NSIS for NS-2

NSIS (Next Steps in Signalling) is a signallingnfi@vork being developed by the IETF, based on
various signalling protocols, of which the ResouReservation Protocol (RSVP) is the corner
stone. This framework is used for application sligmg, in order to install and maintain flow states

in the network, similar to other protocols suchtesaforementioned RSVP.

GIST

Currently, the NSIS implementation for NS-2 is lthe& the [1] specification and is intended to
simulate the messaging transport and routing mestmanof the GIST layer. Although the NSLP

layer is represented by some specific objectsaesdwt play any important role on the simulations.
It is just a stub intended to make the GIST simoitet closer to a real implementation.

The GIST module provides all objects specifiedlih [However, some TLVs (type-length-value)
objects included in the GIST message, are not tsstake any decision.

Simulation Model

To transport the messages between peers, the @G\&T tan operate at datagram or connection
mode. Although on the NSIS specification the us@mé or another mode depends on the local
policies of the node (e.g. the router) and the irequents of the application sending the message,
on the ns-2 the selection is based just on a cordigpn parameter set atl script level. Although

a number of existing protocols (e.g. SCTP, DCCPE.,) @an be used in both cases, the simulated
scenarios are configured to use UDP for datagrachenand TCP for connection mode.

When employing the connection mode, the TCP comrectare reused whenever possible. To
decide whether a new connection is to be estalolisinef an existing one should be reused, it is
taken into account just the path the message fibmsugh. In this way, if a TCP connection
already exists in the link between two adjacentTGitedes, it will be used. In contrary, a new
connection will be createdtrro! A origem da referéncia ndo foi encontrada.illustrates a case
where just one TCP connection is used by all thaiegiions. Nodes NO, N3, and N4 need to
contact (by TCP connection) nodes N5, N6, and M3pectively. As all NSIS messages need to
cross a common link, just a single TCP connectagstablished between N1 and N2.

TCP connection

Figure 1: TCP connection reuse

If a TCP connection remains idle for a certain gerof time it will automatically be closed. Case
the connection is needed after that, another TQ#haxiion establishment process is initiated.
Although a special kind of refresh message camodmally be sent by the node to maintain the
connection alive, we do not simulate it.

In the simulations all GIST nodes implement a theeg handshake to set up the necessary routing
states between adjacent peers, as illustratedguré-i2. When required by the NSLP application,
the sender starts the discovery process of the G&T peer by sending a Query Message. The

message is intercepted by the peer that stores senaer’'s information and sends back a Response
Message. Finally, the sender feeds its routing stdile with information of the peer and generates

a Confirm Message.
Sender Receiver
node \Query node
Tl

Routing state
e/ establishment
pons

Routing state
establishment

Routing state

| refreshment

Figure 2: Three-way handshake

The GIST refresh messages also simulated. Theyemded to ensure that the routing states remain
valid along the time (i.e. there were no route gjem). If after a specified timea refresh message
does not come, the corresponding routing statebsilemoved.

NSISChecker

Figure 3 NS'S components

The high-level components of a NSIS simulation acenare depicted in Figure 3 and described
below:

* NSLP application - responsible for starting a NSt8mmunication by calling the
sendMessage GIST method. When the NSIS agent sends a pathagessach node along
the data path must intercept and process it, ceeaew message, and send it towards the
receiver specified in the MRI;

* GIST agent — It inherits the Agent class and ipoesible for the datagram mode GIST
communications (using the UDP transport protocbile GIST agent is also responsible for
the background maintenance, removing from the mgustate table the flows that have not
been refreshed. When receiving a message, the egemtrocess and forward it even if the
message is not matched with local application diigga(NSLP application). In this case,
the GIMPS object decreases the GIMPS hop in thddreand puts the message again in the
link, using theNS SChecker;

* FullTCP agent — a TCP agent implementation thattmsmit data in both directions (no
TCP Sink agent is used). This feature is needeckedime GIST peers needs to perform a
handshake in order to establish a TCP connectibe. agent is called by the GIST agent
whenever a TCP connection is required. In this whag,GIST agent also intermediate the
communication between the NSLP application and=thiE'CP agent;

* NSISChecker object — As stated before when the Nfgkht sends a path-message to a
given destination, every node along the data patst mmtercept it to discover which peer is

its previous hop. To accomplish this task avoidaiganges in NS-2 router modules, an
object have been added to the link module. NiBSchecker object intercepts all packets on

the link and, in the presence of NSIS messagdmntles them to the appropriated GIST
agent. This interaction is shown in Figure 4.Hetmessage is not a NSIS type, the
NS Schecker returns the packet back to the link without angireding on it.

NSIS
Signaling
Message : -
NSIS .

C} Checker Node L_mk

Data flow

head_) NSIS
*(} engT_ — queue_ — deqT — link_ L 1t || checker] VT >

Figure 4 Interception of a NS'S message

TCL Interface
The majorTcl procedures and parameters needed to run a NSi8rgxare listed below:

To include aNS SChecker agent in the link to intercept the NSIS messages:
<Si mul at or> config-nsis-link <src node> <dst node>
Example:

$ns dupl ex-1ink $n0 $n2 1.2Mo 10ns DropTai |
$ns config-nsis-link $n0 $n2

The lines above setup a link between nadesand n2.

To attach a new NSIS agent to a node:

<Node> add- gi nps- agent

Example:

set nsisO [$n0 add- gi nps-agent]

The line above creates and attaches a GIST agehetaode nO and stores a reference to it in
nsi sO vari abl e.

To establish a session between the NSIS agents:
<3 ST- agent > sessi on <source node> <dst node> <fl ow D>

Example:
set sesl [$nsisO session $n0 $n2 1]

The command creates a session between nodes n2dondthe flow ID 1. At moment, the flow
ID doesn’t have any functionality but it can be didey others NSLP implementations. The
reference of this session is storedsis 1, since GIST agent uses it later to send data.

To send data between NSIS agents:
<@ ST-agent > sender <session> "comand"
Example:

$ns at 1.3 "$nsisO sender $sesl \"xxx\""

The command above sends a path-message as a"sixigusing the $sesl. As the NSLP layer
implementation is just a stub, the actual strinlg@aloes not matter. Once the packet arrives at the
final destination, the packet is transferred frof® Gto the NSLP layer and there it is disposed.

To connect two NSIS agents:
<Si nul at or > connect - gi nps-agents <src_id> <dst_id>

Example:
$ns connect - gi nps-agents [$n0 id] [$n2 id]

To select the transmission mode:

<Si mul at or> nsi s-transn ssi on- node <node>

The valid modes are: “dmode” for UDP connectioratddram) and “cmode” for TCP (connection
mode).

Example:
$ns nsi s-transnm ssi on- node "dnpde"

To configure the life time of the routing statesrstl at the GIST nodes:
Agent/ G MPS set lifetine <tine>

Example:
Agent /G MPS set lifetime_ 30

To create and attach a NSLP application to a Gighta
set appl [new Application/ NSl S]
$appl attach-agent $I gi nps

Full example

set ns [new Sinul ator]

set nf [open out.namw

$ns nantrace-all $nf

set f1 [open out.ns w

$ns trace-all $f1

set n0 [$ns node]

set nl [$ns node]

set n2 [$ns node]

$ns dupl ex-link $n0 $nl 10Mo 1ns DropTai
$ns dupl ex-link $nl $n2 10Mb 1ns DropTai
$ns config-nsis-link $n0 $nil

$ns config-nsis-link $n1 $n2

$ns nsi s-transm ssion-nbde "dnode" ; #datagram npde
Agent/ A MPS set |ifetime_ 30

Agent/ A MPS set poolingTinme_ 10

Agent/ A MPS set debug_ 0O

set g0 [$n0 add- gi nps- agent]

set gl [$nl add- gi nps- agent]

set g2 [$n2 add-gi nps-agent]

$ns connect - gi nps-agents [$n0 id] [$nl id]
$ns connect - gi nps-agents [$nl id] [$n2 id]
set app0 [new Application/ NSl S]

set appl [new Application/ NSl S]

set app2 [new Application/ NSl S]

$app0 attach-agent $g0

$appl attach-agent $gl

$app2 attach-agent $g2

$n0 set class_ 1

set sesi dO [$app0 session [$n0 id] [$n2 id] 1]
$ns at 0.1 "$app0 sender $sesid0 7"

$ns at 60 "finish"

proc finish {} {
gl obal ns f1 nf
$ns flush-trace
cl ose $nf
close $f1
exit O

}

$ns run

References
1.H. Schulzrinne, R. Hancock, “GIST: General Inter8gnaling Transport draft ietf-nsis-ntlp-09”;
Internet Draft; February 2006.

