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Abstract — In this paper we propose Per-flow Bandwidth 

Distribution in Routers (BDR). This is an approach which 

enables an efficient use of the available bandwidth in high or 

low speed networks. BDR gives routers capacities to detect the 

number of active flows that are crossing the routers’ output 

interface. This is done without needing to maintain any per-

flow state information. In the paper we describe BDR and 

discuss its evaluation results based on ns-2 simulations. The 

results show that BDR has capacities to discover the number 

of active flows and has capacities to distribute the resources 

between all flows. 

1. Introdution 

In a recent publication [1] the author proposes a set of 

metrics to evaluate congestion control mechanisms. 

Among all the metrics proposed we chose two that point 

out some weaknesses of the congestion control 

mechanisms of the Transmission Control Protocol (TCP): 

aggressiveness and fairness. Aggressiveness is defined as 

“maximum increase in the send rate in one round-trip time, 

in packets per second, in the absence of congestion”. 

Fairness “Fairness can be considered between flows of the 

same protocol and between flows using different protocols 

(e.g., fairness between TCP and a new protocol)”.  

In another publication [2], the authors have made several 

tests to see the competence of TCP Additive Increase and 

Multiplicative Decrease (AIMD) [3] congestion control 

algorithm. These tests were made in presence of a 1Gbps 

trans-atlantic path between Dublin (Ireland) and Chicago 

(United States), using just 1 flow and the propagation 

delay was 100 ms. The tests’ results showed interesting 

behavior. For example, TCP needed 1200 seconds to 

recover, after a backoff, and the average throughput 

achieved, in that period, was only 218 Mbps of the 1 Gbps 

available. Taking in consideration these results, it is 

evident that TCP has difficulty to use network capacity in 

links that offer a high bandwidth. Despite the fact that 

these tests only used 1 flow is obvious the lack of 

aggressiveness in links with large bandwidth. 

It is obvious that TCP is not prepared to be aggressive or to 

use the network capacity when it is available. This is 

critical because the Internet infrastructure is changing and 

it is common to have links with Gbps, such as links with 

unpredictable characteristics, for example, wireless 

networks in which link failures, frequent bandwidth 

changes, packet loss due to wireless channels or 

asymmetry paths between data and acknowledgment 

packets are common to occur. 

Fair is defined [4] as “equal sharing of the resources”. 

Thus for a single link, equal sharing of the resources means 

that all flows should receive an equal throughput. A 

scheduling algorithm that always gives all flows equal 

throughput is denoted as throughput-fair. Furthermore TCP 

doesn’t have the capacity to provide an effective fairness 

because it ignores the congestion state of networks such as 

the flows that are competing to available bandwidth. In [4], 

authors arrive to the conclusion that with the exception of 

H-TCP [5], every proposal studied produced significantly 

greater round-trip times and unfairness between competing 

flows with diverse round-trip times. 

Since the beginning of the internet that TCP has had an 

important role to control the congestion. The solution 

adopted until now was based on tuning previous TCP 

versions to adapt. These adjustments have been based on 

four algorithms: Slow Start, Congestion Avoidance, Fast 

Retransmit, and Fast Recovery Algorithms [6]. From the 

results shown in previous paragraphs two conclusions may 

be drawn: first, TCP has difficulty to efficiently use the 

network resources; second, the four TCP mechanisms 

mentioned above are unable to adapt to actual network 

conditions. 
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A relevant point about TCP is that it only works at end-

systems. TCP sees network as a black box and only 

receives feedbacks about packet loss. If a packet is lost 

TCP receives the same feedback, in spite of the 

characteristics of network. For example, TCP should not 

have the same response from a network with few nodes, 

small delays and reduced bandwidth or a long distance 

network, with high delay and a large bandwidth. 

Characteristics of the two networks are substantially 

different and TCP should produce a different response. If 

TCP only receives packet loss feedback then the capacity 

of making the best decisions is limited. It is clear that TCP 

must be helped from other network components. This 

increases its capacities to make good decisions about the 

network use in a large and different network environment. 

In this paper we introduce an approach that makes way for 

the efficient use of network resources as well as guarantees 

fairness between flows. The proposed approach, which we 

call BDR, gives routers important information. The 

number of flows that are using the output interface can be 

used by routers to distribute the available bandwidth. With 

this mechanism routers can effectively control the traffic 

that is sent to networks. The sender is only informed by 

routers about the bandwidth that this application can use. 

Note that this mechanism does not need to maintain any 

per-flow state information. What makes this mechanism 

different from other proposals, that use explicit congestion 

control is that BDR guarantees an effective use of the 

available bandwidth, fairness between flows, scalability 

and all this is done without needing to maintain any per-

flow state information and with minimum additional CPU 

processing.  

The remainder of this paper is organized as follows. In 

section 2 we provide related work on congestion control 

mechanisms based in the cooperation among end-systems 

and intermediate nodes. Section 3 describes characteristics 

and the design to the proposed scheme. Results of the 

evaluation using ns-2 [7] simulations are presented in 

Section 4. Section 5 presents the conclusions and some 

directions for future work. 

2. Background and Related Work 

Over the past few years, several solutions have been 

proposed to give TCP better and more network feedback, 

beyond packets loss information and RTT variations. In 

addition, the research community has been specifying 

alternative solutions to the TCP architecture. As the BDR, 

some of these models are classified in category of 

“modification of the network infrastructure”. They are 

briefly explained as follows. 

The ECN [8], [9] and the Quick-Start [10] are two 

solutions that use the router collaboration to address the 

congestion control problem. With the ECN, the router 

collaboration is done by detecting congestion situations 

and by informing the end systems about this situation. 

With the Quick-Start, the collaboration of routers is used to 

decide the value of the initial congestion window. Along 

the path routers accept or not an initial congestion window 

proposed by the end system. These two mechanisms are 

nevertheless used by the traditional congestion control 

mechanisms. This means that the algorithms slow start, 

congestion avoidance, fast retransmission and fast recovery 

[11] are still used and therefore the problems associated to 

theses mechanisms remain.  

Explicit Control Protocol (XCP) [12], [13] is designed to 

work well in networks with large bandwidth-delay 

products. This Internet congestion control protocol 

outperforms TCP in conventional environments and 

remains efficient, fair, scalable, and stable in high 

bandwidth-delay product networks. The XCP generalizes 

the Explicit Congestion Notification proposal (ECN). In 

addition, the XCP introduces the new concept of 

decoupling utilization control from fairness control. 

Routers provide feedback, in terms of incremental window 

changes, to the sources in multiple round-trip times, which 

works well when all flows are long-lived. However, in a 

dynamic network’ environment, the XCP can increase the 

duration of each flow beyond the ideal and can contribute 

to maintain more active flows in the network [14]. 

3. Per-Flow Bandwidth Distribution in 

Routers 

Per-Flow Bandwidth Distribution by Routers (BDR) is 

based on three main concepts: 1) intermediate nodes know 

the number of flows that cross each output interface; 2) 

intermediate nodes can interact with each flow created at 

any end-system; 3) intermediated nodes can distribute the 

output bandwidth of any interface between all flows that 

are crossing the interface. 

As explained below, these concepts allow routers to 

provide end systems with important congestion control 

information. Another relevant point is that routers do not 

need to maintain any per-flow state information. 

This mechanism relies on changes in TCP behavior as well 

as in intermediate nodes. First along the router in the path 

BDR identifies the number of flows in each output 

interface. Then it evaluates the available bandwidth and 

makes decisions regarding bandwidth distribution per-

flow. If a router detects an increase in the number of flows 

at any output interface then router requests all the flows to 

adjust their transmission rate. Also, if there is a large 

available bandwidth and the number of flows is reduced, 

routers can suggest a quick increase of transmission rate to 

flows. 

The information provided by routers is inserted in a special 

packet which is sent to the receiver. That can then send it 

back to the sender end-system. At this point TCP should 

accept the recommendation provided and adjusts its 

congestion window. Mark that in a path with multiples 

routers only the bottleneck router recommendation will 

arrive at TCP sender. The information used by BDR 

mechanism is exchanged between routers and end-systems. 

This information is put inside a special packet, which 

transports data like all others, but has new skills. The 

packet used to transport the information is named 

designated packet and, there is only one packet in transit 

per flow.  Fig. 1 presents the architecture of BDR. 



 
Fig. 1. BDR architecture 

A. Source End-System 

Source end-system has tow main responsibilities: to 

manage the chosen designated packet and create all the 

information about a particular flow, which is necessary so 

that routers may discover the number of flows that cross an 

output interface; to accept and implement the 

recommended bandwidth for each flow. 

The designated packet is a packet that is chosen by the 

end-system source from all packets belonging to the same 

TCP congestion window. It transports until intermediate 

nodes all information necessary so that routers can make 

their decisions. This solution enables routers to have 

information about flows without needing to keep it. 

Another important issue is that routers do not need to 

process all packets from every flow to extract flow 

information. Only a reduced number of packets need to be 

analyzed. At the router the CPU processing is minimized. 

Furthermore, there is a guaranty that senders don’t receive 

duplicated information because, per flow, there is only one 

designated packet travelling at a time. In fact, the 

designated packet is not send before the packet that 

acknowledges the previous one has been received.  

Once more, this designated packet can be at any router 

belonging to the path. This solution dilutes the additional 

processing by all routers. 

In the BDR mechanism the main task of routers is to 

discover the number of flows that cross any output 

interface. To make this decision, routers must receive from 

end-systems the size of the last congestion window 

(size_cwin) and the time needed to send all packets within 

the last congestion window and receive the corresponding 

acknowledgments (time_per_cwin). This information is 

provided to routers inside the designated packet. It is 

important to take into account that these variables are put 

inside the IP header.  

The other task of the source end-system is to accept the 

recommendations received from intermediate nodes. These 

nodes suggest the bandwidth that should be used by the 

flow. These recommendations are received in the packet 

that acknowledges the designated packet. Source end-

system converts the bandwidth to congestion window size 

and implements these recommendations. 

Note that the TCP sender does not execute the traditional 

TCP algorithms: slow-start and congestion avoidance. The 

sender TCP just implements the recommendations from 

intermediate nodes. Moreover, the detection of packet loss 

is not the key to find the adequate transmission rate. Packet 

loss is only used to reduce immediately the transmission 

rate, but if intermediate nodes continue to suggest a high 

congestion window, source end-system must implement 

the recommendation. In this mechanism the transmission 

rate is based on the available bandwidth that is distributed 

by intermediate nodes. 

B. Intermediate nodes 

The BDR mechanism is responsible for managing and 

distributing the bandwidth by all flows that are in any 

output interface. The distribution is done without needing 

to maintain per-flow state information. Routers only 

receive from end-system sender two pieces of information 

from each flow: the size of the congestion window; and the 

time needed to send successfully all packets belonging to 

that congestion window. 

Bearing this information, routers must perform two tasks: 

1) discover the number of flows that are using a specific 

output interface; 2) distribute the available bandwidth 

among all the flows.  

To discover the total of flows that are in the output 

interface, routers must have two variables per output 

interface, router_time and total_time_flows. 

The variable router_time represents a time space that 

corresponds to the router's life time. total_time_flows is 

calculated by the sum of all time_per_cwin, received from 

designated packets. So, when a new designated packet 

arrives routers must read the content of time_per_cwin 

variable and sum it to total_time_flows. At any time the 

variable total_time_flows contains the sum of all 

time_per_cwin received since the beginning of the process.  

For each output interface, router has the variables 

router_time and total_time_flows. With this information it 

is possible to discover the number of flows that are 

crossing the interface. This is done by expression (1). 

 

number_flows = total_time_flows / router_time                  (1) 

 

The next step consists of calculating the bandwidth used by 

each flow. bw_per_flow is the variable used and it is 

calculated by expression (2).  

  

bw_per_flow= (8*packet_size*size_cwin)/time_per_cwin  (2) 

 

The bandwidth depends on the packet size (packet_size) in 

bytes, the number of packets per congestion window 

(size_cwin) and the time needed to send all packets and 

receive the acknowledgements of the congestion window 

(time_per_cwin). To obtain bw_per_flow in bps we must 

multiply it by 8.  

At this point, routers already know the number of flows 

that are crossing the output interface and the actual 

bandwidth used by each flow. Thus the next step of this 

process is to decide the bandwidth recommendation for a 

specific flow. Routers know the bandwidth used by each 

flow; they also know which are the used bandwidth and the 

available bandwidth in the output interface. In hold of this 

information it is possible to estimate, per-flow, a gain that 

corresponds to the increase or decrease of the actual 

transmission rate. This gain is calculated by expression (3). 

It depends on available bandwidth and is expressed by 

number of packets. This means that the flow must increase 

or reduce its congestion window in gain number of 

packets. 

 



gain=(bw_available/number_flows)/(bw_per_flow/size_cwin) (3) 

 

The gain produced for a specific flow is only put in the 

designated packet if this is the first router in the path or if 

this gain is less than others suggested by previous routers 

in the path. This is done by module management 

bottleneck router. 

Finally routers insert the recommendation in the designated 

packet and resend it to the next hop in the path. 

C. Destination End-system 

When a packet arrives at destination, TCP creates another 

packet to acknowledge the first. The same process is done 

when a designated packet arrives. Additionally, inside the 

acknowledgement packet is the recommendation received 

from routers. 

This packet will arrive at end-system sender and the 

congestion window will be adjusted to implement the 

recommendation. 

4.  Evaluation 

To evaluate the BDR mechanism, we have created 

simulations on the ns-2 simulator [7]. Fig. 2 shows the 

network topology used in the simulations (this topology is 

known as dumbbell network). The bottleneck link 

bandwidth is set to 100 Mbps or 1 Gbps. The links that 

connect the senders and the receivers to the routers have a 

bandwidth of 2.4 Gbps. The round-trip time is set to 100 

ms. Routers have the queue size set to 5000 packets, which 

is near to one third of the delay-bandwidth product of the 

bottleneck link, in the case of bottleneck link being set to 1 

Gbps. The BDR mechanism is implemented by modifying 

the TCP Reno agent [7], TcpSink agent [7] and the 

DropTail queue [7]. The traffic used in the simulation is 

Poison flow arrival and flows size are Pareto distribution 

with the mean equal to 12.5 packets (1000 bytes / packet) 

and the shape equal to 1.8. Either 2000 new flows are 

created per second, when the bottleneck link is 1 Gbps, or 

400 new flows are created per second when the bottleneck 

link is 100 Mbps. The RTT is equal to 100 ms. We have 

done tests in scenarios with more routers but the results 

were the same presented in this publication, because in 

BDR mechanism only the bottleneck router controls the 

transmission rate of a flow. So the number of routers in the 

path does not influence the results of the BDR mechanism. 

 
Fig. 2. Simulation topology 

 

A. Discovery of the number of active flows 

 

The BDR mechanism is supported in the capacity of 

routers to identify the number of flows that are crossing 

any output interface. Using this information, routers can 

distribute its output interface bandwidth by all flows. This 

distribution can be done quickly and efficiently. 

Fig. 3 and Fig. 4 show the number of flows discovered by 

BDR mechanism. As can be seen in Fig. 3 and Fig. 4 the 

exact number of flows that are crossing the output 

interface, in the bottleneck link, was discovered and is 

always near the exact number of active flows (Active flows 

line) present in the test scenario. These results show the 

capacity of BDR mechanism to identify the number of 

active flows. The efficiency of BDR mechanism is based 

on this capacity. 

 
Fig. 3. Flows detected by BDR vs active flows. In this scenario 

the bottleneck link is 1 Gbps 

 
Fig. 4. Flows detected by BDR vs active flows. In this scenario 

the bottleneck link is 100 Mbps 

 

B. Flow completion time 

In the BDR mechanism the congestion control is a 

responsibility of routers. Moreover, these elements know 

the output interface bandwidth and they make a fair 

bandwidth distribution for all flows. Additionally routers 

never make a recommendation that overflows the output 

interface. Fig. 5 shows the flow average completion time 

of one tests when the bottleneck link is configured to 1 

Gbps. In these scenarios the delay is 100 ms. 

It is visible, from Fig. 5, that short flows (until 30 packets, 

in this scenario) were completed in 2 RTTs. At bottleneck 

router, this model identified the number of active flows 

and distributed the available bandwidth by these flows. In 

this case each flow received at least bandwidth to send 30 

packets per RTT. Flows larger than 30 packets needed 



more RTTs to be completed. In this case, the number 30 

packets per RTT was obtained by router and corresponds 

to the bandwidth distributed to each flow. This bandwidth 

is a function of the number of active flows, capacity of 

output interface and RTT. 

Another important conclusion is that all flows always have 

a life time proportional to their sizes. This means that all 

active flows receive an equal share of output interface 

capacity, and the BDR model implements fairness among 

flows. 

 
Fig.5. Average completion time. In this scenario the bottleneck 

link is configured to 1 Gbps 

 

C. Comparison between BDR, XCP and TCP Reno 

The BDR mechanism can be used in highspeed networks 

as well as in networks with speeds of few megabits per 

second. This happens because routers know the output 

interface capacity and distributes it by all flows in some 

round-trip times. 

On the other hand, TCP is a protocol that does not use 

efficiently the available bandwidth. This is critical in 

highspeed links where TCP needs many round-trip times to 

fill the channel. Also we have done tests using XCP 

protocol. 

This evaluation consists of 3 tests using bottleneck link of 

1 Gbps and the RTT is equal to 100 ms. Flows arrival are 

Poison distribution (2000 new flows per second) and flows 

size are Pareto distribution with the mean equal to 12.5 

packets (1000 bytes per packet) and the shape equal to 1.8. 

We can see from Fig. 6, BDR mechanism has good results 

to complete short flows. Long flows need more time to be 

completed than TCP or XCP. This happens because BDR 

distributes the interface capacity equality by all active 

flows, so the average completion time is proportional to 

flows size. On the other hand, for example, TCP is a 

protocol that allows congestion window size to increase by 

1 per each acknowledge packet received (slow start phase). 

Longs flows can reach high congestion window sizes. With 

long flows, TCP and XCP show better results than BDR 

and BDR shows better results with short flows. 

 
Fig.6. Average flow completion time of BDR, TCP and XCP 

5. Conclusion and future work 

In this paper we propose TCP Per-Flow Bandwidth 

Distribution in Routers (BDR). This is a new approach to 

enable an efficient use of the available bandwidth by all 

flows in high or low speed networks. BDR adds to routers 

the capacities to detect the number of active flows that are 

crossing the output interface. This is done without needing 

to maintain any per-flow state information. With this 

information BDR can make a fair distribution of the 

available bandwidth between all flows. Equally BDR can 

use all available bandwidth in a few round-trip times. In 

this mechanism TCP merely receives recommendations 

about the size of congestion window and implements these 

recommendations. 

We have shown through analysis and experimental 

evaluation that BDR has capacities to discover the number 

of flows that are using any output interface, in static or 

dynamic network scenarios. Also, it is visible that BDR is 

scalable and uses efficiently the available bandwidth in 

networks with high or low speed links as well as provides 

fairness between flows. 

Currently we are in the process of evaluating BDR with 

other schemes developed to be used in high speed 

networks as well as with protocols that are classified in 

“Modifications to the network infrastructure” approach, 

like XCP. 

As part of our future work, we plan to investigate the 

possibility of each application informing routers about its 

satisfaction level with the recommended transmission rate 

received by routers. 
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