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Abstract. This document is intended to provide a guide for understanding the data collected 
by Ivano Irrera during his Ph.D. at the Department of Informatics Engineering of the Coimbra 
University, Portugal, relative to the period that goes from 2009 to 2015. The data were 
intended to study the efficacy of using Fault Injection technique for assessing and improving 
Online Failure Prediction technique, a technique that allows forecasting failures occurring in a 
system monitoring the current system state (i.e., collecting data) and using models to predict 
future failure events.  
The data were collected from several Windows XP-based systems, installed on hardware and 
in virtualized environments (the latter involved both to address limitations in using Fault 
Injection, and to follow the trend of software systems to be virtualized), running few different 
workloads.  
Such Failure Data are divided in Failure Data, i.e., data collected during runs in which a 
failure event was detected, and Golden Data, i.e., data collected during runs in which no 
failure event was detected. Fault Injection technique was used to induce such systems to fail, 
thus helping to collecting Failure Data to train Failure Prediction models, and assessing 
Failure Prediction models’ prediction performance, among others. 
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1 Online Failure Prediction and Fault Injection 

Failure Prediction is a technique proposed in the past to predict failures by analyzing the 
system architecture and the development processes, or by learning from past failure data (e.g., the 
time between successive failures). Such technique evolved into Online Failure Prediction, which 
correlates past failure data with the current system state, increasing the quality of the prediction. In 
practice, the prediction of an incoming failure allows performing mitigation actions, such as 
saving data or restarting parts of a system, to lessen possible hazards. 

Fault injection, on the other side, is an experiment-based approach that deliberately introduces 
faults into a computer system in a way that emulates real faults, with the goal of observing its 
behavior. 

The objective of Ivano Irrera’s Ph.D. thesis, titled “Fault Injection for Online Failure 
Prediction Assessment and improvement”, was to address the difficulty in collecting Failure-
related data from a particular system, when a Failure Prediction model needs to be used. The 
central idea is to use Fault Injection to generate Failure-related Data in a controlled time frame, 
without having to wait for the system to fail: in this way, ideally, Failure-related data can be 
collected in short time. In fact, a failure is caused by a fault, thus emulating the presence of faults 
increases the probability of driving the system to a failure. 

In particular, the thesis had the following specific objectives: 

1. Using Fault Injection to improve the deployment of Online Failure Prediction models 
on a particular system installation, and evaluating their figures of merit, using fault 
injection to generate the Failure-related data needed to achieve such goals. 

2. Using Fault Injection to support the continuous adaptation of failure prediction in 
dynamic systems, as such systems does change over time, and failure prediction models 
are needed to be updated with up-to-date failure-related data. 

3. Using Fault Injection to identify the best variables to be used to predict failures. The 
selection of the system parameters to monitor is not trivial, as the number of variables can 
be very high and the ones to be used are not known a priori. Focusing on the best ones is 
essential to correctly use a predictor and to improve its performance.  

 

Failure-related data, in this context, are data collected from a specific software system using 
runtime monitoring of parameters or variables that portray the system state. Data are made of 
several variables, each variable made up of numerical values from the Real Numbers domain, each 
value associated to a timestamp, thus giving values a specific order.  

In the context of this thesis, we injected Software faults, i.e., flaws that are present in software 
(caused by programming errors, design flaws, etc.), which may be the cause of software system 
failures. For the practical evaluation of the proposed theses, we used a tool implemented at the 
University of Coimbra, making use of the G-SWFIT recommendations (“Emulation of Software 
Faults: A Field Data Study and a Practical Approach”, IEEE Transactions on Software 



3 
 

3 

Engineering, 2006, link) to define and inject software faults directly in running Windows OSs' 
processes, as well as to remove an injected fault. 

Furthermore, we adopted the Online Failure Prediction characterization model from Salfner 
and Malek (“A survey of Online Failure Prediction models”, ACM Computing Surveys 2010, 
link). According to the adopted characterization, the failure prediction task consists of assessing if, 
at a time t, a failure is going to occur within a precise time, called lead-time ∆tl. The prediction can 
be valid in a given time window, called prediction window ∆tp. The variation of the parameters ∆tl 
and ∆tp influences the performance of the prediction. In practice, at time t, a model (or predictor) 
should predict if a failure is going to occur in the interval [t+∆tl, t+∆tl+∆tp]. As shown in Figure 1, 
a prediction performed at time t targets the Prediction Window starting at time t+∆tl, and lasting 
∆tp.  

 
Figure 1. The Online Failure Prediction problem characterization 

 
The prediction can be valid until t+∆tl+∆tp. As mentioned before, the predictor is built from a 

set of past data. As an example, considering a classifier as prediction system, one can assume that 
these data are a set of observations x=<f1, f2, ..., fn> of a target system. The prediction task is then 
to predict, from the observed features xnew =<f1, f2, ..., fn-1, ?>, the target variable fn, which can be 
either “failure” or “no failure” or, in general, a continuous measure indicating how much failure 
prone the current system state is. Thus, given previously unseen observation matrix xnew with an 
unknown class label at time t, the prediction about the occurrence of a failure in the interval 
[t+∆tl, t+∆tl+∆tp] is given by fn=Cl(xnew), where Cl is the predictor. In particular, a prediction at 
time t is correct if the target event occurs at least once within the prediction period ∆tp.  

2 The experimental evaluation environment and approach 

To demonstrate the effectiveness of Fault Injection in assisting Failure Prediction, during this 
Ph.D. work we made use of an experimental evaluation environment made of a system that is 
injected with faults, and a machine controlling the injection and collecting data. In particular, such 
environment (represented in Figure 2) is made of a Target system, that is targeted by fault 
injection and from which the data are collected, and a Controller system (independent from the 
target system), whose responsibility were the collection of data, the management of fault injection 
and the restoring of the target system to a previous fault-free state, and so on. The collected 
Failure-related data are stored in a database on the Controller System. 
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Target system Controller system 

Figure 2. The experimental evaluation environment 
 
A typical case study of the actual Ph.D. thesis work is based on an environment that includes a 

Windows XP SP3 machine (the target system), installed in a virtual machine running on top of a 
hypervisor (VMWare vSphere server or XEN server, in this work), or directly on the hardware. 
The controller machine is in charge of controlling the experiments and analyzing the failure data 
coming from the system. A typical configuration of the machines used is as follows: 

 
1) Machine #1 (target): Intel i5-650@3.60GHz machine, 8GB RAM, running a Windows 

XP OS (SP3) in a VMWare vSphere server based on ESXi v5.0. Running the target 
system as a virtual machine on a VMWare vSphere server gave us the possibility of 
saving the state of the system at the beginning of the fault injection campaign, and 
restoring that saved state at the end of each run. This check-pointing functionality copies 
the configuration of the virtual machine, as well as the data contained in the virtualized 
storage disk and its running state (e.g., state and data of the processes in execution, values 
contained in the CPU registries, etc.). 

2) Machine #2 (controller): Intel i5-650@3.60GHz machine, 8GB RAM, running a 
Windows XP OS (SP3), used to: (a) control the experiments (start/stop the experiments), 
(b) remotely command and control the fault injection tool, (c) force the reboot of the 
machines in case of failures (including in hanging situations), (d) collect the data and 
store them in a Microsoft SQL Server 2008, and (e) analyze data. 

 
A detailed description of the specific setups used in the context of this Ph.D. can be found in 

Section 0. 

The approach we defined for generating failure data through injecting faults includes a 
procedure and a set of components for controlling the fault injection process, collecting the data 
and building the dataset. Software faults are injected while the target system executes one or more 
operations (a group of these is called a workload), in a way that allows capturing the dynamics that 
lead to failures by monitoring several variables (numerical data, events, etc.). In practice, the 
approach includes the following components: 

 
1. Fault injector and faultload: faults are defined and organized in a faultload. A fault 

injector emulates specific faults by modifying one or more components of the target 
system. The choice of the faultload is of utmost importance as it influences the data 
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generated, ultimately impacting on the overall results (different faults may lead to 
different types of failures).  

2. Workload: for collecting information about the system behavior, faults must be injected 
while the target system runs a workload, and this procedure should be repeated several 
times. The workload is the set of operations that the target system performs in the field 
(realistic workload) or, alternatively, it may be a set of synthetic operations (a synthetic 
workload) that represents the usual tasks of the system, built specifically for failure data 
generation and collection. A synthetic workload is useful when the system has not been 
deployed yet, or when it is not possible to inject faults in the target system and/or the 
workload cannot be replicated.  

3. Monitoring and data collection infrastructure: an infrastructure is used to gather the 
data that characterizes the behavior of the target system in the context of the observed 
failure events, while running a workload and injecting faults. Depending on the failure 
prediction mechanisms under study, besides failure-related data, one may need to collect 
also failure-free data. What is important is the data to include only the most relevant 
information for predicting failures. 

 
The components above are the fundamental parts of the experimental procedure, which is 

divided in four phases (see also Figure 3): 

 
1. Definitions and set-up: in this phase are defined the failures to predict, the system 

information to be monitored (e.g., a set of numerical variables or a set of events in the 
logs, including failure events), the workload and the faultload, and a set of parameters 
characterizing the scope of the failure prediction. This comprises building the concrete 
faultload to inject, installing and configuring the workload emulation tool, and installing 
and configuring the data monitoring and collection infrastructure and the fault injection 
tool. Other tasks include defining and setting up the target system and the controller 
system. 

2. Data generation and collection: this is the core phase of the approach, where the data 
are collected while the target system executes the workload and faults are injected by a 
fault injection tool. This data may correspond to fault-free situations (Golden Data) 
and/or situations in which a failure is observed (Failure Data). Data collection is done 
during several time intervals and in each interval the monitoring infrastructure collects 
the values of the variables portraying the state of the target system. 

3. Dataset building: the data collected are organized in datasets for being consumed later 
by the failure prediction models. This process depends on the failure prediction system to 
be trained (e.g., training anomaly detection systems only requires Golden Data), as well 
as on the types of failures being predicted. In particular, the monitored data are associated 
with the failures observed in Phase 2 considering the failure prediction parameters 
specified in Phase 1.  
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4. Failure data accuracy estimation analysis: accuracy is the property of the generated 
failure data to be similar to data that would be obtained in a real scenario. Due to the 
scarcity of real data, we estimate the correlation between synthetic and real failure data by 
applying metrics (specific of each condition) to two or more, independently generated, 
synthetic failure datasets. We use the concepts of weak accuracy and/or strong accuracy, 
as sufficient conditions for the generated failure data to be considered accurate. Strong 
accuracy metrics are applied directly on the datasets, while the weak accuracy metrics are 
applied to the prediction performance of the models trained with independent synthetic 
datasets. 

 

 
  

Figure 3. The four phases of the failure data generation 

3 Failure Data Generation, Collection and Organization 

The Failure Data Generation and Collection phase (phase 2) takes place throughout several 
time intervals (as shown in Figure 3), referred to as runs, during which the monitoring 
infrastructure collects the set of variables selected while the target system executes the operations 
defined by the workload. The number of runs, as well as their duration, depends on several 
parameters, such as the time needed to execute the workload, the specific set-up environment and 
the prediction parameters (e.g., for predicting a failure one hour in advance, each run must last for 
at least one hour).  

Collected data can be divided into Failure Data, Golden Data, and Non-Failure Data. Failure 
data are data obtained by injecting faults during several runs (eventually evolving into failures), 
while Golden data are gathered when no faults are injected and no failures are observed1. Finally, 
Non-Failure Data are relative to non-failing runs, i.e. runs in which a fault was injected but no 
failure was observed in the defined time frame. The use of each kind of data depends on the 

                                                             
1 In fact, no fault is injected and no failure is observed does not mean that no fault was activated, as 

there is not guarantee that no residual faults are present in the system. 
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prediction models that will consume the generated data (e.g., anomaly detection based models just 
need golden data, while classifiers need both types of data). 

A run with no faults injected and no failures observed is called Golden Run (GR), and the 
corresponding data are Golden Data (GD). An execution in which faults are injected is called 
Fault Injection Run (FIR). If a failure is observed during a fault injection run then it is a Failing 
Run, and the data monitored are Failure Data (FD). Non-Failure Data (NFD) are associated Non-
Failing Runs. Although this kind of data may also provide information about the system failing 
behavior, their use was out of the scope of the thesis.  

In each failing run, the failure event must be detected and later associated to the collected 
Failure Data. For this, different failure detectors (models that recognize failure patterns when 
they occur) may be needed. 

When more than one failure mode or more than one workload is considered, the runs (and thus 
the failure data) can be grouped into Scenarios. In this work, the scenarios are identified by a 
failure mode ! and a workload W, or the tuple <Workload, Failure mode>. 

 

 
 

Figure 3.1.  Failure data generation, collection and data organization phases 

 

As detailed in Figure 3.1 the data are generated as follows: 

1. Each run starts by booting the target system and waiting for it to reach a steady state, 
before the workload is executed. Having the system in a steady state means that it is ready 
for executing the workload in the best way possible, which is recommended, albeit not 
mandatory. The instant in which the system achieves its steady state is referred to as T0. 

2. The workload and the monitoring tools are then started. The instant in which the 
workload execution starts is referred to as TW, while TM identifies the time at which the 
monitoring system is executed. The data collection may start at time TM or TW, depending 
on the specific needs (e.g., if data from the beginning of the workload execution are 
needed, the monitoring must be started before the workload). In practice, data is 
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composed of data samples collected from the different variables at a given instant of time, 
according to a specific sampling rate s. 

3. In a Fault Injection Run (FIR), a fault is injected at time TFI while the target system is 
executing the workload and the monitoring tool is collecting data. In a Golden Run (GR) 
the system executes the workload, but no fault is injected. 

4. The run finishes when a failure (TF, FIR only) is detected (the failure detector associates 
the failure to the time TF), or after the workload has completed its execution (TW_END) or a 
maximum run execution time TMAX is achieved. In such cases, two situations are possible: 
a) In the case of Golden Runs (GRs), if no failure is detected in the interval [T0; 

T0+TMAX], the data relative to the run are considered Golden Data (GDRi, Golden 
Data relative to the i-th run). It is worth noting that a failure occurring in a Golden 
run is caused by an actual residual fault of the target system (i.e., not an injected one) 
and the data should also be considered as Failure Data.  

b) For Fault Injection Runs (FIRs), if no failure is detected in the interval [T0+TFI; 
T0+TMAX], the run is considered to be failure-free, and the relative data to be Non-
Failure Data (NFDRi, relative to the i-th run). On the other hand, if a failure is 
detected in such interval, the collected data are considered Failure Data (FDRi, 
relative to the i-th run). 

5. After completing a run (and collecting the corresponding data), the target system must be 
restored to a state in which no faults injected are present. This ranges from rebooting, in 
the cases where the fault does not permanently affected parts of the system (e.g., data or 
files), to the correction of fault effects (e.g., substituting files previously backed-up) or 
the re-installation of the entire target system2.  

 

3.1 Failure Prediction Dataset building 

For being used by failure prediction models, the collected Golden Data and Failure Data are to 
be organized in datasets and associated to information about the failures observed during each 
run.  

Datasets are made of a concatenation of variables’ values relative to different GRs and FIRs. 
As an example, a dataset can be made of V variables, which values were collected at a rate of 1 
value/s in 10 GRs for VN seconds, thus making a |V|x10·|VN| matrix. Successively, data are 
associated to the observed failures by labeling each data sample composing the collected data. 
Data labeling is a technique that associates a numerical label (e.g., 0, 1, etc.) to each data sample 
(i.e., a set of values of each monitored variable), depending on the meaning that each label has in 
the particular modeling or prediction scenario (e.g., a sample is labeled 0 if the target system was 
working correctly at the moment of the sample’s collection, or conversely is labeled 1 if the 
system was presenting an erratic behavior). In this particular context, data is labeled according to 

                                                             
2 Virtualization is a solution that allows restoring the target system (both software and – emulated – 

hardware), by using check-pointing and restoring operations. 
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the failure time TF and the failure prediction lead-time and prediction window (∆tl, ∆tp), 
defined in the failure prediction problem characterization adopted (as presented in Section 1). A 
detail about labeling according to such model is presented in Figure 4: Starting from the failure 
time TFailure, the label 1 is put backwards until covering the interval [TFailure - ∆TL+∆TP; TFailure]. It is 
worth noting that a different label could be used for identifying the different intervals ∆TL,∆TP, 
etc. 

 

 
Figure 4. Example of labeling a single run (only one variable showed),  

according to the failure time TFailure 

 

Data from a given run r is composed of n different variables vr = <vr
1, vr

2, …, vr
n>, where vr

i is 
the i-th variable collected from the target system. For each time instant k, each variable vr

i has a 
given value vr

i(k), representing a variable value collected at the time instant k. Hence, a data 
sample relative to time k is defined as: 

(1) vr(k) = <vr
1(k), vr

2(k), …, vr
n(k)> 

A data sample vr(k) collected during a Golden Run (when no failure occurred), is associated a 
label lr(k)=0, for each time k. On the other hand, given Tr

F the time at which a failure was detected 
during the Failure Run r, and the prediction indexes (∆tl, ∆tp) (valid for all the runs), a label lr(k)=1 
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is associated to a data sample vr(k) if a failure occurred in the interval [Tr
F-(∆tl+∆tp), Tr

F-∆tl], 
otherwise it is 03. Hence, for each time instant k and each run r, a labeled sample is: 

(2) vr*(k) = <vr
1(k), vr

2(k), …, vr
n(k), lr(k)> 

Collected data labeled according to the failure prediction indexes (∆tl, ∆tp) and the failure time 
Tr

F can be considered a dataset. More generally, several couples (∆tl, ∆tp) can be specified, and 
varying the values of ∆tl and ∆tp let the labels associated to each data sample to change 
accordingly. In this case, being ∆tl=<∆tl1 , ∆tl2 , …, ∆tlL> and ∆tp=<∆tp1 , ∆tp2 , …, ∆tpP>, one can 
define a dataset with which N sets of labels are associated, where N =|∆tl|x|∆tp|, or alternatively, 
define N different datasets, each one associated to a specific tuple (∆tl, ∆tp). Such dataset can be 
built once and used for training and testing a failure prediction model using a couple (∆tl, ∆tp) at a 
time, or together in a meta-model fashion. It is worth noting that a dataset made of Golden Data 
will present 0s for all the values of the couple (∆tl, ∆tp).  

In addition to this, different types of failures can affect the target system, and several different 
workloads can be used as well. Failure types and workloads define a single scenario, and each 
scenario <Workload, Failure mode> is associated to a different set of data, as data reflect different 
failure modes and workloads (see Figure 5). In the context of this specific Ph.D. work, failure 
prediction models are trained and tested using data from a single scenario. 

 

 

Figure 5. Datasets and scenarios (two workloads and two failure modes) 

 

                                                             
3 It must be noted that the label values chosen can be any two different numerical values (other 

widely used values for labeling data are (-1, +1) – especially when using Support Vector Machine 
classifiers – (5, 10), and so on). 



11 
 

11 

For training and validating failure prediction models, data must be organized into training 
datasets (TDSs) and testing datasets (TTDSs), whose goal is to support the assessment of 
prediction performance. Such division is usually based on grouping single data samples. However, 
in our work we decided to group Golden and Failure Data in training and testing datasets by 
considering the runs to which they belong to, thus implementing a runs-wise dataset. The reason 
that stays behind this decision is that the collected data represents time series and the division in 
samples may alter the continuity and ordering among samples, which may finally impact the 
prediction performance (e.g., when training regression models).  

An example of dataset is presented in Figure 6 (a) and (b): Figure 6 (a) represents data 
collected from the i-th Fault Injection Run and labeled with N different couples of (∆tl, ∆tp) values, 
while Figure 6 (b) presents a dataset made of GRG Golden Runs and FIRF Fault Injection Runs, 
highlighting the difference between labeling Golden and Failure Data, being the first labeled with 
only 0s and the latter with 0s and 1s. 

  

4 Experiments characterization and used testbeds 

In this section, we present the characterization of the experimental evaluations performed in this 
Ph.D. work. 

We adopted a Windows-based software fault injection tool implemented at University of 
Coimbra following the G-SWFIT recommendations for the fault injection task. Such tool is able to 
inject software faults at machine-code level both in binary files and in running processes (user-
mode only). However, due to the fact that the Windows OS includes a protection for avoiding 
certain system files from being changed, the fault injector was limited to inject software faults in 
running processes of the operating system, but faults were injected before starting the collection of 
data, thus simulating residual faults from the perspective of the data collection process.  

The faultload is based on the fault types defined by G-SWFIT recommendations. Based on 
previous experience, we mostly focused the fault injection on the code of the svchost.exe process 
and of the linked dynamic library kernel32.dll (containing functions for handling the OS 
memory usage), which are key resources of the Windows XP OS. The fault injection tool was able 
to automatically generate thousands of code mutants by analyzing the fault locations matching a 
specific pattern depending on the type of software fault, being each fault identified by the tuple 
<fault type, fault location, code mutant>. In order to design a feasible experiment, a subset of the 
faults was selected based on the relevance of their locations (details on the number of faults 
injected and their impact are presented in the next subsection). For this, we used a profiling tool 
(Luke Stackwalker), which helped identifying the functions and modules executed along several 
runs of the workloads considered. As previously discussed, the selection of the most executed 
modules of the target system does not invalidate the representativeness of the injected software 
faults. 
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Regarding the failures, we empirically focused on Crashes and Hangs, which are the two 
failure modes observed injecting faults in a part of the Windows XP OS, by using the G-SWFIT 
tool. A failure detector able to detect the occurrence of the two failure modes mentioned above 
was implemented. In practice, the detector continuously monitors the target system to detect 
failures in the following way: 

1. a crash is detected when the system does not respond to a ping (implementing an 
heartbeat mechanism) for a certain time Tmax_ping. The failure time TF is obtained by 
considering the first time instant in which the system became unresponsive; 

2. a hang is detected if the target system responds to a ping, but it hangs on executing a 
given set of operations. Again, the failure time TF is obtained by considering the first time 
instant in which the system became unresponsive, identified by the time instant when the 
first not executed operations were sent to the system4. 

 
The Target system runs several different workloads, namely: 

1. WinRAR application (WKL1), compressing a file using the RAR algorithm with the low 
compression option; 

2. COSBI OpenSourceMark computer benchmarking suite (WKL2), a more complex 
workload that includes computation and input/output intensive tests, compression 
algorithms, disk and memory accesses, etc. (we consider that these workloads include 
generic operations that computer systems perform frequently, being thus adequate for the 
present case study). Tomcat application server, which executes the workload of the TPC-
W benchmark; 

3. Tomcat application server (WKL3), which executes the workload of the TPC-W 
benchmark (details in the dissertation associated to this Ph.D. thesis work). Three 
versions of the Tomcat application server were used, namely 6.0.36 (WKL31), 7.0.19 
(WKL32), 7.0.40 (WKL33). 

 
The combination <Workload, Failure mode> allows defining four different scenarios for the 

analysis: <WKL1, Crash (FM1)>, <WKL1, Hang (FM2)>, <WKL2, Crash (FM1)>, and <WKL2, 
Hang (FM2)>, etc. 

Regarding the variables to monitor, we typically considered at set of variables reflecting the 
state of the operating system and the usage of the hardware resources, as the symptoms of the 
failures considered may manifest at the OS and at lower levels (e.g., an increase in the number of 
context switches/s). In most of the cases, we monitored 233 numerical variables, at the sample rate 
of one value per second, using the Logman tool that is included in Windows OSs family, and 
afterwards conducted a three-step feature selection to reduce the number of variables. Some of the 

                                                             
4 In the case of a Hang failure, in absence of the information about the time of failure detected, one can 

estimate the failure time by using the value of the timeout given to the request to the Target to reboot (usually 
60 seconds in average, value used in all the campaigns), and the duration of the experiment. Hence, the 
occurrence time of a Hang failure can be estimated to be Texp-60. 
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variables were not considered in our analyses, as the ones having a constant or null value in all the 
runs, and successively variables having a linear correlation coefficient (Pearson’s coefficient) 
greater than 0.9 between each other.  

The failure prediction model used in the context of this Ph.D. work was SVM (Support Vector 
Machine), the state of the art among classification models. In particular, the libSVM libraries 
implementing the SVM predictor were used. 

The specific setups used in the context of this Ph.D. thesis were the following: 

1. “Towards Identifying the Best Variables for Failure Prediction using Injection of 
Realistic Software Faults” (PRDC 2010, link): a single Controller machine running 
Windows OS and Microsoft SQL Server, and a single Target machine running Windows 
XP SP3 OS 

2. “Assessing the Impact of Virtualization on the Generation of Failure Prediction Data”, 
(LADC 2013, link): a single Controller machine running Windows OS and Microsoft 
SQL Server, and five Target machines, configured as follows:  
• Machine #1: Intel i5-650@3.60GHz; 8GB RAM; Windows XP OS (SP3); no 

virtualization (hosts the original system).  
• Machines #2 and #3 (virtualized, Type II Hypervisors): Intel i5-650@3.60GHz; 

8GB RAM; virtualized Windows XP OS (SP3). Machine#2 uses a Citrix XEN 
server v5.6.10, and Machine#3 runs a VMWare vSphere server based on ESXi 
v5.0. These provide two virtual versions hosted on top of Type II Hypervisors.  

• Machines #4 and #5 (virtualized, Type I Hypervisors): Intel P4 HT@3.00GHz; 2GB 
RAM; virtualized Windows XP OS (SP3). Machine#4 runs Oracle’s VirtualBox, 
and Machine#5 runs VMWare Player, both on top of Windows XP OSs. These 
provide two virtual versions hosted on top of Type I Hypervisors.  

3. “The time dimension in predicting failures: a Case Study” (LADC 2013, link): a single 
Controller machine running Windows OS and Microsoft SQL Server, and a single, 
virtualized Target machine running on top of a Citrix XEN Server. 

4. “On the need for training Failure Prediction algorithms in evolving software systems” 
(HASE 2014, link): three virtualized Controller machines and three virtualized 
Target machines running on top of a Citrix XEN Server. The controller machines ran a 
Windows 7 OS and a Microsoft SQL Server, while target machines ran a Windows XP 
SP3 OS. The machines are organized as in Figure 7. 
 



14 
 

14 

 
Figure 7.  Replicated, virtualized Targets and Controllers 

 
5. “A Practical Approach for Generating Failure Data for Assessing and Comparing 

Failure Prediction Algorithms” (PRDC 2014, link): a single Controller machine running 
Windows OS and Microsoft SQL Server, and a single Target machine running Windows 
XP SP3 OS. 

6. “Adaptive Failure Prediction for Computer Systems: a Framework and a Case Study” 
(HASE 2015, link): the framework was implemented using a single Controller, and a 
virtualized Target machine running into a XEN server, and a Sandbox Hypervisor 
made of a Citrix Xen Server, hosting a (virtualized) Replica of the Target machine, 
used to inject faults and generate failure data. In Figure 8 a representation of the 
framework. 
 

 

Figure 8. The Adaptive Failure Prediction framework 
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5 Experimental evaluation: the collected data 

Data were collected from Target System using Microsoft Logman monitoring tool, which is 
natively included in Windows OSs family. All the data are stored in a Microsoft SQL Server 
(2008-2010 versions) on the Controller machine, along with information about Fault Injection, 
Failure Detection and Failure Prediction. Each database contains monitored data (in tables created 
and operated by the Microsoft Logman monitoring tool), and data relative to the management of 
Fault Injection and Failure Prediction, as faultloads, datasets, failure prediction parameters, 
prediction assessment results, etc., stored in tables created on purpose. 

Several different databases created were relative to a specific setup (e.g., VMWare 
environment, XEN environment, real machine, etc.), and a specific campaign (e.g., 1000 GRs and 
5000 FIRs, with faults injected in svchost.exe process). Each database, furthermore, has been 
divided into sets, which are part of a whole campaign, for scalability and fault tolerance purposes: 
in fact, if a database is corrupted, only a single set has to be re-executed. Few examples are in 
Figure 9. 

 

 

 

 
 

Figure 9.  Example of different databases and several sets:  
real_set_1, real_set_2, real_set_3, XEN_set_1 

 
 

The Logman tool automatically organizes the data collected in three tables, CounterData, 
CounterDetails and DisplayToID (see Table 1). Each monitored component is defined by the 
tuple <Machine, Object, Instance, Counter>, where Counter is a single variable. Specifically: 

 
• Machine identifies the physical machine where the collected information belongs (e.g., 

“Server_XYZ”); 
• Object identifies a component (intended as macro-object) of a Machine, made of various 

parts (micro-objects), for instance Memory, Operating System, Physical Disk, etc.; 
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• Instance identifies an instance of a particular Object. In fact, an object can have one or 
more instances, as for example CPU, in a multicore system, can have the instantiation 
“CPU0”, “CPU1”, etc. In the case an Object has one instance only, the Instance value is 
“NULL”; 

• Counter identifies a variable describing the properties of a particular Object, for instance 
“page faults/s” belonging to the Memory object, or “written bytes/s” belonging to the 
Physical Disk object. 

 
The Logman tool automatically creates the tables above when the monitoring starts. For 

scalability purposes, after each run has ended, we copy the current CounterData table to a 
CounterData_N_TYPE table, where N is the number of the last experiment, and TYPE is the type 
of experiment executed, which can be one between GR (Golden Run) and FIR (Fault Injection 
Run).  

An example of an actual Microsoft SQL database obtained from our case studies is in Figure 
10. 

 

 
 

 Figure 10 – Datasets and scenarios (two workloads and two failure modes) 
 
 

The collected data are organized according to the Relational model. All data were stored in a 
Microsoft SQL Server. 
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5.1 Data collected from 2009 to 2015 

The data collected from the fault injection campaign have been stored in several databases, 
divided in sets to be easily manageable and reduce the total size of data: 

1. real_set_X, data collected from a real machine running a Windows XP OS, faults 
injected in the svchost.exe process, running WKL1 and WKL2; 

2. vSphere_set_X, data collected from a virtualized machine running on top of a 
WMWare vSphere server (ESXi), running a Windows XP OS, faults injected in the 
svchost.exe process, running WKL1 and WKL2; 

3. XEN_set_X, data collected from a virtualized machine running on top of a Citrix 
XEN server, running a Windows XP OS, faults injected in the svchost.exe process, 
running WKL1 and WKL2; 

4. XEN_Tomcat_set_X, data collected from a virtualized machine running on top of a 
Citrix XEN server, running a Windows XP OS, faults injected in the svchost.exe 
process, running WKL3x; 

5. Training_set_X, data collected from a virtualized machine running on top of a Citrix 
XEN server, running a Windows XP OS, faults injected in the svchost.exe process, 
running WKL3x (data used for actual Failure Prediction Model 
assessment/Benchmark – extended tables DB); 

6. Simulation_set_X, data collected from a virtualized machine running on top of a 
Citrix XEN server, running a Windows XP OS, faults injected in the svchost.exe 
process, running WKL3x (data used for actual Failure Prediction Model 
assessment/Benchmark – extended tables DB). 

 
 

In the following, we present the details of the databases containing the data collected during the 
period of the presented Ph.D. work. 
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Note: 
• Tables organization = the particular set of tables used to organize the data, described 

in paragraph 5.2 
• Variables set = the particular set of information collected from the Target systems 

(variables), described in paragraph 5.3 
 
 

Earlier data 
 

Name Date (GR, FIR) 
Failures 
(Hang, Crash, 

Controller) 
Workload Tables 

org. 
Var. 
set Data 

real_set_1 15-19/3/2012 (100, 500), (100, 500) (25, 2, 2) WKL1, WKL2 T1 V1 yes 
real_set_2 13-28/10/2011 (2, 501), (2, 501) (18, 2, 0) WKL1, WKL2 T1 V1 yes 
real_set_3 9-15/11/2011 (-, 500), (-, 500) (17, 2, 0) WKL1, WKL2 T1 V1 yes 
real_set_4 17-23/11/2011 (500, 500), (500, 500) (19, 1, 3) WKL1, WKL2 T1 V1 yes 
real_set_5 26/11-

4/12/2011 
(-,500), (-,500) (20, 1, 0) WKL1, WKL2 T1 V1 yes 

real_set_6 17-23/11/2011 (400, 500), (400, 500) (35, 3, 1) WKL1, WKL2 T1 V1 yes 
vSphere_set_1 19/4-4/5/2012 (500, 500), (500, 500) (-, -, -) WKL1, WKL2 T1 V1 yes 
vSphere_set_2 21/11-

1/12/2011 
(500, -), (500, 500) (-, -, -) WKL1, WKL2 T1 V1 yes 

vSphere_set_3 14-17/12/2011 (1, 500), (1, 500) (15, 0, 0) WKL1, WKL2 T1 V1 yes 
vSphere_set_4 14-18/1/2011 (1, 500), (1, 500) (24, 3, 0) WKL1, WKL2 T1 V1 yes 
vSphere_set_5 - - - - T1 V1 yes 
vSphere_set_6 10-15/5/2011 (1, 500), (1, 500) (41, 3, 0) WKL1, WKL2 T1 V1 yes 
XEN_set_1 16-24/3/2012 (100, 500), (100, 500) (60, 9, 162) WKL1, WKL2 T1 V1 yes 

 
Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp 
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XEN server, Controller 1 (C1_) 
 

Name Date (GR, FIR) 
Failures 

(Hang, Crash, TPCW, 
Controller, OS) 

Workload Tables 
org. 

Var. 
set Data 

XEN_Tomcat_set_1 26-28/5/2013 (6, 500) (15, 0, 0, 0, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_2 30/5-2/6/2013 (5, 500) (51, 0, 3, 16, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_3 2-5/6/2013 (5, 500) (5, 0, 15, 3, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_4 5-9/6/2013 (5, 500) (1, 0, 1, 9, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_5 12-14/6/2013 (5, 500) (2, 0, 0, 1, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_1 (extra) 3-11/9/2013 (25, 500) (13, 0, 17, 0, -) WKL331 T1/ T2 V2 yes 
XEN_Tomcat_set_2 (extra) 13-24/9/2013 (25, 500) (0, 0, 9, 0, -) WKL331 T1/ T2 V2 yes 
Op_Test_Training_3_set_1 22-25/8/2014 (20, 150) (0, 0, 0, 0, -) WKL33 T2 V2 yes 
Op_Test_Training_3_set_2 25-26/8/2014 (-, -) (0, 0, 0, 0, -) WKL33 T2 V2 yes 
Training_set_1 27-30/8/2014 (50, 250) (10, 8, 0, 0, -) WKL31 T2 V2 yes 
Training_C1_set_1 8-12/9/2014 (50, 184) (16, 0, 0, 0, -) WKL33 T2 V2 yes 
Simulation_C1 7-16/9/2014 (475, 450) (9, 0, 1, 0, -) WKL33 T2 V2 no 
Simulation_C1_Oct_2014 15-29/10/2014 (50, 297) (15, 0, 1, 0, -) WKL31 T2 V2 no 
Training_C1_Oct_2014_set_1 11-14/2/2015 (25, 250) (14, 0, 0, 0, -) WKL37 T2 V2 yes 
Training_C1_Oct_2014 14-17/2/2015 (25, 250) (14, 0, 0, 0, -) WKL37 T2 V2 yes 

 
Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp 

 
 

XEN server, Controller 2 (C2_) 
 

Name Date (GR, FIR) 
Failures 

(Hang, Crash, TPCW, 
Controller, OS) 

Workload Tables 
org. 

Var. 
set Data 

XEN_Tomcat_set_1 30/5-2/6/2013 (6, 500) (22, 0, 7, 0, -) WKL31 T1 T2 yes 
XEN_Tomcat_set_2 2-6/6/2013 (5, 500) (52, 0, 7, 14, -) WKL31 T1 T2 yes 
XEN_Tomcat_set_3 8-11/6/2013 (5, 500) (4, 0, 0, 9, -) WKL31 T1 T2 yes 
XEN_Tomcat_set_4 12-14/6/2013 (5, 500) (2, 0, 1, 3, -) WKL31 T1 T2 yes 
XEN_Tomcat_set_5 18-20/6/2013 (5, 500) (2, 0, 2, 4, -) WKL31 T1 T2 yes 
XEN_Tomcat_set_1 (extra) 3-10/9/2013 (25, 500) (23, 0, 1, 0, -) WKL332 T1/ T2 T2 yes 
XEN_Tomcat_set_2 (extra) 14-23/10/2013 (25, 500) (44, 0, 245, 0, -) WKL332 T1/ T2 T2 yes 
Training_C2_set_1 8-10/9/2014 (50, 149) (10, 8, 0, 0, -) WKL35 T2 T2 yes 
Simulation_C2_set_2 8-12/9/2014 (200, 200) (0, 0, 0, 0, -) WKL34 T2 T2 no 
Simulation_C2 12-17/9/2014 (50, 187) (0, 0, 0, 0, -) WKL34 T2 T2 no 

 
Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp 
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XEN server, Controller 3 (C3_) 
 

Name Date (GR, FIR) 
Failures 

(Hang, Crash, TPCW, 
Controller, OS) 

Workload Tables 
org. 

Var. 
set Data 

XEN_Tomcat_set_1 26-28/5/2013 (5, 500) (23, 0, 0, 0, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_2 30/5-2/6/2013 (5, 500) (50, 0, 4, 0, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_3 2-5/6/2013 (5, 500) (4, 0, 0, 6, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_4 8-11/6/2013 (5, 500) (1, 0, 1, 20, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_5 14-17/6/2013 (5, 500) (1, 2, 0, 33, -) WKL31 T1 V2 yes 
XEN_Tomcat_set_1 (extra) 3-11/9/2013 (25, 500) (23, 0, 3, 0, -) WKL333 T1/ T2 V2 yes 
XEN_Tomcat_set_2 (extra) 23-25/9/2013 (25, 500) (0, 0, 67, 0, -) WKL333 T1/ T2 V2 yes 
Simulation_C3_Oct_2014 15-22/10/2014 (50, 354) (19, 0, 0, 0, -) WKL31 T2 V2 no 
Simulation_C3_set_1 
_20140820_01_34_bak 16-18/8/2014 (50, 150) (4, 0, 80, 0, 7) WKL31 

T2 V2 yes 

Simulation_C3_set_1 
_20140827_17_46_bak 24-26/8/2014 (75, 150) (29, 0, 0, 0, 8) WKL33 

T2 V2 yes 

Simulation_C3_set_2 8-11/9/2014 (100, 250) (17, 0, 0, 1, -) WKL33 T2 V2 no 
Simulation_C3_set_3 13-16/9/2014 (50, 200) (12, 0, 0, 0, -) WKL33 T2 V2 no 
Training_C3 8-11/9/2014 (50, 250) (27, 0, 1, 0, -) WKL33 T2 V2 yes 
Training_C3_Oct_2014 8/3/2015 (25, 200) (0, 0, 1, 0, -) WKL37 T2 V2 no 
Training_C1_set_1 3/8-2/9/2014 (25, 250) (10, 0, 0, 0, -) WKL34 T2 V2 yes 

 
Note: THang,Failure ≈ Texp – 60, THang,Failure = Texp 
 



21 
 

21 

5.2 Organization of the collected data 

The organization of the data collected is presented in paragraphs 5.2.1 and 5.2.2, the former 
presenting and describing the tables contained in a first version of the databases, while the latter 
presenting a successive version of the databases, presenting an extended set of collected 
information, hence more tables.  

5.2.1 First Database version (2009-2013) (T1) 
In this paragraph we present the organization of the data collected from the earlier experiences 

(2009-2013). The organization of data slightly changed with the latter experiences, and is 
presented in the next paragraph.  

To keep data integrity, primary keys, unique values and null rules were used, while no 
referential integrity rule was used. 

 
Table 1 – Collected data and other information: first version (reduced version), 9 tables. 

 Benchmark Database tables Description Columns description 

D
at

a 
T

ab
le

s 

The Microsoft Logman tool 
creates the tables here 
presented. The 
CounterData table 
contains, among other 
data, the values of each 
variable (CounterValue), 
and the time at which the 
value was registered 
(CounterDateTime). Each 
data is related to a single 
Counter by a CounterID, 
and each value is related to 
a  
(CounterID, RecordIndex) 
tuple. 

Details about each counter 
(identified by CounterID 
key) are contained in 
CounterDetails table.  

Finally, the DisplayToID 
table (often removed from 

CounterData 

GUID 
(Global Unique Identifier) 
single logging session ID 
(hexadecimal) 

CounterID 
monitored variable ID 
([1…Nvar]) 

RecordIndex 
sequence number  of the 
specific variable’s value 
(sequential, [1…Tmax]) 

CounterDate 
Time 

timestamp of the specific 
variable’s value  
(YYYY-MM-DD 
HH:MM:SS.mss) 

CounterValue specific variable’s value 
FirstValueA <not used> 
FirstValueB <not used> 
SecondValueA <not used> 
SecondValueB <not used> 
MultiCount <not used> 

CounterDetails 

CounterID 
single monitored variable’s 
ID ([1…Nvar]) 

MachineName name of the system from 
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the database) has 
additional information 
about the logging session, 
identified by the GUID 
(Global Unique Identifier), 
as Log start and stop time, 
number of records, etc.  

A guide describing each 
column and relative values 
is available at Microsoft 
Technet website.  

 

which the variable was 
collected (e.g., Lab-PC-1) 

ObjectName 
component of a system, 
made of various parts (e.g., 
Memory, OS, Disk …) 

CounterName 
specific variable’s name, 
belonging to an Object and a 
Machine 

CounterType <not used> 
DefaultScale <not used> 
InstanceName <not used> 
InstanceIndex <not used> 
ParentName <not used> 
ParentObjectID <not used> 
TimeBaseA <not used> 
TimeBaseB <not used> 

DisplayToID 

GUID 
(Global Unique Identifier) 
single logging session ID 
(hexadecimal) 

RunID <not used> 
DisplayString <not used> 
LogStartTime <not used> 
LogStopTime <not used> 
NumberOf 
Records 

<not used> 

MinutesToUTC <not used> 
TimezoneName <not used> 

 



23 
 

23 

 

Fa
ul

tlo
ad

 ta
bl

e 

 

The Faultload table 
contains, for each 
experiment (identified by 
tuple <Type, Experiment, 
Workload>), the target of 
the fault injection, external 
library modules (dlls, if 
used), and the fault 
injection result, i.e., success 
or error. 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns]) 

Workload 
 

workload used during the 
specific run (e.g., WKL1) 

Target 
 

fault injection target in the 
specific run (e.g., svchost.exe 
process) 

Module 
specific fault injection target 
(optional) 

FaultType 

type of fault injected, 
according to  
G-SWFIT recommendations 
(e.g., MFC) 

IntervalStart 

<fault injection tool-specific 
information> 
index of the first location at 
which a fault is injected 

IntervalEnd 

<fault injection tool-specific 
information> 
index of the last location at 
which a fault is injected 

Injection 
1 = successful injection 
0 = injection failure 

Description injection tool output 

Fault 
specific fault (assembly-level 
mutation code) 
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Ex
pe

ri
m

en
ts

 ta
bl

e 

 

The Experiment table 
collects the data about the 
current run, including the 
run sequence number, the 
workload used, the type 
(GR or FIR), the target of 
the fault injection (e.g., 
svchost.exe), and the 
“experiment finished” and 
“target system ready” 
flags. 

This table is used to 
synchronize Controller 
system and the Target 
system. 

Type type of run (GR or FIR) 

Number 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Target 
 

fault injection target in the 
specific run (e.g., svchost.exe 
process) 

exp_finished 

flag indicating the current 
run is complete 
1 = completed 
0 = not completed 

Target_Ready 

flag indicating the target is 
ready for executing a new 
run (e.g., if the target is still 
booting, the flag is 0) 
1 = ready (after ramp-up) 
0 = not ready 

T
im

es
ta

m
ps

 ta
bl

e 

 

The Timestamps table 
contains information about 
the time at which a fault 
was injected, in each 
experiment. 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Timestamp 
 

time at which a fault is 
injected, in a specific run 
(YYYY-MM-DD 
HH:MM:SS.mss) 

 
 

W
or

kl
oa

d 
ta

bl
e 

 

The Workload table is a 
custom table. It contains 
additional information 
about the workload used 
(used for WKL1). 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Signature WKL1 results 

Checksum 
WKL1 error-control 
checksum 
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Be
nc

hm
ar

k 
ta

bl
e 

 

The Benchmark table is a 
custom table, containing 
information about other 
workloads (WKL2  and 
WKL3x) used. 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Test 
WKL2 single test result or 
WKL3 name 

Score 
WKL2 single test score or 
WKL3 score 

Time 
WKL2 single test time or 
WKL3 total time 

TPCW_Result WKL3 result 

R
eb

oo
t t

ab
le

 

 

The Reboot table contains 
information about the 
failure occurred to the 
target system, as the failure 
type. 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Motivation 

motivation of the target 
system’s reboot 

Target-side 
Target = no failure occurred 
Heartbeat5 = Crash failure 
(Failure mode FM1, the 
Target’s heartbeat stopped) 
Reboot4 = Hang failure 
(Failure mode FM2, Target 
rebooted by the Controller) 

Controller-side 
Controller = failure or error 
occurred to controller 
machine 
TPCW-RBE = TPCW client 
error (client used by WKL3) 

 

                                                             
5 Corrected from a previous version, where the definitions of Crash and Hang were inverted 
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Fa
ilu

re
 M

od
es

 ta
bl

e 

 

The FailureModes 
contains information about 
the failures occurred 
during a certain 
experiment.  

This table is not actually 
used. 

 
Type 
 

type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Result workload result 
ExpDuration run duration 

Heartbeat 
Hang failure (Failure Mode 
FM2) 

Reboot 
Crash failure (Failure Mode 
FM1) 
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5.2.2 Latest Database version (2013-2015) (T2) 
Databases were modified for addressing data organization drawbacks and limitations, and 

provide support to Failure Prediction models and their training and assessment. In particular, Fault 
Injection table, Faultload table and Reboot table were extended with additional information. On 
the other hand, new tables added were StartingFaultload, FailurePredictor, 
FailurePredictionVariables and OnlineFailurePredictionResults. In particular, the tables 
StartingFaultload and Faultload are used to contain the entire faultload, and to keep trace of the 
single specific fault injected in a single run. 

The tables are presented in Table 2. 

 
Table 2 – Collected data and other information: a newer, extended version (15 tables). 

 Benchmark Database tables Description Columns description 

D
at

a 
T

ab
le

s 

The Microsoft Logman 
tool creates tables 
presented aside. The 
CounterData table 
contains, among other 
data, the values of each 
variable (CounterValue), 
and the time at which the 
value was registered 
(CounterDateTime). Each 
data is related to a single 
Counter by a CounterID, 
and each value is related 
to a (CounterID, 
RecordIndex) tuple. 

Details about each 
counter (identified by 
CounterID key) are 
contained in 
CounterDetails table.  

Finally, the DisplayToID 
tables has additional 
information about each 
value of a single Counter, 
identified by the GUID 
(Global Unique Identifier) 

CounterData 

GUID 
(Global Unique Identifier) 
single logging session ID 
(hexadecimal) 

CounterID 
monitored variable ID 
([1…Nvar]) 

RecordIndex 
sequence number  of the 
specific variable’s value 
(sequential, [1…Tmax]) 

CounterDate 
Time 

timestamp of the specific 
variable’s value  
(YYYY-MM-DD 
HH:MM:SS.mss) 

CounterValue specific variable’s value 
FirstValueA <not used> 
FirstValueB <not used> 
SecondValueA <not used> 
SecondValueB <not used> 
MultiCount <not used> 

 
CounterDetails 

CounterID 
single monitored variable’s 
ID ([1…Nvar]) 

MachineName 
name of the system from 
which the variable was 
collected (e.g., Lab-PC-1) 

ObjectName 
component of a system, 
made of various parts (e.g., 
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key, as Log start and stop 
time, number of records, 
etc.  

A guide describing each 
column and relative 
values is available at 
Microsoft Technet 
website.  

Memory, OS, Disk …) 

CounterName 
specific variable’s name, 
belonging to an Object and 
a Machine 

CounterType <not used> 
DefaultScale <not used> 
InstanceName <not used> 
InstanceIndex <not used> 
ParentName <not used> 
ParentObjectID <not used> 
TimeBaseA <not used> 
TimeBaseB <not used> 

 
DisplayToID 

GUID 
(Global Unique Identifier) 
single logging session ID 
(hexadecimal) 

CounterID 
monitored variable ID 
([1…Nvar]) 

RecordIndex 

sequence number  of the 
specific variable’s collected 
value (sequential, 
[1…Tmax]) 

CounterDate 
Time 

timestamp of the specific 
variable’s collected value  
(YYYY-MM-DD 
HH:MM:SS.mss) 

CounterValue 
specific variable’s collected 
value 

FirstValueA <not used> 
FirstValueB <not used> 
SecondValueA <not used> 
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Ex
pe

ri
m

en
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 ta
bl

e 

 

The Experiment table 
collects the data about 
the current run, including 
the run sequence 
number, the workload 
used, the type (GR or 
FIR), the target of the 
fault injection (e.g., 
svchost.exe), and the 
“experiment finished” 
and “target system 
ready” flags. 

Type type of run (GR or FIR) 

Number 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Target 
 

fault injection target in the 
specific run (e.g., 
svchost.exe process) 

exp_finished 

flag indicating the current 
run is complete 
1 = completed 
0 = not completed 

Target_Ready 

flag indicating the target is 
ready for executing a new 
run (e.g., if the target is still 
booting, the flag is 0) 
1 = ready (after ramp-up 
time) 
0 = not ready 

 

Fa
ul

t I
nj

ec
tio

n 
ta

bl
e 

 

(Updated: added “Log” and 
“Result”) 

The Fault Injection table 
(former Faultload) 
contains, for each 
experiment (identified by 
tuple <Type, Experiment, 
Workload>), the target of 
the fault injection, 
external library modules 
(dlls, if used), and the 
fault injection result, i.e., 
success or error. 

This table is used to 
synchronize Controller 
system and the Target 
system. 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload workload used during the 
specific run (e.g., WKL1) 

Target 
fault injection target in the 
specific run (e.g., 
svchost.exe process) 

Module specific fault injection 
target (optional) 

Log (former “Description”) 
injection tool output 

Result 

Injection result 
 
0 = Injection failed 
1 = Injection succeded 
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The Timestamps table 
contains information 
about the time at which a 
fault was injected, for 
each experiment. 

 
Type 
 
 

type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Timestamp 
 

time at which a fault is 
injected, in a specific run 
(YYYY-MM-DD 
HH:MM:SS.mss) 
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The Workload table is a 
custom table. It contains 
additional information 
about the workload used 
(used for WKL1). 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Signature WKL1 results 

Checksum 
WKL1 error-control 
checksum 
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*New* 

The StartingFaultload 
table contains a set of 
faults that can be injected 
in the target system.  
The information contained 
into this table is specific to 
the injection tool used in 
this Ph.D. thesis work. 

It is worth noting that the 
set of all injectable faults 
can be very large, thus 
the user may have to 
select a part of such 
faults. This table is used 
to build a Faultload table, 
which contains the actual 
faults to inject, as such 
set can change when 
using, for instance, a 
different dataset.  

 
ID fault numerical ID 

Type 
type of fault (e.g., MFC – 
Missing function call, MIFS 
– Missing IF statement, …) 

Module target module (e.g., 
ntdll.dll) 

ModuleFunction 
target function (e.g., 
Memory Allocation), 
number 

Fault mutation operator  

ActivationIndex 

fault activation rate, which 
can be found 
experimentally (e.g., 8% for 
MFC faults) 
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(Updated: added 
”FaultID”, details about 
fault moved) 

The Faultload table 
contains the set of faults 
that have to be effectively 
injected. In this case, each 
fault is identified with a 
FaultID, and the details 
about the faults, as well 
as the effective code 
mutant, is available in 
the StartingFaultload 
table. 

Type type of run (FIR only) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload workload used during the 
specific run (e.g., WKL1) 

FaultID 

ID of the fault injected in 
the run (details about the 
fault are in table 
StartingFaultload) 
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The Benchmark table is a 
custom table, containing 
information about other 
workloads (WKL2  and 
WKL3x) used. 

Experiment type of run (GR or FIR) 

Type 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload workload used during the 
specific run (e.g., WKL1) 

Test 
WKL2 single test result 
or 
WKL3 name 

Score WKL2 single test score or 
WKL3 score 

Time WKL2 single test time or 
WKL3 total time 

TPCW_Result WKL3 result 
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(Updated: added “Info”) 

The Reboot table 
contains information 
about the failure 
occurred in the target 
system, as the failure 
type and the status of the 
controls used to detect 
the failure. 

 
Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Motivation 

motivation of the target 
system’s reboot 

Target-side 
Target = no failure occurred 
Heartbeat4 = Crash failure 
(Failure mode FM1, the 
Target’s heartbeat stopped) 
Reboot4 = Hang failure 
(Failure mode FM2, Target 
rebooted by the Controller) 

Controller-side 
Controller = failure or error 
occurred to controller 
machine 
TPCW-RBE = TPCW client 
error (client used by WKL3) 

Info 

status of the controls used 
to detect the failure 
(containing the actual failure 
detection rule for the specific 
experiment) 
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*New* 

The FailurePredictor 
table contains 
information about the 
failure prediction models 
used. In particular, we 
use an instantiation of a 
predictor for each 
parameter of the failure 
prediction problem, i.e., 
for each defined value of 
the tuple <delta_L, 
delta_P, data features>. 
The present table 
contains the prediction 
model (PredictionModel), 
details about the training 
process (e.g., 
DataFeatures, 
DataMean/Deviation, 
PredictionOptThreshold 
and FM - the failure 
mode to predict), and a 
flag indicating if the 
predictor was updated. 

PredictorMetaID 

ID associated to the 
predictor type (e.g., 
SVM_time_window_ 
classifier_gaussian) 

ModelID 

ID associated to the 
specific prediction scenario 
(e.g., 
SVM_tw_3_FM2_10_10) 

DataFeatures 
variables used in the 
specific prediction 
execution 

DataMean 
 

mean of the data used in 
the specific prediction 
execution 

DataDeviation 
deviation of the data used 
in the specific prediction 
execution 

PredictionMethod 
description of the 
prediction method (e.g., 
SVM) 

PredictionModel 
model obtained after the 
training phase (predictor 
status) 

PredictionOpt 
Threshold 

predictor’s optimal 
threshold (outputs of 
classifiers are thresholded in 
order to obtain one of the 
output classes)  

delta_L 
value of ∆tL used in the 
specific prediction 
execution 

delta_P 
value of ∆tP used in the 
specific prediction 
execution 

FM 
type of failure predicted 
(e.g., Hang – FM2) 

PredictionOther 
Parameters 

other predictor’s 
parameters 

OtherInformation other predictor’s info 

updated 

0 = predictor not updated 
in the specific prediction 
execution 
1 = predictor updated  
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*New* 

The FailurePrediction 
Variables table contains 
information about the 
variables that, among all 
the ones monitored, were 
used to train the 
predictor. Each predictor 
can have a different set of 
variables, and that such 
variables are associated 
to each predictor 
instantiation in the 
FailurePrediction table 
through the DataFeatures 
column, containing a 
vector of CounterID 
values. 

This table was actually not 
used. 

 

CounterID 
single monitored variable’s 
ID 

ObjectName 
monitored system 
component (e.g., CPU, 
Memory, Disk …) 

CounterName 
specific variable’s name 
(e.g., exceptions/s) 

InstanceName 
specific object instance 
name (e.g., CPU-1) 
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The FailureModes is a 
help table containing 
information about the 
failures occurred during 
a certain experiment. The 
columns identify some 
Failure Modes we take 
into account for the 
benchmark. 

This table is not used. 

 

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

Result workload result 
ExpDuration run duration 

Heartbeat 
Hang failure (Failure Mode 
FM2) 

Reboot 
Crash failure (Failure 
Mode FM1) 
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*New* 

The 
OnlineFailurePrediction 
Results table contains the 
results of a single 
predictor’s execution, 
using data coming from a 
single run.  

Type type of run (GR or FIR) 

Experiment 
run's sequential number 
([1…Nruns], “Experiment” 
column in other tables) 

Workload 
workload used during the 
specific run (e.g., WKL1) 

PredictionMetaID 

ID associated to the 
predictor type (e.g., 
SVM_time_window_ 
classifier_gaussian) 

ModelID 

ID associated to the 
specific prediction scenario 
(e.g., 
SVM_tw_3_FM2_10_10) 

PredictionValues raw prediction values 
PredictionValues 
Labelled 

labelled prediction values 

datasetLength length of the dataset 

LabelledRun 
labels associated to the 
selected run 

TP 
predictor’s performance 
associated to the selected run:  
True positives  

TN pp:  True Negatives 
FP pp:  False Positives 
FN pp:  False Negatives 
Precision pp:  Precision 
Recall pp:  Recall 
FMeasure pp:  F-Measure 

NegativePrecision 
pp: Precision computed 
according to non-failure 
situations 

NegativeRecall pp:  NegativeRecall 
NegativeFMeasure pp:  NegativeFMeasure 

CutOffThreshold 
optimal threshold obtained 
by ROC analysis 

SE 
standard error computed 
between labeled data and 
predictor’s output 

ROCxr ROC x-axis values 
ROCyr ROC y-axis values 
ROCAUC ROC-AUC 
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5.3 Monitored data 

In the following, we present the information collected from the Target systems, grouped in singular variables. In particular, in the first experiments we 
collected 233 variables, and reduced this number to 170, pruning the variables that resulted in being not useful (e.g., constant-valued variables, variables with no 
value at all, etc.), and differentiating some other (e.g., page faults/s from a specific process as “svchost.exe”, instead of from the total number of page faults 
from all the running processes). The two sets are presented in Table 3, being V1 the earlier set with 233 variables, and V2 being the latter set with 170 variables. 
Table 3 presents the two sets in a comparative fashion. Note that only the variables names are presented: the full description of each variable can be found in the 
Performance Monitor tool, present in each Microsoft Windows’s family OSs. 

 

Note: 

• x = variable not present in the second set of variables V2 

• diff = variable present in the second set, but associated to a different instance of the monitored object (differentiated) 

 
Table 3 

V1 (233 vars)  V2 (170 vars) 

ObjectName CounterName Instance 
Name Notes ObjectName CounterName Instance 

Name 
.NET CLR Exceptions # of Exceps Thrown _Global_ x    
.NET CLR Exceptions # of Exceps Thrown / sec _Global_ x    
.NET CLR Exceptions # of Filters / sec _Global_ x    
.NET CLR Exceptions # of Finallys / sec _Global_ x    
.NET CLR Exceptions Throw To Catch Depth / sec _Global_ x    
.NET CLR LocksAndThreads # of current logical Threads _Global_ x    
.NET CLRLocksAndThreads # of current physical Threads _Global_ x    
.NET CLR LocksAndThreads # of current recognized threads _Global_ x    
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.NET CLR LocksAndThreads # of total recognized threads _Global_ x    

.NET CLR LocksAndThreads Contention Rate / sec _Global_ x    

.NET CLR LocksAndThreads Current Queue Length _Global_ x    

.NET CLR LocksAndThreads Queue Length / sec _Global_ x    

.NET CLR LocksAndThreads Queue Length Peak _Global_ x    

.NET CLR LocksAndThreads rate of recognized threads / sec _Global_ x    

.NET CLR LocksAndThreads Total # of Contentions _Global_ x    
 Cache Async Copy Reads/sec  NULL   Cache Async Copy Reads/sec  NULL 
 Cache Async Data Maps/sec  NULL x    
 Cache Async Fast Reads/sec  NULL x    
 Cache Async MDL Reads/sec  NULL x    
 Cache Async Pin Reads/sec  NULL x    
 Cache Copy Read Hits %  NULL   Cache Copy Read Hits %  NULL 
 Cache Copy Reads/sec  NULL x    
 Cache Data Flush Pages/sec  NULL   Cache Data Flush Pages/sec  NULL 
 Cache Data Flushes/sec  NULL   Cache Data Flushes/sec  NULL 
 Cache Data Map Hits %  NULL x    
 Cache Data Map Pins/sec  NULL   Cache Data Map Pins/sec  NULL 
 Cache Data Maps/sec  NULL   Cache Data Maps/sec  NULL 
 Cache Fast Read Not Possibles/sec  NULL x    
 Cache Fast Read Resource Misses/sec  NULL x    
 Cache Fast Reads/sec  NULL x    
 Cache Lazy Write Flushes/sec  NULL   Cache Lazy Write Flushes/sec  NULL 
 Cache Lazy Write Pages/sec  NULL   Cache Lazy Write Pages/sec  NULL 
 Cache MDL Read Hits %  NULL x    
 Cache MDL Reads/sec  NULL x    
 Cache Pin Read Hits %  NULL x    
 Cache Pin Reads/sec  NULL x    
 Cache Read Aheads/sec  NULL x    
 Cache Sync Copy Reads/sec  NULL x    
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 Cache Sync Data Maps/sec  NULL   Cache Sync Data Maps/sec  NULL 
 Cache Sync Fast Reads/sec  NULL x    
 Cache Sync MDL Reads/sec  NULL x    
 Cache Sync Pin Reads/sec  NULL x    
 Job Object Details % Privileged Time  _Total x    
 Job Object Details % Processor Time  _Total x    
 Job Object Details % User Time  _Total x    
 Job Object Details Creating Process ID  _Total x    
 Job Object Details Elapsed Time  _Total x    
 Job Object Details Handle Count  _Total x    
 Job Object Details ID Process  _Total x    
 Job Object Details IO Data Bytes/sec  _Total x    
 Job Object Details IO Data Operations/sec  _Total x    
 Job Object Details IO Other Bytes/sec  _Total x    
 Job Object Details IO Other Operations/sec  _Total x    
 Job Object Details IO Read Bytes/sec  _Total x    
 Job Object Details IO Read Operations/sec  _Total x    
 Job Object Details IO Write Bytes/sec  _Total x    
 Job Object Details IO Write Operations/sec  _Total x    
 Job Object Details Page Faults/sec  _Total x    
 Job Object Details Page File Bytes  _Total x    
 Job Object Details Page File Bytes Peak  _Total x    
 Job Object Details Pool Nonpaged Bytes  _Total x    
 Job Object Details Pool Paged Bytes  _Total x    
 Job Object Details Priority Base  _Total x    
 Job Object Details Private Bytes  _Total x    
 Job Object Details Thread Count  _Total x    
 Job Object Details Virtual Bytes  _Total x    
 Job Object Details Virtual Bytes Peak  _Total x    
 Job Object Details Working Set  _Total x    
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 Job Object Details Working Set Peak  _Total x    
 Job Object Current % Kernel Mode Time  _Total x    
 Job Object Current % Processor Time  _Total x    
 Job Object Current % User Mode Time  _Total x    
 Job Object Pages/Sec  _Total x    
 Job Object Process Count - Active  _Total x    
 Job Object Process Count - Terminated  _Total x    
 Job Object Process Count - Total  _Total x    
 Job Object This Period mSec-Kernel Mode  _Total x    
 Job Object This Period mSec - Processor  _Total x    
 Job Object This Period mSec - User Mode  _Total x    
 Job Object Total mSec - Kernel Mode  _Total x    
 Job Object Total mSec - Processor  _Total x    
 Job Object Total mSec - User Mode  _Total x    
 LogicalDisk % Disk Read Time  _Total   LogicalDisk % Disk Read Time  _Total 
 LogicalDisk % Disk Time  _Total   LogicalDisk % Disk Time  _Total 
 LogicalDisk % Disk Write Time  _Total   LogicalDisk % Disk Write Time  _Total 
 LogicalDisk % Free Space  _Total x    
 LogicalDisk % Idle Time  _Total   LogicalDisk % Idle Time  _Total 
 LogicalDisk Avg. Disk Bytes/Read  _Total   LogicalDisk Avg. Disk Bytes/Read  _Total 
 LogicalDisk Avg. Disk Bytes/Transfer  _Total   LogicalDisk Avg. Disk Bytes/Transfer  _Total 
 LogicalDisk Avg. Disk Bytes/Write  _Total   LogicalDisk Avg. Disk Bytes/Write  _Total 
 LogicalDisk Avg. Disk Queue Length  _Total   LogicalDisk Avg. Disk Queue Length  _Total 
 LogicalDisk Avg. Disk Read Queue Length  _Total   LogicalDisk Avg. Disk Read Queue Length  _Total 
 LogicalDisk Avg. Disk sec/Read  _Total   LogicalDisk Avg. Disk sec/Read  _Total 
 LogicalDisk Avg. Disk sec/Transfer  _Total   LogicalDisk Avg. Disk sec/Transfer  _Total 
 LogicalDisk Avg. Disk sec/Write  _Total   LogicalDisk Avg. Disk sec/Write  _Total 
 LogicalDisk Avg. Disk Write Queue Length  _Total   LogicalDisk Avg. Disk Write Queue Length  _Total 
 LogicalDisk Current Disk Queue Length  _Total   LogicalDisk Current Disk Queue Length  _Total 
 LogicalDisk Disk Bytes/sec  _Total   LogicalDisk Disk Bytes/sec  _Total 
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 LogicalDisk Disk Read Bytes/sec  _Total x    
 LogicalDisk Disk Reads/sec  _Total x    
 LogicalDisk Disk Transfers/sec  _Total   LogicalDisk Disk Transfers/sec  _Total 
 LogicalDisk Disk Write Bytes/sec  _Total   LogicalDisk Disk Write Bytes/sec  _Total 
 LogicalDisk Disk Writes/sec  _Total   LogicalDisk Disk Writes/sec  _Total 
 LogicalDisk Free Megabytes  _Total x    
 LogicalDisk Split IO/Sec  _Total   LogicalDisk Split IO/Sec  _Total 
 Memory % Committed Bytes In Use  NULL   Memory % Committed Bytes In Use  NULL 
 Memory Available Bytes  NULL x    
 Memory Available KBytes  NULL x    
 Memory Available MBytes  NULL x    
 Memory Cache Bytes  NULL   Memory Cache Bytes  NULL 
 Memory Cache Bytes Peak  NULL x    
 Memory Cache Faults/sec  NULL   Memory Cache Faults/sec  NULL 
 Memory Commit Limit  NULL x    
 Memory Committed Bytes  NULL   Memory Committed Bytes  NULL 
 Memory Demand Zero Faults/sec  NULL   Memory Demand Zero Faults/sec  NULL 
 Memory Free System Page Table Entries  NULL   Memory Free System Page Table Entries  NULL 
 Memory Page Faults/sec  NULL   Memory Page Faults/sec  NULL 
 Memory Page Reads/sec  NULL   Memory Page Reads/sec  NULL 
 Memory Page Writes/sec  NULL   Memory Page Writes/sec  NULL 
 Memory Pages Input/sec  NULL   Memory Pages Input/sec  NULL 
 Memory Pages Output/sec  NULL   Memory Pages Output/sec  NULL 
 Memory Pages/sec  NULL   Memory Pages/sec  NULL 
 Memory Pool Nonpaged Allocs  NULL   Memory Pool Nonpaged Allocs  NULL 
 Memory Pool Nonpaged Bytes  NULL   Memory Pool Nonpaged Bytes  NULL 
 Memory Pool Paged Allocs  NULL   Memory Pool Paged Allocs  NULL 
 Memory Pool Paged Bytes  NULL   Memory Pool Paged Bytes  NULL 
 Memory Pool Paged Resident Bytes  NULL   Memory Pool Paged Resident Bytes  NULL 
 Memory System Cache Resident Bytes  NULL   Memory System Cache Resident Bytes  NULL 
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 Memory System Code Resident Bytes  NULL x    
 Memory System Code Total Bytes  NULL x    
 Memory System Driver Resident Bytes  NULL x    
 Memory System Driver Total Bytes  NULL x    
 Memory Transition Faults/sec  NULL x    
 Memory Write Copies/sec  NULL x    
 Objects Events  NULL   Objects Events  NULL 
 Objects Mutexes  NULL   Objects Mutexes  NULL 
 Objects Processes  NULL   Objects Processes  NULL 
 Objects Sections  NULL   Objects Sections  NULL 
 Objects Semaphores  NULL   Objects Semaphores  NULL 
 Objects Threads  NULL   Objects Threads  NULL 
 Paging File % Usage  _Total x    
 Paging File % Usage Peak  _Total   Paging File % Usage Peak  _Total 
 PhysicalDisk % Disk Read Time  _Total x    
 PhysicalDisk % Disk Time  _Total x    
 PhysicalDisk % Disk Write Time  _Total x    
 PhysicalDisk % Idle Time  _Total x    
 PhysicalDisk Avg. Disk Bytes/Read  _Total x    
 PhysicalDisk Avg. Disk Bytes/Transfer  _Total x    
 PhysicalDisk Avg. Disk Bytes/Write  _Total x    
 PhysicalDisk Avg. Disk Queue Length  _Total x    
 PhysicalDisk Avg. Disk Read Queue Length  _Total x    
 PhysicalDisk Avg. Disk sec/Read  _Total x    
 PhysicalDisk Avg. Disk sec/Transfer  _Total x    
 PhysicalDisk Avg. Disk sec/Write  _Total x    
 PhysicalDisk Avg. Disk Write Queue Length  _Total x    
 PhysicalDisk Current Disk Queue Length  _Total x    
 PhysicalDisk Disk Bytes/sec  _Total x    
 PhysicalDisk Disk Read Bytes/sec  _Total x    
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 PhysicalDisk Disk Reads/sec  _Total x    
 PhysicalDisk Disk Transfers/sec  _Total x    
 PhysicalDisk Disk Write Bytes/sec  _Total x    
 PhysicalDisk Disk Writes/sec  _Total x    
 PhysicalDisk Split IO/Sec  _Total x    
 Process % Privileged Time  _Total diff  Process % Privileged Time _Total 
     Process % Privileged Time explorer 
     Process % Privileged Time java 
     Process % Privileged Time svchost 
 Process % Processor Time  _Total diff  Process % Processor Time _Total 
     Process % Processor Time explorer 
     Process % Processor Time java 
     Process % Processor Time svchost 
 Process % User Time  _Total diff  Process % User Time _Total 
     Process % User Time explorer 
     Process % User Time java 
     Process % User Time svchost 
 Process Creating Process ID  _Total x    
 Process Elapsed Time  _Total diff  Process Elapsed Time explorer 
     Process Elapsed Time java 
     Process Elapsed Time svchost 
 Process Handle Count  _Total diff  Process Handle Count _Total 
     Process Handle Count explorer 
     Process Handle Count java 
     Process Handle Count svchost 
 Process ID Process  _Total x    
 Process IO Data Bytes/sec  _Total diff  Process IO Data Bytes/sec _Total 
     Process IO Data Bytes/sec explorer 
     Process IO Data Bytes/sec java 
     Process IO Data Bytes/sec svchost 
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 Process IO Data Operations/sec  _Total diff  Process IO Data Operations/sec _Total 
     Process IO Data Operations/sec explorer 
     Process IO Data Operations/sec java 
     Process IO Data Operations/sec svchost 
 Process IO Other Bytes/sec  _Total diff  Process IO Other Bytes/sec _Total 
     Process IO Other Bytes/sec explorer 
     Process IO Other Bytes/sec java 
     Process IO Other Bytes/sec svchost 
 Process IO Other Operations/sec  _Total diff  Process IO Other Operations/sec _Total 
     Process IO Other Operations/sec explorer 
     Process IO Other Operations/sec java 
     Process IO Other Operations/sec svchost 
 Process IO Read Bytes/sec  _Total diff  Process IO Read Bytes/sec _Total 
     Process IO Read Bytes/sec explorer 
     Process IO Read Bytes/sec java 
     Process IO Read Bytes/sec svchost 
 Process IO Read Operations/sec  _Total x    
 Process IO Write Bytes/sec  _Total diff  Process IO Write Bytes/sec _Total 
     Process IO Write Bytes/sec explorer 
     Process IO Write Bytes/sec java 
     Process IO Write Bytes/sec svchost 
 Process IO Write Operations/sec  _Total x    
 Process Page Faults/sec  _Total diff  Process Page Faults/sec _Total 
     Process Page Faults/sec explorer 
     Process Page Faults/sec java 
     Process Page Faults/sec svchost 
 Process Page File Bytes  _Total diff  Process Page File Bytes _Total 
     Process Page File Bytes explorer 
     Process Page File Bytes java 
     Process Page File Bytes svchost 
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 Process Page File Bytes Peak  _Total x    
 Process Pool Nonpaged Bytes  _Total diff  Process Page Faults/sec _Total 
     Process Page Faults/sec explorer 
     Process Page Faults/sec java 
     Process Page Faults/sec svchost 
 Process Pool Paged Bytes  _Total diff  Process Page File Bytes _Total 
     Process Page File Bytes explorer 
     Process Page File Bytes java 
     Process Page File Bytes svchost 
 Process Priority Base  _Total x    
 Process Private Bytes  _Total diff  Process Private Bytes _Total 
     Process Private Bytes explorer 
     Process Private Bytes java 
     Process Private Bytes svchost 
 Process Thread Count  _Total diff  Process Thread Count _Total 
     Process Thread Count explorer 
     Process Thread Count java 
     Process Thread Count svchost 
 Process Virtual Bytes  _Total diff  Process Virtual Bytes _Total 
     Process Virtual Bytes explorer 
     Process Virtual Bytes java 
     Process Virtual Bytes svchost 
 Process Virtual Bytes Peak  _Total x    
 Process Working Set  _Total diff  Process Working Set _Total 
     Process Working Set explorer 
     Process Working Set java 
     Process Working Set svchost 
 Process Working Set Peak  _Total x    
 Processor % C1 Time  _Total diff  Processor % C1 Time 0 
     Processor % C1 Time 1 
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 Processor % C2 Time  _Total diff  Processor % C2 Time 0 
     Processor % C2 Time 1 
 Processor % C3 Time  _Total x    
 Processor % DPC Time  _Total diff  Processor % DPC Time 0 
     Processor % DPC Time 1 
 Processor % Idle Time  _Total diff  Processor % Idle Time 0 
     Processor % Idle Time 1 
 Processor % Interrupt Time  _Total diff  Processor % Interrupt Time 0 
     Processor % Interrupt Time 1 
 Processor % Privileged Time  _Total diff  Processor % Interrupt Time 0 
     Processor % Interrupt Time 1 
 Processor % Processor Time  _Total diff  Processor % Processor Time 0 
     Processor % Processor Time 1 
 Processor % User Time  _Total diff  Processor % Processor Time 0 
     Processor % Processor Time 1 
 Processor C1 Transitions/sec  _Total diff  Processor % Processor Time 0 
     Processor % Processor Time 1 
 Processor C2 Transitions/sec  _Total diff  Processor C2 Transitions/sec 0 
     Processor C2 Transitions/sec 1 
 Processor C3 Transitions/sec  _Total x    
 Processor DPC Rate  _Total diff  Processor DPC Rate 0 
     Processor DPC Rate 1 
 Processor DPCs Queued/sec  _Total diff  Processor DPCs Queued/sec 0 
     Processor DPCs Queued/sec 1 
 Processor Interrupts/sec  _Total diff  Processor Interrupts/sec 0 
     Processor Interrupts/sec 1 
 System % Registry Quota In Use  NULL x    
 System Alignment Fixups/sec  NULL x    
 System Context Switches/sec  NULL   System Context Switches/sec  NULL 
 System Exception Dispatches/sec  NULL   System Exception Dispatches/sec  NULL 
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 System File Control Bytes/sec  NULL   System File Control Bytes/sec  NULL 
 System File Control Operations/sec  NULL   System File Control Operations/sec  NULL 
 System File Data Operations/sec  NULL   System File Data Operations/sec  NULL 
 System File Read Bytes/sec  NULL   System File Read Bytes/sec  NULL 
 System File Read Operations/sec  NULL x    
 System File Write Bytes/sec  NULL   System File Write Bytes/sec  NULL 
 System File Write Operations/sec  NULL x    
 System Floating Emulations/sec  NULL x    
 System Processes  NULL   System Processes  NULL 
 System Processor Queue Length  NULL x    
 System System Calls/sec  NULL   System System Calls/sec  NULL 
 System System Up Time  NULL x    
 Thread % Privileged Time  _Total   Thread % Privileged Time  _Total 
 Thread % Processor Time  _Total   Thread % Processor Time  _Total 
 Thread % User Time  _Total   Thread % User Time  _Total 
 Thread Context Switches/sec  _Total   Thread Context Switches/sec  _Total 
 Thread Elapsed Time  _Total x    
 Thread ID Process  _Total x    
 Thread ID Thread  _Total x    
 Thread Priority Base  _Total x    
 Thread Priority Current  _Total x    
 Thread Start Address  _Total x    
 Thread Thread State  _Total x    
 Thread Thread Wait Reason  _Total x    
.NET CLR Exceptions # of Exceps Thrown _Global_ x    


