
An Approach for Per-Flow Bandwidth Distribution in Routers (BDR)

Paulo Loureiro*, Saverio Mascolo**, Edmundo Monteiro ***

* Polytechnic Institute of Leiria

Leiria, Portugal

e-mail: loureiro@estg.ipleiria.pt

** Politecnico di Bari

Bari, Italy

e-mail: saverio.mascolo@gmail.com

*** University of Coimbra

Coimbra, Portugal

e-mail: edmundo@dei.uc.pt

Abstract — In this paper we propose Per-flow Bandwidth

Distribution in Routers (BDR). This is an approach which

enables an efficient use of the available bandwidth in high or

low speed networks. BDR gives routers capacities to detect the

number of active flows that are crossing the routers’ output

interface. This is done without needing to maintain any per-

flow state information. In the paper we describe BDR and

discuss its evaluation results based on ns-2 simulations. The

results show that BDR has capacities to discover the number

of active flows and has capacities to distribute the resources

between all flows.

1. Introdution

In a recent publication [1] the author proposes a set of

metrics to evaluate congestion control mechanisms.

Among all the metrics proposed we chose two that point

out some weaknesses of the congestion control

mechanisms of the Transmission Control Protocol (TCP):

aggressiveness and fairness. Aggressiveness is defined as

“maximum increase in the send rate in one round-trip time,

in packets per second, in the absence of congestion”.

Fairness “Fairness can be considered between flows of the

same protocol and between flows using different protocols

(e.g., fairness between TCP and a new protocol)”.

In another publication [2], the authors have made several

tests to see the competence of TCP Additive Increase and

Multiplicative Decrease (AIMD) [3] congestion control

algorithm. These tests were made in presence of a 1Gbps

trans-atlantic path between Dublin (Ireland) and Chicago

(United States), using just 1 flow and the propagation

delay was 100 ms. The tests’ results showed interesting

behavior. For example, TCP needed 1200 seconds to

recover, after a backoff, and the average throughput

achieved, in that period, was only 218 Mbps of the 1 Gbps

available. Taking in consideration these results, it is

evident that TCP has difficulty to use network capacity in

links that offer a high bandwidth. Despite the fact that

these tests only used 1 flow is obvious the lack of

aggressiveness in links with large bandwidth.

It is obvious that TCP is not prepared to be aggressive or to

use the network capacity when it is available. This is

critical because the Internet infrastructure is changing and

it is common to have links with Gbps, such as links with

unpredictable characteristics, for example, wireless

networks in which link failures, frequent bandwidth

changes, packet loss due to wireless channels or

asymmetry paths between data and acknowledgment

packets are common to occur.

Fair is defined [4] as “equal sharing of the resources”.

Thus for a single link, equal sharing of the resources means

that all flows should receive an equal throughput. A

scheduling algorithm that always gives all flows equal

throughput is denoted as throughput-fair. Furthermore TCP

doesn’t have the capacity to provide an effective fairness

because it ignores the congestion state of networks such as

the flows that are competing to available bandwidth. In [4],

authors arrive to the conclusion that with the exception of

H-TCP [5], every proposal studied produced significantly

greater round-trip times and unfairness between competing

flows with diverse round-trip times.

Since the beginning of the internet that TCP has had an

important role to control the congestion. The solution

adopted until now was based on tuning previous TCP

versions to adapt. These adjustments have been based on

four algorithms: Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms [6]. From the

results shown in previous paragraphs two conclusions may

be drawn: first, TCP has difficulty to efficiently use the

network resources; second, the four TCP mechanisms

mentioned above are unable to adapt to actual network

conditions.

mailto:loureiro@estg.ipleiria.pt
mailto:saverio.mascolo@gmail.com
mailto:edmundo@dei.uc.pt

A relevant point about TCP is that it only works at end-

systems. TCP sees network as a black box and only

receives feedbacks about packet loss. If a packet is lost

TCP receives the same feedback, in spite of the

characteristics of network. For example, TCP should not

have the same response from a network with few nodes,

small delays and reduced bandwidth or a long distance

network, with high delay and a large bandwidth.

Characteristics of the two networks are substantially

different and TCP should produce a different response. If

TCP only receives packet loss feedback then the capacity

of making the best decisions is limited. It is clear that TCP

must be helped from other network components. This

increases its capacities to make good decisions about the

network use in a large and different network environment.

In this paper we introduce an approach that makes way for

the efficient use of network resources as well as guarantees

fairness between flows. The proposed approach, which we

call BDR, gives routers important information. The

number of flows that are using the output interface can be

used by routers to distribute the available bandwidth. With

this mechanism routers can effectively control the traffic

that is sent to networks. The sender is only informed by

routers about the bandwidth that this application can use.

Note that this mechanism does not need to maintain any

per-flow state information. What makes this mechanism

different from other proposals, that use explicit congestion

control is that BDR guarantees an effective use of the

available bandwidth, fairness between flows, scalability

and all this is done without needing to maintain any per-

flow state information and with minimum additional CPU

processing.

The remainder of this paper is organized as follows. In

section 2 we provide related work on congestion control

mechanisms based in the cooperation among end-systems

and intermediate nodes. Section 3 describes characteristics

and the design to the proposed scheme. Results of the

evaluation using ns-2 [7] simulations are presented in

Section 4. Section 5 presents the conclusions and some

directions for future work.

2. Background and Related Work

Over the past few years, several solutions have been

proposed to give TCP better and more network feedback,

beyond packets loss information and RTT variations. In

addition, the research community has been specifying

alternative solutions to the TCP architecture. As the BDR,

some of these models are classified in category of

“modification of the network infrastructure”. They are

briefly explained as follows.

The ECN [8], [9] and the Quick-Start [10] are two

solutions that use the router collaboration to address the

congestion control problem. With the ECN, the router

collaboration is done by detecting congestion situations

and by informing the end systems about this situation.

With the Quick-Start, the collaboration of routers is used to

decide the value of the initial congestion window. Along

the path routers accept or not an initial congestion window

proposed by the end system. These two mechanisms are

nevertheless used by the traditional congestion control

mechanisms. This means that the algorithms slow start,

congestion avoidance, fast retransmission and fast recovery

[11] are still used and therefore the problems associated to

theses mechanisms remain.

Explicit Control Protocol (XCP) [12], [13] is designed to

work well in networks with large bandwidth-delay

products. This Internet congestion control protocol

outperforms TCP in conventional environments and

remains efficient, fair, scalable, and stable in high

bandwidth-delay product networks. The XCP generalizes

the Explicit Congestion Notification proposal (ECN). In

addition, the XCP introduces the new concept of

decoupling utilization control from fairness control.

Routers provide feedback, in terms of incremental window

changes, to the sources in multiple round-trip times, which

works well when all flows are long-lived. However, in a

dynamic network’ environment, the XCP can increase the

duration of each flow beyond the ideal and can contribute

to maintain more active flows in the network [14].

3. Per-Flow Bandwidth Distribution in

Routers

Per-Flow Bandwidth Distribution by Routers (BDR) is

based on three main concepts: 1) intermediate nodes know

the number of flows that cross each output interface; 2)

intermediate nodes can interact with each flow created at

any end-system; 3) intermediated nodes can distribute the

output bandwidth of any interface between all flows that

are crossing the interface.

As explained below, these concepts allow routers to

provide end systems with important congestion control

information. Another relevant point is that routers do not

need to maintain any per-flow state information.

This mechanism relies on changes in TCP behavior as well

as in intermediate nodes. First along the router in the path

BDR identifies the number of flows in each output

interface. Then it evaluates the available bandwidth and

makes decisions regarding bandwidth distribution per-

flow. If a router detects an increase in the number of flows

at any output interface then router requests all the flows to

adjust their transmission rate. Also, if there is a large

available bandwidth and the number of flows is reduced,

routers can suggest a quick increase of transmission rate to

flows.

The information provided by routers is inserted in a special

packet which is sent to the receiver. That can then send it

back to the sender end-system. At this point TCP should

accept the recommendation provided and adjusts its

congestion window. Mark that in a path with multiples

routers only the bottleneck router recommendation will

arrive at TCP sender. The information used by BDR

mechanism is exchanged between routers and end-systems.

This information is put inside a special packet, which

transports data like all others, but has new skills. The

packet used to transport the information is named

designated packet and, there is only one packet in transit

per flow. Fig. 1 presents the architecture of BDR.

Fig. 1. BDR architecture

A. Source End-System

Source end-system has tow main responsibilities: to

manage the chosen designated packet and create all the

information about a particular flow, which is necessary so

that routers may discover the number of flows that cross an

output interface; to accept and implement the

recommended bandwidth for each flow.

The designated packet is a packet that is chosen by the

end-system source from all packets belonging to the same

TCP congestion window. It transports until intermediate

nodes all information necessary so that routers can make

their decisions. This solution enables routers to have

information about flows without needing to keep it.

Another important issue is that routers do not need to

process all packets from every flow to extract flow

information. Only a reduced number of packets need to be

analyzed. At the router the CPU processing is minimized.

Furthermore, there is a guaranty that senders don’t receive

duplicated information because, per flow, there is only one

designated packet travelling at a time. In fact, the

designated packet is not send before the packet that

acknowledges the previous one has been received.

Once more, this designated packet can be at any router

belonging to the path. This solution dilutes the additional

processing by all routers.

In the BDR mechanism the main task of routers is to

discover the number of flows that cross any output

interface. To make this decision, routers must receive from

end-systems the size of the last congestion window

(size_cwin) and the time needed to send all packets within

the last congestion window and receive the corresponding

acknowledgments (time_per_cwin). This information is

provided to routers inside the designated packet. It is

important to take into account that these variables are put

inside the IP header.

The other task of the source end-system is to accept the

recommendations received from intermediate nodes. These

nodes suggest the bandwidth that should be used by the

flow. These recommendations are received in the packet

that acknowledges the designated packet. Source end-

system converts the bandwidth to congestion window size

and implements these recommendations.

Note that the TCP sender does not execute the traditional

TCP algorithms: slow-start and congestion avoidance. The

sender TCP just implements the recommendations from

intermediate nodes. Moreover, the detection of packet loss

is not the key to find the adequate transmission rate. Packet

loss is only used to reduce immediately the transmission

rate, but if intermediate nodes continue to suggest a high

congestion window, source end-system must implement

the recommendation. In this mechanism the transmission

rate is based on the available bandwidth that is distributed

by intermediate nodes.

B. Intermediate nodes

The BDR mechanism is responsible for managing and

distributing the bandwidth by all flows that are in any

output interface. The distribution is done without needing

to maintain per-flow state information. Routers only

receive from end-system sender two pieces of information

from each flow: the size of the congestion window; and the

time needed to send successfully all packets belonging to

that congestion window.

Bearing this information, routers must perform two tasks:

1) discover the number of flows that are using a specific

output interface; 2) distribute the available bandwidth

among all the flows.

To discover the total of flows that are in the output

interface, routers must have two variables per output

interface, router_time and total_time_flows.

The variable router_time represents a time space that

corresponds to the router's life time. total_time_flows is

calculated by the sum of all time_per_cwin, received from

designated packets. So, when a new designated packet

arrives routers must read the content of time_per_cwin

variable and sum it to total_time_flows. At any time the

variable total_time_flows contains the sum of all

time_per_cwin received since the beginning of the process.

For each output interface, router has the variables

router_time and total_time_flows. With this information it

is possible to discover the number of flows that are

crossing the interface. This is done by expression (1).

number_flows = total_time_flows / router_time (1)

The next step consists of calculating the bandwidth used by

each flow. bw_per_flow is the variable used and it is

calculated by expression (2).

bw_per_flow= (8*packet_size*size_cwin)/time_per_cwin (2)

The bandwidth depends on the packet size (packet_size) in

bytes, the number of packets per congestion window

(size_cwin) and the time needed to send all packets and

receive the acknowledgements of the congestion window

(time_per_cwin). To obtain bw_per_flow in bps we must

multiply it by 8.

At this point, routers already know the number of flows

that are crossing the output interface and the actual

bandwidth used by each flow. Thus the next step of this

process is to decide the bandwidth recommendation for a

specific flow. Routers know the bandwidth used by each

flow; they also know which are the used bandwidth and the

available bandwidth in the output interface. In hold of this

information it is possible to estimate, per-flow, a gain that

corresponds to the increase or decrease of the actual

transmission rate. This gain is calculated by expression (3).

It depends on available bandwidth and is expressed by

number of packets. This means that the flow must increase

or reduce its congestion window in gain number of

packets.

gain=(bw_available/number_flows)/(bw_per_flow/size_cwin) (3)

The gain produced for a specific flow is only put in the

designated packet if this is the first router in the path or if

this gain is less than others suggested by previous routers

in the path. This is done by module management

bottleneck router.

Finally routers insert the recommendation in the designated

packet and resend it to the next hop in the path.

C. Destination End-system

When a packet arrives at destination, TCP creates another

packet to acknowledge the first. The same process is done

when a designated packet arrives. Additionally, inside the

acknowledgement packet is the recommendation received

from routers.

This packet will arrive at end-system sender and the

congestion window will be adjusted to implement the

recommendation.

4. Evaluation

To evaluate the BDR mechanism, we have created

simulations on the ns-2 simulator [7]. Fig. 2 shows the

network topology used in the simulations (this topology is

known as dumbbell network). The bottleneck link

bandwidth is set to 100 Mbps or 1 Gbps. The links that

connect the senders and the receivers to the routers have a

bandwidth of 2.4 Gbps. The round-trip time is set to 100

ms. Routers have the queue size set to 5000 packets, which

is near to one third of the delay-bandwidth product of the

bottleneck link, in the case of bottleneck link being set to 1

Gbps. The BDR mechanism is implemented by modifying

the TCP Reno agent [7], TcpSink agent [7] and the

DropTail queue [7]. The traffic used in the simulation is

Poison flow arrival and flows size are Pareto distribution

with the mean equal to 12.5 packets (1000 bytes / packet)

and the shape equal to 1.8. Either 2000 new flows are

created per second, when the bottleneck link is 1 Gbps, or

400 new flows are created per second when the bottleneck

link is 100 Mbps. The RTT is equal to 100 ms. We have

done tests in scenarios with more routers but the results

were the same presented in this publication, because in

BDR mechanism only the bottleneck router controls the

transmission rate of a flow. So the number of routers in the

path does not influence the results of the BDR mechanism.

Fig. 2. Simulation topology

A. Discovery of the number of active flows

The BDR mechanism is supported in the capacity of

routers to identify the number of flows that are crossing

any output interface. Using this information, routers can

distribute its output interface bandwidth by all flows. This

distribution can be done quickly and efficiently.

Fig. 3 and Fig. 4 show the number of flows discovered by

BDR mechanism. As can be seen in Fig. 3 and Fig. 4 the

exact number of flows that are crossing the output

interface, in the bottleneck link, was discovered and is

always near the exact number of active flows (Active flows

line) present in the test scenario. These results show the

capacity of BDR mechanism to identify the number of

active flows. The efficiency of BDR mechanism is based

on this capacity.

Fig. 3. Flows detected by BDR vs active flows. In this scenario

the bottleneck link is 1 Gbps

Fig. 4. Flows detected by BDR vs active flows. In this scenario

the bottleneck link is 100 Mbps

B. Flow completion time

In the BDR mechanism the congestion control is a

responsibility of routers. Moreover, these elements know

the output interface bandwidth and they make a fair

bandwidth distribution for all flows. Additionally routers

never make a recommendation that overflows the output

interface. Fig. 5 shows the flow average completion time

of one tests when the bottleneck link is configured to 1

Gbps. In these scenarios the delay is 100 ms.

It is visible, from Fig. 5, that short flows (until 30 packets,

in this scenario) were completed in 2 RTTs. At bottleneck

router, this model identified the number of active flows

and distributed the available bandwidth by these flows. In

this case each flow received at least bandwidth to send 30

packets per RTT. Flows larger than 30 packets needed

more RTTs to be completed. In this case, the number 30

packets per RTT was obtained by router and corresponds

to the bandwidth distributed to each flow. This bandwidth

is a function of the number of active flows, capacity of

output interface and RTT.

Another important conclusion is that all flows always have

a life time proportional to their sizes. This means that all

active flows receive an equal share of output interface

capacity, and the BDR model implements fairness among

flows.

Fig.5. Average completion time. In this scenario the bottleneck

link is configured to 1 Gbps

C. Comparison between BDR, XCP and TCP Reno

The BDR mechanism can be used in highspeed networks

as well as in networks with speeds of few megabits per

second. This happens because routers know the output

interface capacity and distributes it by all flows in some

round-trip times.

On the other hand, TCP is a protocol that does not use

efficiently the available bandwidth. This is critical in

highspeed links where TCP needs many round-trip times to

fill the channel. Also we have done tests using XCP

protocol.

This evaluation consists of 3 tests using bottleneck link of

1 Gbps and the RTT is equal to 100 ms. Flows arrival are

Poison distribution (2000 new flows per second) and flows

size are Pareto distribution with the mean equal to 12.5

packets (1000 bytes per packet) and the shape equal to 1.8.

We can see from Fig. 6, BDR mechanism has good results

to complete short flows. Long flows need more time to be

completed than TCP or XCP. This happens because BDR

distributes the interface capacity equality by all active

flows, so the average completion time is proportional to

flows size. On the other hand, for example, TCP is a

protocol that allows congestion window size to increase by

1 per each acknowledge packet received (slow start phase).

Longs flows can reach high congestion window sizes. With

long flows, TCP and XCP show better results than BDR

and BDR shows better results with short flows.

Fig.6. Average flow completion time of BDR, TCP and XCP

5. Conclusion and future work

In this paper we propose TCP Per-Flow Bandwidth

Distribution in Routers (BDR). This is a new approach to

enable an efficient use of the available bandwidth by all

flows in high or low speed networks. BDR adds to routers

the capacities to detect the number of active flows that are

crossing the output interface. This is done without needing

to maintain any per-flow state information. With this

information BDR can make a fair distribution of the

available bandwidth between all flows. Equally BDR can

use all available bandwidth in a few round-trip times. In

this mechanism TCP merely receives recommendations

about the size of congestion window and implements these

recommendations.

We have shown through analysis and experimental

evaluation that BDR has capacities to discover the number

of flows that are using any output interface, in static or

dynamic network scenarios. Also, it is visible that BDR is

scalable and uses efficiently the available bandwidth in

networks with high or low speed links as well as provides

fairness between flows.

Currently we are in the process of evaluating BDR with

other schemes developed to be used in high speed

networks as well as with protocols that are classified in

“Modifications to the network infrastructure” approach,

like XCP.

As part of our future work, we plan to investigate the

possibility of each application informing routers about its

satisfaction level with the recommended transmission rate

received by routers.

References

[1] Floyd, S. “Metrics for the Evaluation of Congestion Control

Mechanisms”. Internet Draft, IETF, August 2005.

[2] Li, Y., Leith, D., Shorten, R. “Experimental Evaluation of

TCP Protocols for High-Speed Networks”. Technical

Report, Hamilton Institute, NUI Maynooth, June 2005.

[3] Chiu D., Jain R. “Analysis of the Increase / Decrease

Algorithms for Congestion Avoidance in Computer

Networks”. Journal of Computer Networks and ISDN,

Volume 17, Number 1, June 1989.

[4] Norlund, K., Ottosson, T., Brunstrom, A.” TCP fairness

measures for scheduling algorithms in wireless networks”.

Second International Conference on Quality of Service in

Heterogeneous Wired/Wireless Networks (QShine), Orlando

Florida USA, August 2005.

[5] Leith, D., Shorten, R., Li, Y. “H-TCP: A framework for

congestion control in high-speed and long-distance

networks”. Technical Report, Hamilton Institute, August

2005.

[6] Stevens, W. “TCP Slow Start, Congestion Avoidance, Fast

Retransmit, and Fast Recovery Algorithms”. IETF, RFC

2001.

[7] Ns-2 network simulator (version 2). LBL, URL:

http://www.isi.edu/nsnam/ns/.

[8] J. Hadi Salim, U. Ahmed. s.l. “Performance Evaluation of

Explicit Congestion Notification (ECN) in IP Networks”:

RFC 2884, 2000.

[9] K. Ramakrishnan, S. Floyd, D. Black. s.l.”The Addition of

Explicit Congestion Notification (ECN) to IP”. RFC 3168,

2001.

[10] S. Floyd, M. Allman, A. Jain, P. Sarolahti. s.l.”Quick-Start

for TCP and IP”. RFC 4782, 2007.

[11] . Stevens, W. s.l.”TCP Slow Start, Congestion Avoidance,

Fast Retransmit, and Fast Recovery Algorithms”. RFC 2001.

[12] A. Falk, Y. Pryadkin, D. Katabi. s.l. “Specification for the

Explicit Control Protocol (XCP)”. Internet-Draft, Expires:

May 9, 2007.

[13] Dina Katabi, Mark Handley, and Charles Rohrs. “Internet

Congestion Control for High Bandwidth-Delay Product

Networks”. In Proceedings of ACM Sigcomm 2002, August,

2002.

[14] Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen

and Nick McKeown. “Processor Sharing Flow in the

Internet”. Thirteenth International Workshop on Quality of

Service (IWQoS), Passau, Germany 2005.

