounterName Instance

Name
.NET CLR Exceptions # of Exceps Thrown _Global_ x
.NET CLR Exceptions # of Exceps Thrown / sec _Global_ x
.NET CLR Exceptions # of Filters / sec _Global_ x
.NET CLR Exceptions # of Finallys / sec _Global_ x
.NET CLR Exceptions Throw To Catch Depth / sec _Global_ x
.NET CLR LocksAndThreads # of current logical Threads _Global_ x
.NET CLRLocksAndThreads # of current physical Threads _Global_ x
.NET CLR LocksAndThreads # of current recognized threads _Global_ x

2

2

.NET CLR LocksAndThreads # of total recognized threads _Global_ x

.NET CLR LocksAndThreads Contention Rate / sec _Global_ x

.NET CLR LocksAndThreads Current Queue Length _Global_ x

.NET CLR LocksAndThreads Queue Length / sec _Global_ x

.NET CLR LocksAndThreads Queue Length Peak _Global_ x

.NET CLR LocksAndThreads rate of recognized threads / sec _Global_ x

.NET CLR LocksAndThreads Total # of Contentions _Global_ x
 Cache Async Copy Reads/sec NULL Cache Async Copy Reads/sec NULL
 Cache Async Data Maps/sec NULL x
 Cache Async Fast Reads/sec NULL x
 Cache Async MDL Reads/sec NULL x
 Cache Async Pin Reads/sec NULL x
 Cache Copy Read Hits % NULL Cache Copy Read Hits % NULL
 Cache Copy Reads/sec NULL x
 Cache Data Flush Pages/sec NULL Cache Data Flush Pages/sec NULL
 Cache Data Flushes/sec NULL Cache Data Flushes/sec NULL
 Cache Data Map Hits % NULL x
 Cache Data Map Pins/sec NULL Cache Data Map Pins/sec NULL
 Cache Data Maps/sec NULL Cache Data Maps/sec NULL
 Cache Fast Read Not Possibles/sec NULL x
 Cache Fast Read Resource Misses/sec NULL x
 Cache Fast Reads/sec NULL x
 Cache Lazy Write Flushes/sec NULL Cache Lazy Write Flushes/sec NULL
 Cache Lazy Write Pages/sec NULL Cache Lazy Write Pages/sec NULL
 Cache MDL Read Hits % NULL x
 Cache MDL Reads/sec NULL x
 Cache Pin Read Hits % NULL x
 Cache Pin Reads/sec NULL x
 Cache Read Aheads/sec NULL x
 Cache Sync Copy Reads/sec NULL x

3

3

 Cache Sync Data Maps/sec NULL Cache Sync Data Maps/sec NULL
 Cache Sync Fast Reads/sec NULL x
 Cache Sync MDL Reads/sec NULL x
 Cache Sync Pin Reads/sec NULL x
 Job Object Details % Privileged Time _Total x
 Job Object Details % Processor Time _Total x
 Job Object Details % User Time _Total x
 Job Object Details Creating Process ID _Total x
 Job Object Details Elapsed Time _Total x
 Job Object Details Handle Count _Total x
 Job Object Details ID Process _Total x
 Job Object Details IO Data Bytes/sec _Total x
 Job Object Details IO Data Operations/sec _Total x
 Job Object Details IO Other Bytes/sec _Total x
 Job Object Details IO Other Operations/sec _Total x
 Job Object Details IO Read Bytes/sec _Total x
 Job Object Details IO Read Operations/sec _Total x
 Job Object Details IO Write Bytes/sec _Total x
 Job Object Details IO Write Operations/sec _Total x
 Job Object Details Page Faults/sec _Total x
 Job Object Details Page File Bytes _Total x
 Job Object Details Page File Bytes Peak _Total x
 Job Object Details Pool Nonpaged Bytes _Total x
 Job Object Details Pool Paged Bytes _Total x
 Job Object Details Priority Base _Total x
 Job Object Details Private Bytes _Total x
 Job Object Details Thread Count _Total x
 Job Object Details Virtual Bytes _Total x
 Job Object Details Virtual Bytes Peak _Total x
 Job Object Details Working Set _Total x

4

4

 Job Object Details Working Set Peak _Total x
 Job Object Current % Kernel Mode Time _Total x
 Job Object Current % Processor Time _Total x
 Job Object Current % User Mode Time _Total x
 Job Object Pages/Sec _Total x
 Job Object Process Count - Active _Total x
 Job Object Process Count - Terminated _Total x
 Job Object Process Count - Total _Total x
 Job Object This Period mSec-Kernel Mode _Total x
 Job Object This Period mSec - Processor _Total x
 Job Object This Period mSec - User Mode _Total x
 Job Object Total mSec - Kernel Mode _Total x
 Job Object Total mSec - Processor _Total x
 Job Object Total mSec - User Mode _Total x
 LogicalDisk % Disk Read Time _Total LogicalDisk % Disk Read Time _Total
 LogicalDisk % Disk Time _Total LogicalDisk % Disk Time _Total
 LogicalDisk % Disk Write Time _Total LogicalDisk % Disk Write Time _Total
 LogicalDisk % Free Space _Total x
 LogicalDisk % Idle Time _Total LogicalDisk % Idle Time _Total
 LogicalDisk Avg. Disk Bytes/Read _Total LogicalDisk Avg. Disk Bytes/Read _Total
 LogicalDisk Avg. Disk Bytes/Transfer _Total LogicalDisk Avg. Disk Bytes/Transfer _Total
 LogicalDisk Avg. Disk Bytes/Write _Total LogicalDisk Avg. Disk Bytes/Write _Total
 LogicalDisk Avg. Disk Queue Length _Total LogicalDisk Avg. Disk Queue Length _Total
 LogicalDisk Avg. Disk Read Queue Length _Total LogicalDisk Avg. Disk Read Queue Length _Total
 LogicalDisk Avg. Disk sec/Read _Total LogicalDisk Avg. Disk sec/Read _Total
 LogicalDisk Avg. Disk sec/Transfer _Total LogicalDisk Avg. Disk sec/Transfer _Total
 LogicalDisk Avg. Disk sec/Write _Total LogicalDisk Avg. Disk sec/Write _Total
 LogicalDisk Avg. Disk Write Queue Length _Total LogicalDisk Avg. Disk Write Queue Length _Total
 LogicalDisk Current Disk Queue Length _Total LogicalDisk Current Disk Queue Length _Total
 LogicalDisk Disk Bytes/sec _Total LogicalDisk Disk Bytes/sec _Total

5

5

 LogicalDisk Disk Read Bytes/sec _Total x
 LogicalDisk Disk Reads/sec _Total x
 LogicalDisk Disk Transfers/sec _Total LogicalDisk Disk Transfers/sec _Total
 LogicalDisk Disk Write Bytes/sec _Total LogicalDisk Disk Write Bytes/sec _Total
 LogicalDisk Disk Writes/sec _Total LogicalDisk Disk Writes/sec _Total
 LogicalDisk Free Megabytes _Total x
 LogicalDisk Split IO/Sec _Total LogicalDisk Split IO/Sec _Total
 Memory % Committed Bytes In Use NULL Memory % Committed Bytes In Use NULL
 Memory Available Bytes NULL x
 Memory Available KBytes NULL x
 Memory Available MBytes NULL x
 Memory Cache Bytes NULL Memory Cache Bytes NULL
 Memory Cache Bytes Peak NULL x
 Memory Cache Faults/sec NULL Memory Cache Faults/sec NULL
 Memory Commit Limit NULL x
 Memory Committed Bytes NULL Memory Committed Bytes NULL
 Memory Demand Zero Faults/sec NULL Memory Demand Zero Faults/sec NULL
 Memory Free System Page Table Entries NULL Memory Free System Page Table Entries NULL
 Memory Page Faults/sec NULL Memory Page Faults/sec NULL
 Memory Page Reads/sec NULL Memory Page Reads/sec NULL
 Memory Page Writes/sec NULL Memory Page Writes/sec NULL
 Memory Pages Input/sec NULL Memory Pages Input/sec NULL
 Memory Pages Output/sec NULL Memory Pages Output/sec NULL
 Memory Pages/sec NULL Memory Pages/sec NULL
 Memory Pool Nonpaged Allocs NULL Memory Pool Nonpaged Allocs NULL
 Memory Pool Nonpaged Bytes NULL Memory Pool Nonpaged Bytes NULL
 Memory Pool Paged Allocs NULL Memory Pool Paged Allocs NULL
 Memory Pool Paged Bytes NULL Memory Pool Paged Bytes NULL
 Memory Pool Paged Resident Bytes NULL Memory Pool Paged Resident Bytes NULL
 Memory System Cache Resident Bytes NULL Memory System Cache Resident Bytes NULL

6

6

 Memory System Code Resident Bytes NULL x
 Memory System Code Total Bytes NULL x
 Memory System Driver Resident Bytes NULL x
 Memory System Driver Total Bytes NULL x
 Memory Transition Faults/sec NULL x
 Memory Write Copies/sec NULL x
 Objects Events NULL Objects Events NULL
 Objects Mutexes NULL Objects Mutexes NULL
 Objects Processes NULL Objects Processes NULL
 Objects Sections NULL Objects Sections NULL
 Objects Semaphores NULL Objects Semaphores NULL
 Objects Threads NULL Objects Threads NULL
 Paging File % Usage _Total x
 Paging File % Usage Peak _Total Paging File % Usage Peak _Total
 PhysicalDisk % Disk Read Time _Total x
 PhysicalDisk % Disk Time _Total x
 PhysicalDisk % Disk Write Time _Total x
 PhysicalDisk % Idle Time _Total x
 PhysicalDisk Avg. Disk Bytes/Read _Total x
 PhysicalDisk Avg. Disk Bytes/Transfer _Total x
 PhysicalDisk Avg. Disk Bytes/Write _Total x
 PhysicalDisk Avg. Disk Queue Length _Total x
 PhysicalDisk Avg. Disk Read Queue Length _Total x
 PhysicalDisk Avg. Disk sec/Read _Total x
 PhysicalDisk Avg. Disk sec/Transfer _Total x
 PhysicalDisk Avg. Disk sec/Write _Total x
 PhysicalDisk Avg. Disk Write Queue Length _Total x
 PhysicalDisk Current Disk Queue Length _Total x
 PhysicalDisk Disk Bytes/sec _Total x
 PhysicalDisk Disk Read Bytes/sec _Total x

7

7

 PhysicalDisk Disk Reads/sec _Total x
 PhysicalDisk Disk Transfers/sec _Total x
 PhysicalDisk Disk Write Bytes/sec _Total x
 PhysicalDisk Disk Writes/sec _Total x
 PhysicalDisk Split IO/Sec _Total x
 Process % Privileged Time _Total diff Process % Privileged Time _Total
 Process % Privileged Time explorer
 Process % Privileged Time java
 Process % Privileged Time svchost
 Process % Processor Time _Total diff Process % Processor Time _Total
 Process % Processor Time explorer
 Process % Processor Time java
 Process % Processor Time svchost
 Process % User Time _Total diff Process % User Time _Total
 Process % User Time explorer
 Process % User Time java
 Process % User Time svchost
 Process Creating Process ID _Total x
 Process Elapsed Time _Total diff Process Elapsed Time explorer
 Process Elapsed Time java
 Process Elapsed Time svchost
 Process Handle Count _Total diff Process Handle Count _Total
 Process Handle Count explorer
 Process Handle Count java
 Process Handle Count svchost
 Process ID Process _Total x
 Process IO Data Bytes/sec _Total diff Process IO Data Bytes/sec _Total
 Process IO Data Bytes/sec explorer
 Process IO Data Bytes/sec java
 Process IO Data Bytes/sec svchost

8

8

 Process IO Data Operations/sec _Total diff Process IO Data Operations/sec _Total
 Process IO Data Operations/sec explorer
 Process IO Data Operations/sec java
 Process IO Data Operations/sec svchost
 Process IO Other Bytes/sec _Total diff Process IO Other Bytes/sec _Total
 Process IO Other Bytes/sec explorer
 Process IO Other Bytes/sec java
 Process IO Other Bytes/sec svchost
 Process IO Other Operations/sec _Total diff Process IO Other Operations/sec _Total
 Process IO Other Operations/sec explorer
 Process IO Other Operations/sec java
 Process IO Other Operations/sec svchost
 Process IO Read Bytes/sec _Total diff Process IO Read Bytes/sec _Total
 Process IO Read Bytes/sec explorer
 Process IO Read Bytes/sec java
 Process IO Read Bytes/sec svchost
 Process IO Read Operations/sec _Total x
 Process IO Write Bytes/sec _Total diff Process IO Write Bytes/sec _Total
 Process IO Write Bytes/sec explorer
 Process IO Write Bytes/sec java
 Process IO Write Bytes/sec svchost
 Process IO Write Operations/sec _Total x
 Process Page Faults/sec _Total diff Process Page Faults/sec _Total
 Process Page Faults/sec explorer
 Process Page Faults/sec java
 Process Page Faults/sec svchost
 Process Page File Bytes _Total diff Process Page File Bytes _Total
 Process Page File Bytes explorer
 Process Page File Bytes java
 Process Page File Bytes svchost

9

9

 Process Page File Bytes Peak _Total x
 Process Pool Nonpaged Bytes _Total diff Process Page Faults/sec _Total
 Process Page Faults/sec explorer
 Process Page Faults/sec java
 Process Page Faults/sec svchost
 Process Pool Paged Bytes _Total diff Process Page File Bytes _Total
 Process Page File Bytes explorer
 Process Page File Bytes java
 Process Page File Bytes svchost
 Process Priority Base _Total x
 Process Private Bytes _Total diff Process Private Bytes _Total
 Process Private Bytes explorer
 Process Private Bytes java
 Process Private Bytes svchost
 Process Thread Count _Total diff Process Thread Count _Total
 Process Thread Count explorer
 Process Thread Count java
 Process Thread Count svchost
 Process Virtual Bytes _Total diff Process Virtual Bytes _Total
 Process Virtual Bytes explorer
 Process Virtual Bytes java
 Process Virtual Bytes svchost
 Process Virtual Bytes Peak _Total x
 Process Working Set _Total diff Process Working Set _Total
 Process Working Set explorer
 Process Working Set java
 Process Working Set svchost
 Process Working Set Peak _Total x
 Processor % C1 Time _Total diff Processor % C1 Time 0
 Processor % C1 Time 1

10

10

 Processor % C2 Time _Total diff Processor % C2 Time 0
 Processor % C2 Time 1
 Processor % C3 Time _Total x
 Processor % DPC Time _Total diff Processor % DPC Time 0
 Processor % DPC Time 1
 Processor % Idle Time _Total diff Processor % Idle Time 0
 Processor % Idle Time 1
 Processor % Interrupt Time _Total diff Processor % Interrupt Time 0
 Processor % Interrupt Time 1
 Processor % Privileged Time _Total diff Processor % Interrupt Time 0
 Processor % Interrupt Time 1
 Processor % Processor Time _Total diff Processor % Processor Time 0
 Processor % Processor Time 1
 Processor % User Time _Total diff Processor % Processor Time 0
 Processor % Processor Time 1
 Processor C1 Transitions/sec _Total diff Processor % Processor Time 0
 Processor % Processor Time 1
 Processor C2 Transitions/sec _Total diff Processor C2 Transitions/sec 0
 Processor C2 Transitions/sec 1
 Processor C3 Transitions/sec _Total x
 Processor DPC Rate _Total diff Processor DPC Rate 0
 Processor DPC Rate 1
 Processor DPCs Queued/sec _Total diff Processor DPCs Queued/sec 0
 Processor DPCs Queued/sec 1
 Processor Interrupts/sec _Total diff Processor Interrupts/sec 0
 Processor Interrupts/sec 1
 System % Registry Quota In Use NULL x
 System Alignment Fixups/sec NULL x
 System Context Switches/sec NULL System Context Switches/sec NULL
 System Exception Dispatches/sec NULL System Exception Dispatches/sec NULL

11

11

 System File Control Bytes/sec NULL System File Control Bytes/sec NULL
 System File Control Operations/sec NULL System File Control Operations/sec NULL
 System File Data Operations/sec NULL System File Data Operations/sec NULL
 System File Read Bytes/sec NULL System File Read Bytes/sec NULL
 System File Read Operations/sec NULL x
 System File Write Bytes/sec NULL System File Write Bytes/sec NULL
 System File Write Operations/sec NULL x
 System Floating Emulations/sec NULL x
 System Processes NULL System Processes NULL
 System Processor Queue Length NULL x
 System System Calls/sec NULL System System Calls/sec NULL
 System System Up Time NULL x
 Thread % Privileged Time _Total Thread % Privileged Time _Total
 Thread % Processor Time _Total Thread % Processor Time _Total
 Thread % User Time _Total Thread % User Time _Total
 Thread Context Switches/sec _Total Thread Context Switches/sec _Total
 Thread Elapsed Time _Total x
 Thread ID Process _Total x
 Thread ID Thread _Total x
 Thread Priority Base _Total x
 Thread Priority Current _Total x
 Thread Start Address _Total x
 Thread Thread State _Total x
 Thread Thread Wait Reason _Total x
.NET CLR Exceptions # of Exceps Thrown _Global_ x

