
PoeTryMe: Towards Meaningful Poetry Generation

Hugo Gonçalo Oliveira
hroliv@dei.uc.pt

CISUC
Universidade de Coimbra

Portugal

Abstract

PoeTryMe is a poetry generation platform under devel-
opment that intends to help the automatic generation of
meaningful poetry according to a given semantics. It has
a versatile architecture that provides a high level of cus-
tomisation where the user can define features that go from
the base semantics and sentence templates to the genera-
tion strategy and the poem configuration. A prototype using
PoeTryMe was implemented to generate Portuguese poetry.
The results are interesting but there is still a long way for
improvement, so we devise ideas for future work.

1 Introduction

After an overview on poetry generation systems, pre-
sented in [5], we started to develop a platform aiming to
help the automatic generation of grammatically correct and
meaningful poetry. PoeTryMe generates sentences accord-
ing to relational triples and generation grammars that are
used by a chart parser in the opposite direction to achieve
chart generation [7]. It has a versatile architecture that pro-
vides a high level of customisation and can be used as the
base of poetry generation systems that can be built on the
top of it. Everything can be changed: the base semantics,
represented as relations triples and relation templates; the
templates of the generated sentences, included in the gen-
eration grammars; the generation strategies, that select the
verses to include in the poem; as well as the poem configu-
ration.

We start by introducing the external resources that are
used in PoeTryMe and in the prototype (Section 2). Af-
ter briefly describing each module of PoeTryMe’s architec-
ture (Section 3), we present the first prototype we have im-
plemented on the top of PoeTryMe, for Portuguese poetry
generation (Section 4) and show an example of a generated
poem. Before discussing some further work (Section 6) we

RAIZ ::= REGRA
RAIZ ::= REGRA <&> OUTRAREGRA

REGRA ::= terminal
OUTRAREGRA ::= outroterminal
OUTRAREGRA ::= outroterminal <&> OUTRAREGRA

Figure 1. PEN example rules.

categorise our system according to its approaches and tech-
niques and also according to its goals (Section 5).

2 External resources

In the development of PoeTryMe’s, and also in the pro-
totype, external existing resources, presented in this sec-
tion, were used to complete the whole system. The first
resource is PEN, a Java implementation of the Earley [1]
chart-parsing algorithm that analyses sentences according
to grammars given as input. These grammars are text files,
and thus easily editable, where each line contains a rule and
its body. In order to differentiate rule tokens from terminals,
all characters in rule names are upper case. An example of
a very simple rule set is shown in Figure 1.

Jspell [10] is a morphological analyser for Portuguese.
Given a word, Jspell identifies all possible analysis for that
word, consisting of a lemma, a grammatical category, and
other morphological information like the number, gender or
verb tense. An example of the analysis of Jspell is shown in
Figure 2.

PAPEL [6] is a lexical resource that consists of a set of
approximately 200,000 relations between words, extracted
semi-automatically from a general Portuguese dictionary,
and can be used to build a semantic network. The rela-
tion set includes relations of synonymy, hypernymy/is-a,
meronymy/part-of, causation, producer, purpose and prop-
erty. Relations are represented as triples (arg1 type arg2)
and the grammatical category of the arguments can be in-
ferred from their type, if a special template description file

1



* uma 0 :lex(um, [CAT=art,CLA=indef,N=s,G=m], [], [G=f], []),
lex(um, [CAT=card,N=s,G=m], [], [G=f], []),
lex(um, [CAT=pind,G=m,N=s], [], [G=f], [])

* pessoa 4 :lex(pessoa, [CAT=nc,G=f,N=s], [], [], [])

* feliz 11 :lex(feliz, [CAT=adj,N=s,G=_], [], [], [])

* cantou 17 :lex(cantar, [CAT=v,T=inf,TR=_], [],
[P=3,N=s,T=pp], [])

Figure 2. Jspell analysis of uma pessoa feliz can-
tou.

Figure 3. Prototype architecture

is used.
SilabasPT1 is a Java API that performs syllabic division

and stress identification for Portuguese words. It was de-
veloped to help generating text based on rhythm [4] in the
project Tra-La-Lyrics [9], but it is an API that can be used
by any other Portuguese language application.

3 Architecture

PoeTryMe relies on a modular architecture (see Figure
3) where each module has a simple and well defined task,
enabling the independent improvement of each one of them.
This architecture intends to be versatile enough to provide
a high level of customisation, depending on the needs and
ideas of the user. Many features are easily customised: it
is possible to define the semantics to be used, the sentence
templates in the generation grammar, the generation strat-
egy and the configuration of the poem. In this section, the
modules, their inputs and interactions are presented.

3.1 Sentence Generator

The Sentence Generator is the core module of PoeT-
ryMe’s architecture and is used to generate meaningful sen-
tences with the help of:

1http://code.google.com/p/silabaspt/

• a semantic graph, managed by the Triples Manager;

• generation grammars written as if they were to be used
by PEN and processed by the Grammar Processor;

• a database with words and their morphological in-
formation, result of Jspell’s analysis, accessed via a
Database Proxy.

The generation of a sentence/verse starts with a set of
key terms that are used to select a sub-graph from the main
semantic graph. All the relations that cannot be mapped to
rules in the grammars are removed and all the relations in-
volving the given terms are included in the sub-graph. After
selecting a random term from the sub-graph, all the relations
where it is involved are obtained. One of those relations
is then randomly selected and mapped to a set of genera-
tion rules, included in the grammars. Out of the possible
sentences for the chosen relation, one is randomly selected
and completed (if necessary) with the result of database re-
quests.

3.2 Triples Manager

This module uses the triples, given has input, to build
a semantic graph where terms are related with other terms
by means of semantic relations. It is used to obtain sub-
graphs only with relations where the key terms or terms re-
lated with them are involved.

A file with a the template for each relation type is used in
order to differentiate equal terms with ambiguous grammat-
ical categories (e.g. duck can either be a noun or a verb).

3.3 Grammar Processor

Partly inspired by Manurung [7] we used a chart-parser,
PEN, in the opposite direction, in order to perform chart
generation. The generation grammars are written as if they
were to be used by PEN and can be validated by PEN’s val-
idator, so the Grammar Processor is exactly the same mod-
ule PEN uses for processing grammars. The head rules in
the grammars should have the name of semantic relations
present in the semantic graph, so that they can be later asso-
ciated with those relations. When a grammar is processed,
the Sentence Generator uses the Grammar Processor to get
the name of all the head rules. The relations whose name
is not the name of at least one head rule are not included in
the semantic graph when the Triples Manager is creating it.

The body of the rules should consist of natural lan-
guage renderings of semantic relations. Besides the sim-
ple terminal tokens, that will be present in the poem with-
out any change, the Grammar Processor supports special
terminal tokens, that are mapped by the Sentence Gener-
ator into database requests. These requests can either be

2



estrofe{verso(10);verso(10);verso(10);verso(10)}
estrofe{verso(10);verso(10);verso(10);verso(10)}
estrofe{verso(10);verso(10);verso(10)}
estrofe{verso(10);verso(10);verso(10)}

Figure 4. The structure of a sonet.

a simple token to be replaced by the argument of a re-
lation (<arg1> and <arg2>) or it can be a request for
a word like a noun (<n.lemma.gender.number>) or
a verb (<v.lemma.tense.person.number>), with
optional parameters (e.g. <v.cause.?.3.?> is a request
for a form of the verb to cause in any tense and third person
of any number).

3.4 Database Proxy

The Database Proxy works as an interface for the words
database and transforms requests made by the Sentence
Generator into SQL queries whose result is returned in the
form of ”filled” requests, that add to the original request the
information obtained from the database.

The database contains word forms, that can be used in
the poem, associated with morphological information pro-
vided by Jspell. In order to cover all the words in the seman-
tic graph, all semantic nodes should be used in the database
creation.

Considering nouns, since the relation triples usually have
lemmatised arguments, we may want to replace them with
a different form of the argument, in order to make the poem
a little bit more interesting. As for verbs, they can appear as
predicates in sentences and the database is used to give us
different verb forms in different tenses and persons.

3.5 Generation strategies

A generation strategy is basically a module that takes ad-
vantage of the Sentence Generator to obtain verses and build
up a poem. The poem is generated according to a set of key
terms, used to get sentences from the Sentence Generator,
and a template, which is a file with the poem’s configuration
– the number of strophes, the number of verses per strophe
and the number of syllables of each verse (see Figure 4).
A generation strategy can do nothing more than fill verses
with obtained sentences but it can include some procedure
to find the better sentences for each verse, considering fea-
tures like the metrics, the rhyme, coherence between verses
or other, depending on the poem’s purpose.

4 Prototype

To test our platform and observe the first results we have
put some resources together and implemented a basic gen-

Type arg1, arg2 Quant. Example
HIPERONIMO DE noun,noun 63455 (planta, salva)
PARTE DE noun,noun 14453 (cauda, cometa)
CAUSADOR DE noun,noun 1125 (fricção, assadura)
ACCAO QUE CAUSA verb,noun 6424 (limpar, purgação)
PRODUTOR DE noun,noun 932 (romãzeira, romã)
FINALIDADE DE noun,noun 2095 (avaliação, exame)
ACCAO FINALIDADE DE verb,noun 5640 (fazer rir, comédia)
LOCAL ORIGEM DE noun,noun 768 (Japão, japonês)

Table 1. Relations of PAPEL used in the pro-
totype.

Type Example template
HIPERONIMO DE <arg2> é <arg1>3

PARTE DE <arg2> tem <arg1>
CAUSADOR DE <arg2> por causa de <arg1>
ACCAO QUE CAUSA <arg1> leva a <arg2>
PRODUTOR DE <arg1> produz <arg2>
FINALIDADE DE <arg2> serve para obter <arg1>
ACCAO FINALIDADE DE <arg2> para <arg1>
LOCAL ORIGEM DE <arg2> vem de <arg1>

Table 2. Renderings in the prototype gram-
mars.

eration strategy to generate meaningful verses and include
a structure that can be viewed as a poem. We aimed the
generation of Portuguese poems, so we used the relational
triples of PAPEL as the source semantics and all the words
included in PAPEL were analysed by Jspell to create the
words database. In order to have all the possible forms
of each verb, we used an online verb conjugator for Por-
tuguese2 to complete the database.

Although the poems had meaningful verses (according
to the given semantics), the notion of metrics was lacking,
so we decided to implement two more generation strategies
that still take advantage of the generation of verses but ad-
ditionally attempt to select sentences with a length as close
as possible to the verses in the configuration template.

4.1 Relations and renderings

To keep it simpler, we have opted to use only relations
between two nouns or a verb and a noun, all of them repre-
sented in Table 1. For each relation type, several sentences
that corresponded to natural language renderings of the re-
lations were included in a generation grammar. In Table 2
simple examples of these sentences are shown. During the
generation process, the tokens <arg1> and <arg2> are
replaced by words that hold the relation, for instance, the
words in the examples of Table 1.

In addition to the simple templates shown in Table 2,
some more complex sentences were added. For exam-
ple, we added conditional sentences to express a HIPER-

2http://linguistica.insite.com.br/cgi-bin/conjugue

3



ONIMO DE or PARTE DE relation (e.g. se ele for
<arg1> tal como <arg2>).

4.2 Generation strategies

Three different generation strategies were developed in
the prototype. While the first is very basic and was used
almost only for obtaining quick results (sometimes useful
for debugging) the others follow evolutionary approaches,
somehow inspired by Manurung’s [8] evolutionary algo-
rithm for poetry generation.

In both of the two latter strategies there is an evaluation
function that computes the absolute difference between the
number of syllables the verse has in the template with the
number of syllables in the generated sentence – the lower
the evaluation, the better the sentence is. For obtaining the
number of syllables in a verse, we used the SilabasPT API
to count the syllables of each sentence and identify its last
stress.

The algorithms involved in each one of the strategies are
briefly described as follows:

• Basic: for each verse to be filled, a random sentence is
generated using the key terms;

• Generate and test: for each verse to be filled, N ran-
dom sentences are generated and the one with better
evaluation is chosen. All unused sentences are indexed
and can be used if a new verse needs exactly the same
amount of syllables of the previously unused sentence.

• Evolutionary: an initial population of N poems is first
generated using the basic strategy and then each poem
is evaluated according to the aforementioned evalua-
tion function. Each new generation will consist of the
poems with the best evaluation, poems that are the re-
sult of crossing two random poems in the population
and also some newly created poems. When two poems
are crossed, a new poem is created with verses selected
from both.

4.3 Example poem

For demonstration purposes we have generated a sonet
(see configuration in Figure 4) with the nouns planta and
fruto as key terms. The result (see Figure 5) was generated
using an evolutionary strategy of 10 generations and an ini-
tial population of 10 poems. Each new population consisted
of 20% of the best poems, 50% resulting from crossing and
30% new. The probability of swapping a verse was set to
50%.

As we can see, the poem contains meaningful sentences
about either plants (planta) or fruits (fruto) and use terms

como vagem de feijoeiro
uns frutos vieram de três-em-prato
como o fruto venha de badiana
como Quenopodiáceas tenha mirabela

Sapotáceas procura uajar
como açaı́ produzirá os frutos
vagem de feijoeiro
espcie de baga de ingre

como hédera viria de planta
como produtor de frutos procura uvaia
Primuláceas tiver candelabro

jacatirão fizera parte de útil
lampadário entre candelabro
espécie de baga de ingre

Figure 5. Example of a generated poem.

that are related the key terms besides the key terms them-
selves. For example, planta is an hypernym of feijoeiro and
Quenopodiáceas that are both terms used in the poem.

Considering the structure of the poem, despite having the
correct number of verses the length of those is not always
the same as in the template configuration, but close. The
main reason for this to happen is that the grammar is not that
big and varied, so even if the evolutionary algorithm had
more generations there would always be issues for matching
of the exact length of verses.

5 Categorisation

As presented in [5], poetry generation systems can be
characterised according to their approaches and techniques
(proposed by Gervás [3]) and also according to their goals
(proposed by Manurung [8]). Gervás divides the possible
approaches into four groups: template-based, generate and
test, evolutionary and case-base reasoning. Although our
approach uses sentence templates, it can follow different
selection approaches, depending on the generation strategy.
Bearing in mind the strategies implemented in the proto-
type, one is only template-based (basic strategy), another
follows a generate and test approach and the third an evolu-
tionary one.

As for their goals, Manurung divides the existing sys-
tems according to the properties that poetic texts must
hold, namely meaningfulness, grammaticality and poetic-
ness. Since we use a semantic network as input and we ren-
der information in it to natural language sentences, we can
say that, if the network is well constructed and if the gram-
mars generate grammatically correct sentences, our system
holds both the property of meaninfulness and grammatical-
ity. As for poeticness, our system supports different con-
figurations of poems and two of the implemented strategies
take the number of syllables of each verse into considera-

4



tion but, at the moment, these are the only poetic features
and their occurrence is not even always guaranteed.

6 Conclusions and Further Work

A platform for the automatic generation of poetry was
presented in this paper along with a first and still very sim-
ple prototype used to test the platform’s capabilities. The
presented work is preliminary but the platform is intended
to be used with different external resources and customised
in order to give rise to different and interesting types of po-
ems, according to a predefined purpose. We believe that,
in the future, PoeTryMe can be used as the starting for one
(or more) poetry generation systems, eventually after taking
a few possible directions for improvement that we did not
take due to lack of time but we will now discuss.

In order to have a higher variation of text, the grammars
can be improved according to the users will. Different lin-
guistic constructions can be inserted so that the resulting po-
ems are less predictable and have more variations. Besides,
if, for the same relations, it is possible to generate sentences
with very different lengths, it will also be easier to find exact
matches (in terms of number of syllables) for verses in tem-
plates. Another interesting thing that could be tested in the
grammars would be the use of weights that would change
the probability of selecting each rule. PEN already supports
weighted rules so it should not be a difficult thing to do.

In our implementation, we have used the Random class
in the Java API for random number generation, which gen-
erates pseudo-random numbers, based on a seed. In the
future a completely random number generator should be
tested and the results compared.

The implemented prototype is only prepared to deal with
relations with nouns and verbs, and can only request the
database for words of both of these categories. There is no
doubt that modifiers are very important in poetry and they
should also take part in the poems, so another important
improvement to enrich the resulting poems is the support
for relations with adjectives and adverbs.

More generation strategies can be developed and the evo-
lutionary strategy can be improved after testing different
evaluation functions. For example, opposing to evaluating
each verse independently, the evaluation could consider the
whole poem and give a better evaluation to poems that have
rhymes or poems that follow a predefined stress pattern.

As a system with a creative output, and despite the dif-
ficulty there is to evaluate this kind of systems, our results
should be validated and evaluated. Ideas for validation in-
clude comparing the configuration of the generated poems
with real poems with the same structure, while evaluation
should be made by humans and take under consideration
points like structure, metrics, novelty and, since we aim
meaningful text generation, semantics.

Besides generating poetry, PoeTryMe can be used to as-
sess the quality of semantic results. In the case of our pro-
totype it can be used to accomplish an indirect evaluation
of PAPEL. Although our prototype was created for Por-
tuguese, we could adapt it to other languages but, in order
to do that, we would have to create grammars in those lan-
guages, as well as a syllabic division algorithm. Addition-
ally, a different semantic resource would have be needed
(e.g. for English, WordNet [2] could be used) and the words
database would have to be created with a specific morpho-
logical analyser.

References

[1] J. Earley. An efficient context-free parsing algorithm. Com-
munications of the ACM, 6(8):451–455, 1970. Reprinted in
Grosz et al. (1986).

[2] C. Fellbaum, editor. WordNet: An Electronic Lexical
Database (Language, Speech, and Communication). The
MIT Press, May 1998.

[3] P. Gervás. Exploring quantitative evaluations of the creativ-
ity of automatic poets. In Workshop on Creative Systems,
Approaches to Creativity in Artificial Intelligence and Cog-
nitive Science, 15th European Conference on Artificial Intel-
ligence, 2002.

[4] H. Gonçalo Oliveira. Geração de texto com base em ritmo.
Master’s thesis, University of Coimbra, 2007.

[5] H. Gonçalo Oliveira. Automatic generation of poetry: an
overview. 1st Seminar of Art, Music, Creativity and Artificial
Intelligence, 2009.

[6] H. Gonçalo Oliveira, P. Gomes, D. Santos, and N. Seco.
PAPEL: a dictionary-based lexical ontology for Portuguese.
In A. Teixeira, V. L. S. de Lima, L. C. de Oliveira, and
P. Quaresma, editors, Computational Processing of the Por-
tuguese Language, 8th Intl. Conference, Proceedings (PRO-
POR 2008), volume 5190, pages 31–40. Springer Verlag,
2008.

[7] H. Manurung. A chart generator for rhythm patterned text.
In Proceedings of the First International Workshop on Liter-
ature in Cognition and Computer, 1999.

[8] H. Manurung. An evolutionary algorithm approach to poetry
generation. PhD thesis, University of Edinburgh, 2004.

[9] H. R. Gonçalo Oliveira, F. A. Cardoso, and F. C. Pereira.
Tra-la-lyrics: an approach to generate text based on rhythm.
In Cardoso, A. & Wiggins, G. (Ed.). Proceedings of the 4th.
International Joint Workshop on Computational Creativity,
London, UK, 2007.

[10] A. M. Simões and J. Almeida. Jspell.pm – um módulo
de análise morfológica para uso em processamento de lin-
guagem natural. In Actas do XVII Encontro da Associação
Portuguesa de Linguı́stica, pages 485–495, Lisboa, 2002.

5


