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Abstract— In this paper we present a framework for autonomic
QoS provisioning for VoIP services. The central role is held
by a Measurement Based Admission Control algorithm which
incorporates three innovations. First, the mathematical underpin-
ing obeys a non-parametric approach, removing the dependency
on a priori assumed characteristics of the underlying stochastic
process, i.e. those of the work arrival process. Thus, we tackle a
major issue of common parametric MBAC.

The second and the third enhancement is embodied in the
combination of a closed-loop control based on perceived QoS.
Typically, MBAC algorithms do not validate there decision and
thats why many algorithms miss QoS targets due to non-
stationaries in work arrival processes. As a metric for perfor-
mance evaluation we devised a new approach based on the
Emodel, an ITU-T standard for quantifying QoS assessment
based on human perception.

The contribution is the mathematical framework for both, the
non-parametric MBAC and its closed-loop control but also an
analysis based on simulations.

I. INTRODUCTION

Public approval plus virtually ubiquitous accessibility supported
by a versatile set of technological drivers make the Internet evolving
faster than ever into what it has been designed for, a multi-service
communication infrastructure serving a global population. The robust
but equally flexible architecture lends itself perfectly for a broad
spectrum of applications out of which probably the most heeded one
right now is voice communication, widely known as Voice Over IP
(VoIP). Traditionally, an exclusive domain of large telecomunication
companies and carried over huge, dedicated PSTNs1, VoIP services
are continuously being taken over by companies operating on Internet
infrastructure. Actually, VoIP is to be seen as the first real-time service
on a global scale.

Services like VoIP with inherent, stringent network requirements,
however, urge for a structural move of the Internet architecture, away
from a pure best-effort service towards Quality of Service (QoS)
enhancements and the most accepted approach for QoS support is
the Differentiated Services (DiffServ) [1] architecture.

DiffServ is typically applied only on access networks, i.e. on
network edges, as the network core infrastructure is overprovisioned
to bear with large traffic volumes and as service differentiation
is considered to be of little advantage [2] in the core. Contrary
to the latter, in access networks with highly time varying loads,
overprovisioning incurs the risk of large revenue loss for Internet
Service Providers (ISP) as resources are being unused over long
periods, e.g. during night hours.

DiffServ provides scalable QoS by classifying applications into
classes and works on their respective traffic aggregates, rather than on
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single flows. Aggregates are consequently treated differential by class
priority meaning that resource assignment, like for example buffer
and forwarding capacity, is according to expected traffic volume and
class priority. DiffServ therefore enables the Internet to provide more
or less fine grained QoS guarantees for real-time services along with
reduced complexity and scalability.

Explicit but static assignment of resources to traffic classes,
however, is insufficient and another entity called Admission Control
(AC) is mandatory for QoS provisioning. In order to maximise
revenue, ISPs typically attach more customers to access links than
they can carry simultaneously since the probability of concurrent
access converges to zero with an increasing number of attached
terminals. A general rule is to attach as many customers to an access
router as possible given the constraint that a maximum of 3 percent
of customers are rejected in the busiest hour of a day, resulting in
up to an 50:1 oversubscription ratio. The role of AC is exactly the
access regulation on oversubscribed links. Generally speaking, AC is
a policy based decision algorithm to protect traffic of a class from
QoS degradation in times of high contention. In short, a new resource
consumer, i.e. a flow, is admitted to a link if its characteristic in terms
of resource demand superimposed with that of ongoing, previously
admitted consumers is up to an extent, such that a given QoS level
can be granted for the whole traffic aggregate. Though the need for
AC appears just natural, AC has not been defined for the DiffServ
architecture [1].

In this paper we present a framewok for autonomic QoS pro-
visioning for VoIP services based on DiffServ with AC as the
central component. In Sec. II, we present the mathematical model
which follows the Measurement-based Admission Control (MBAC)
approach. Contrary to common frameworks where QoS metrics are
physical parameters, in Sec. III we introduce an closed-loop control
extension based on so-called subjective QoS provisioning. Though
our framework is yet at an early stage, we present and discuss
first performance results of the MBAC algorithm in Sec. IV. Current
conclusions and an outlook in Sec. V closes this paper.

II. A NON-PARAMETRIC MODEL FOR
MEASUREMENT-BASED ADMISSION CONTROL

Measurement-based AC has been introduced to loosen dependen-
cies on accurate source, and moreover network modelling. In fact,
characteristics of traffic aggregates can be extremely complex to
model and strongly dependent on random, time varying factors like
number of cascaded queues, congestion control protocols, application
mixtures and features and even human interaction. As a response
to these findings, the rationale of MBAC is to replace a priori
assumptions by actual measurements taken in real time from traffic
aggregates, i.e. the underlying stochastic process. Statistics estimated
from these measurements are then fed in purpose build stochastic
queueing models to estimate needed resources to cater an aggregate



according to present QoS requirements.Precise estimation therewith
becomes a crucial matter for MBAC.

Generally, two properties of stochastic processes are decisive,
the marginal distribution and the autocorrelation function. While
the latter is an estimate in any case, a priori assumptions about
the marginal distribution are particular significant. To illustrate this,
simply consider the Exponential and Normal distribution. Both are
fully defined by either only the first, or by the first and the second
moment. Estimates taken from a sample applied to either model,
however, yields very different probabilities. This general fact is
directly related with MBAC as we will illustrate below.

Assume {A} as the work arrival process, and let A[s, t] be the
amount of work arriving in the interval (s, t]. Further let At =
A[−t, 0] such that the queue length at time zero is

Ω = sup
t≥0

(At − Ct). (1)

with C denoting link capacity. The probability that the queue length
exceeds ω is herewith

P{Ω > ω} = P{sup
t≥0

(At − Ct) > ω}. (2)

As (2) is difficult to compute, we use the lower bound approximation

P{sup
t≥0

(At − Ct) > ω} ≥ sup
t≥0

P{At > ω + Ct}. (3)

With ρ = ω +Ct, and let Ft(x) = P{At > x} be the CDF of {At}
we get

P{Ω > ω} ≥ sup
t≥0

P{At > ω + Ct} = sup
t≥0

(1− Ft(ρ)). (4)

Eventually, the r.h.s of Equ. 4 reveals the dependencies on assump-
tions about Ft, the integral of the margingal distribution of {A}.

The illustrated argument is generally valid for all probability
models and hence, thereof build MBAC algorithms. The generally
adopted approach to deal with that issue obeys that of parametric
statistics. Parametric in statistical terms and in this context means,
that the nature of the CDF is assumed to be known. Motivated by
the Central Limit Theorem for instance, many MBAC models assume
Gaussianity (or Normality), like [3] [4] [5] [6] and [7], while for
instance [5] assumes a Gumbel distribution [5] motivated by Extreme
Value Theory.

Particularly the Gaussian approximation has become very popu-
lar recently with rising aggregation levels in access networks and
due to its conformance with Self-Similarity (SS) and Long-Range-
Dependency (LRD) findings in network traffic [8] [9] [10] [11]. An
analytical argument in favour of is documented in [12] while [2]
further supports it empirically based on real traffic traces, though for
backbone traffic and for large time scales. The latter results, however,
are questionable as common Goodness-of-fit techniques were applied
though known to be error prone for large samples and in the context
of SS and LRD [13, Chap. 10] [14] [15] [16, Page 33]. In [14]
a more profound mathematical approach has been applied to test
the Gaussian approximation. The result is rather inconclusive, stating
that under certain conditions the approximation can be met but also
grossly missed, particularly for small time scales.

In contrast to Gaussian approximation, the authors of [17] [18]
state traffic obeys a Poisson law and is non-stationary. However, these
results have been recently called to be far unrealistic [15]. Finally,
for the sake of further highlighting diversity of findings, we cite [19]
which recommends the Gamma distribution as the best choice on
average for a comprehensive set of recorded traffic traces.

This short discourse indicates the uncertainty associated with a
priori assumptions. We conclude that there is evidence for the applica-
tion of non-parametric approaches, i.e. independent and autonomous
models flexible to adapt to any condition. Indeed, several histogram
based MBAC algorithms, like for instance [20] [21] [22], have been

introduced in the past. However, non of the papers justifies the
choice for histograms by statistical uncertainty, but use them rather
implicitely. This is also evidenced by the fact that in each case,
histograms are exclusively used in an ad-hoc fashion and parameters,
namely bin width and bin origin, are chosen intuitively. That this
salvages the risk of great imprecision is widely unknown though
elaborately presented in [16, Chap. 3].

A non-parametric method to estimate unknown densities is Kernel
Density Estimation. Following [16, Chap. 6, Equ. 6.1] the definition
reads

f̂h(y) =
1

nh

nX
i=1

k
“y − Yi

h

”
(5)

where Y is a random variable with random sample {Y1, . . . , Yn}, h
is the window width, also called the smoothing or bandwidth and k
is the kernel, which has to satisfy the condition

Z +∞

−∞
k(u)du = 1 (6)

and is therefore often chosen from a density function. In brief, the
KE can be considered as a sum of superimposed bumps centred at
the observations Yi. The shape of the bumps is defined by the kernel
function while the window width h defines their width [23]. From
(5) we get the distribution estimator by integration

F̂h(y) =
1

nh

Z y

−∞
f̂h(u)du =

1

nh

nX
i=1

K
“y − Yi

h

”
(7)

where
K(x) =

Z x

−∞
k(u)du (8)

is the integrated kernel.
The standard metric for accuracy evaluation for this type of

estimator is the Mean Integrated Squared Error (MISE) defined as

MISE(h) = E

Z
{F̂h(y)− F (y)}2dy. (9)

Letting hn1/2 → ∞ as n → ∞ yields the Asymptotic Mean
Integrated Squared Error (AMISE). It has been shown in [24] that
the AMISE is minimised by setting h equal to

ho = (Υ(K)/R1)
1/3n−1/3 (10)

with Υ(K) being a function of the kernel only. For instance, using a
standard normal density as kernel, k(x) = φ(k) and K(x) = Φ(x),
yields Υ = 1/

√
π.

From (10) we see that provided an accurate estimate of R1, the
so-called roughness defined as

Rm =

Z +∞

−∞
(f (m)(y))2dy (11)

where fm denotes the mth derivative of f , yields an estimator with
a convergence rate of n−1/3. This is slower as the rate of n−1

for parametric estimators under optimal conditions, i.e. a full match
between reality and model. This condition is, however, practically
never given. Quantification of (11) is discussed in Sec. IV.

Finally, with (7) and (10) put in (4) we get

P̂loss = P{Ω > ρ} = sup
t≥0

n
1− 1

nho

nX
i=1

K
“ρ−Ai

t

ho

”o
(12)

with {A1
t , . . . , A

n
t } being a sample of the arrival process {A} at

time scale t and setting ω in ρ = ω +Ct to be the buffer size. Using
(12) and further assuming rp to be the peak rate of the flows, we
can finally define our admission criteria. Knowing that a new flow’s



worst case behaviour in terms of resource demand is Constant Bit
Rate (CBR), ρ is set to ρ = ω + Ct− rpt and hence

Admittbool =

(
true if P̂loss < Ploss

false if P̂loss ≥ Ploss
(13)

III. CLOSED LOOP CONTROL BASED ON SUBJECTIVE QOS

The major design goal of our MBAC is autonomy as elucidated
in the previous section. By its nature, its performance only depends
on proper smoothing (ho) which is being estimated from a given
sample. There is no need for ”human fine tuning of model parameters
without any intuitive meaning”, one of the major criticism about
MBAC [25]. But there is also a commonality with general approachs,
its probabilistic nature and the associated risk of local imprecision.
Under optimal conditions, i.e. taking estimator consistency as granted,
P̂loss converges to Ploss for an infinite sample, but for realistic
sample sizes, P̂loss poses a RV by itself varying with each estimate.
Time varying estimates, and hence MBAC decision arguments, incur
the risk of over admission and thus, QoS degradation.

To account for this matter we further extend our algorithm towards
a closed-loop control. The idea is to monitor current experienced
QoS and compare it with the predicted level. In case of discrepanciy,
i.e. large deviations, the algorithm does autonomously adjust. This
differentiates our approach from traditional MBAC, which is a pure
preventive congestion control mechanism, relying solely on prediction
and model precision.

To do so, we first have to define a metric and a natural choice is the
difference between measured packet loss and the predicted P̂loss. This
standard procedure obeys the paradigm of Intrinsic QoS, i.e. quality
is evaluated on the basis of physical parameteres and predefined
thresholds, the general IETF2 metric for quality assessment [26].

Quality assessment for telephony (or VoIP), however, is a highly
subjective matter and in any case, the ultimate measure is human
satisfaction. A standard metric for the assessment of service quality
based on human perception, so-called Subjective or Perceived QoS,
is the Emodel. Started as a study by the ETSI, it has been formally
published as a standard by the ITU-T [27]. It provides an unique
method for objective mouth-to-ear transmission quality assessment
based on human perception and is defined as

R = R0 − Is − Id − Ie + A (14)

In (14), R denotes the psychoacoustic quality score between 0 and
100. It is an additive, non linear quality metric based on a set
of impairment factors. Noise and loudness effects are represented
by R0, where Is poses speech signal impairment like for example
PCM quantising distortion. Both are intrinsic to the speech signal
processing itself. Impairment imposed by the information transport is
represented by Id, which stands for speech signal delay impairment
and Ie for ”equipment” such as IP networks. Eventually, A is the
advantage factor, a compensator for poor quality along with improved
convenience (e.g. cell phones). To assess the quality of a VoIP call,
one has to compute the individual components of (14) and add them
up to get the final score. The relation of R and the final human
satisfaction has been defined in [27] and is depicted in Fig. 1.

Applying (14) as a metric for our purpose calls for discussion.
How to compute the elements of the r.h.s of (14) and on what scale
do we apply the metric, i.e. on flow or aggregate scale?

Regarding the r.h.s elements of (14), Is and R0, as not related to
impairment incurred by the transport media, are set to default values,
R0 − Is = 94 [28]. Further, assuming worst cases, A is set to zero.
Thus, only Id and Ie are remaining and the metric now reads

R = 94− Id − Ie (15)
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Fig. 1. Emodel Rating according to G.107/Annex B

Fig. 2. Packet Loss and Ie Mapping

By setting the buffer length, ω in (4), to a fixed value we can pose a
upper limit on delay impairment and thus, Id is set to the worst case
value, derived from [28, Sec. E]

Id = 4.(ω/C) (16)

Eventually, what remains is the calculation of Ie which represents
the impairment incurred by packet loss. By continously capturing loss
events, Ie does function as the desired relation to the estimated P̂loss

using (12). The relation of measured loss and Ie is generally non-
linear and VoIP codec dependent and we opt for the widely accepted
mapping presented in [28] and depicted in Fig. 2.

Up to now, we basically devised a feedback algorithm based
on measured loss events but yet there is a time relation missing.
Measured packet loss percentage (or estimated probability) alone does
not provide enough information for quality assessment. Equal loss
percentage but different distributions of loss events over time, e.g.
bursty loss at call end in contrast to uniformly distributed loss over a
complete holding time, leads to different QoS rating by individuals.

This exactly reveals the conceptual weakness inherent to commonl
MBAC algorithms purely based on intrinsic QoS, i.e. estimated QoS
parameters as for instance loss and delay probability. General best
practice is therefore to configure admission criteria that high, e.g.
Ploss = 10−6 to 10−9 such that loss events basically never take
place. Hence, masking any timing effect.This has consequences as
these rare events are basically never present in samples and moment
estimates (e.g. for parametric models) taken from the latter do not
represent the true underlying stochastic process.

Moreover, when working on traffic aggregates such low proba-
bilities are even more questionable since in case of a loss event,
only a small subset of flows is affected, leading to even lower loss
probabilities for the majority of flows. This does certainly contribute



to customer satisfaction, but as admission rates are low for such a
configuration ISPs risk lost revenue due to underutilised resources.
In fact, this is even more relevant for VoIP applications, which are
up to a certain extent tolerant to packet loss if loss clusters are not
too dense.

In the literature of subjective QoS assessment, the impact of loss
event distribution is well known; for an elaborate overview see for
example [29]. To incorporate this in our model, we adapt the concept
of loss gaps and bursts similar to the model presented in [28]. Loss
events are captured and based on a preset time distance grouped in
bursts or in gaps. Whenever, there is transition from a loss gap to a
burst or vice versa, the subjective quality is computed using the loss
percentage and the mapping presented in Fig. 2. More formally, let

E[Ie] = 1/T

NX
i

Ie,i ∗ ti (17)

be the mean loss impairment over a window of the last T seconds,
where ti is the sojourn time in either gap or burst state. Putting (16)
and (17) in (15) we get our final quality score which reads

R(T ) = 94− 4.(ω/C)− 1/T

NX
i

Ie,i ∗ ti (18)

By continuous computation of this score, we gain a long term picture
about QoS levels experienced by customers. For example, setting T
in (18) to 210s, the typical holding time for business calls, the rating
reflects the quality a terminating call would have received. If the
rating is below user satisfaction, i.e. R(T ) < 80, admission of new
flows is temporarily suspended.

Yet we did not discuss the scale on which we apply the QoS
assessment metric. Our goal was to devise a framework for DiffServ,
whose principal concept is aggregation for scalability reason. In
adherence to this concept, we also apply our model on aggregate scale
as this does not affect our quality rating. Loss events on aggregate
scale can be assumed to be distributed over subsets of individual flows
and thus, the experienced quality of a single flow can be assumed to
be far better compared to that of the aggregate with a high probability.
Thus, our model can be seen as a worst case model and does therefore
provide some safety margin. Furthermore, if applied on flow scale,
we would have to average individual ratings what in turn yields a
rating on aggregate scale.

Plugging all components together we have the following func-
tional. Whenever a flow requests admission, we use (12) to check if
the network has enough resources on a short term. This is achieved
by keeping the sample sizes limited such that the algorithm does
maintain its reactivity and flexibility, the main goal of MBAC. This
is the preventive functional based on prediction of resource demand.

If the first condition is met, a second conditions is verified for
long term QoS, which can vary from the former due to the illustrated
effects in the previous paragraph. This is the reactive functional, based
on measured loss events.

Only ff both conditions are met, the flow is admitted, else rejected.
Therefore, the algorithm can be considered as largely autonomous due
to its independence from human ”fine tuning” and as equipped with
a closed-loop control mechanism to deal with misleading conditions,
i.e. missing preset performance targets due to prediction errors in
(12) or simply due to local effects of the loss process.

IV. PERFORMANCE EVALUATION OF THE MBAC
COMPONENT

The main contribution of this paper is the conceptual and math-
ematical framework of the presented closed-loop MBAC tailored
to subjective QoS provisioning for VoIP services. A complete and
thorough investigation of its features, advantages and possibly weak-
nesses is currently going on and some indicative results are presented

1Mbps5ms

100Mbps

5ms

Router Destination

Source 0
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Fig. 3. Simple many sources, one router and one destination topology

here in advance. Our aim is to support our concept quantitatively and
to provide insight for evaluation purposes and community feedback.

The argument in favour of a non-parametric approach was uncer-
tainty about the marginal distribution at small time scales t = τ in
(12). Thus, before we can evaluate the performance, the question is
what is the time scale range of interest? To answer this question, we
again consider the context of human perception. It is known that the
critical time for voice intelligibility is in the range of 40 to 80 ms, the
duration of a single phoneme. Thus, the operational time scale of the
algorithm can also only be in this range, i.e. 20ms up to a maximum
of 100ms. More is not meaningful as the entropy a conversation could
experience in such a large window is far from what is acceptable.
Finally, we annotate that the maximum one way round trip time for
VoIP should not exceed 150ms. This makes larger time scales on a
single node somewhere on the paths even less meaningful.

To evaluate the algorithm we developed a module for the NS-23

simulator. As central for the algorithm, our focus at this stage is
the performance of the density estimator, i.e. Equ. 12. As network
topology we use a simple many sources, one router and one desti-
nation topology, see Fig. 3 for details. Sources are modeled using
standard On/Off models to simulate realistic VoIP encoders with
Voice Activity Detection (VAD) and On/Off distributions are either
Exponential (EXPOO) or Pareto (POO). For both source models the
mean On time is set to 600ms and Off to 300ms respectively [29].
On call level, Poisson distributed call arrivals are configured with
mean 3.75/s and exponentially distributed holding times with mean
210s, the typical setting for business environments [29]. In On state,
sources emit packets of 125 Bytes length and with rate of 64Kbps,
simulating a G.711 codec and one voice frame per packet.

Finally, the router queue is set to 15 packets herewith limiting
maximum delay to 15ms. Here we assume 10 hops end-to-end as
typical for the Internet and a maximum delay of 150ms one way as the
desired upper limit. A busy hour is simulated setting total simulated
time to 4100s where the first 500s are disregarded to evaluate the
system in equilibrium.

To gain detailed insight, we evaluate the algorithm for particular
time scales separately and the results are listed in Tab. IV. Perfor-
mance metrics are, target loss threshold Pl,t, total loss ratio P̂loss

and link utilisation Ul as standard for MBAC evaluation.
The results provide some interesting insight. For a very small time

scale τ , included for instructive reasons and out of the range of
interest, the algorithm is able to achieve high link loads Ul, i.e. high
admission rates (ISPs objective) but misses the configured target loss
probability Pl,t (Customers objective) up to three orders of magnitude
for both source models. For τ = 0.04, a scale in the range of
interest, the algorithm does perform much better, i.e. achieving high
link loads and does approach Pl,t quite closely. On the largest time
scale, τ = 0.08, the algorithm becomes too restrictive for strict QoS
targets in the order of 10−3. In conclusion, what can be stated is,
that the algorithm does perform well for QoS targets up to 10−2 and
τ ≥ 0.04.

Are there explanations for the imprecision? The bottleneck capac-
ity is 1Mbps and since the MBAC works on this scale, the maximum
arrival rate fluctuates around this value. That means that in average

3http://www.isi.edu/nsnam/ns/



TABLE I
SIMULATIONS RESULTS FOR THREE DIFFERENT TIME SCALES t = τ

τ = 0.01 POO EXPOO

Pl,t P̂loss Ûl P̂loss Ûl

10−1 4.7 ∗ 10−1 1.00 4.6 ∗ 10−1 1.00

10−2 3.8 ∗ 10−1 0.99 3.8 ∗ 10−1 0.99

10−3 1.8 ∗ 10−1 0.70 3.0 ∗ 10−1 0.99

τ = 0.04

10−1 1.1 ∗ 10−1 0.97 1.1 ∗ 10−1 0.97

10−2 4.0 ∗ 10−2 0.92 2.0 ∗ 10−2 0.89

10−3 ≤ 10−5 0.50 ≤ 10−5 0.50

τ = 0.08

10−1 4.0 ∗ 10−2 0.93 3.0 ∗ 10−2 0.91

10−2 5.0 ∗ 10−4 0.92 2.0 ∗ 10−4 0.65

10−3 ≤ 10−5 0.50 ≤ 10−5 0.50

around C∗0.01 bits can be sent per τ , corresponding to 1̃0 packets in
the case of τ = 0.01. This is a very small value and does transform
the marginal distribution of the arrival process in a rather discret one,
in turn leading to imprecision since the estimator assumes continuous
forms.

The main reason, however, lies in the estimation of the optimal
smoothing parameter in Equ. 12, ho. As mentioned in Sec. II, h0

is a function of (11), the roughness of f(x) and for this first
study, we used a Gaussian scale reference estimate href

σ (R1(f)) =
(σ̂34)1/3n−1/3 with f ∼ φ(x). This estimate is too imprecise for
very small time scales as it depends on the variance which is limited
for this time scales and does assume near Gaussian shapes.

Finally, some comments are added to this discussion. In the
first place, using a Gaussian reference estimate is contradictory to
our main goal, loosen dependency on statistical assumptions. For
this reason, we are currently evaluating the so-called data driven
bandwidth selection methods based on the cross-validation principle,
see for example [16, Chap. 6.5] for an introduction. Moreover, for
this evaluation we did not enable the feedback algorithm. If enabled,
it would prevent the algorithm from over admission, i.e. missing
the target loss probability. Though this is the desired feature, it can
only be the goal to optimise the predictor, i.e. Equ. 12, for instance
for stability reasons. Hence, in this evaluation we only focused on
the performance of the Kernel Estimator, i.e. Equ. 12 to validate our
argumentation.

V. CONCLUSION

In this article we presented the framework for autonomic QoS
provisioning with an MBAC algorithm as central component. Three
major innovations do differentiate our algorithm from common
MBAC approaches. The first one is its independence on statistical
assumptions. In Sec. II we provided evidence about the dependency
of MBAC approaches on the marginal distribution of the work arrival
process and also related uncertainty about its nature based on a set
of recent publications. We concluded that a non-parametric approach
is to be investigated and developed an algorithm based on Density
Estimation.

Naturally, estimation of parameters is afflicted by chance and thus
subject to local imprecision, as discussed in Sec. III. To overcome this
issue, the second enhancement is the development of an closed-loop
control, a step ahead from classical open-loop MBAC.

A third innovation is its focus on the so-called subjective QoS.
Rather than being built on metrics with purely physical interpreta-
tions, the feedback mechanism presented does account for human
satisfaction. This has been motivated by the fact that the functional

between a QoS parameter and human satisfaction is non-linear. We
showed that intrinsic QoS is inappropriate for VoIP quality assess-
ment and devised a model which does quantify human satisfaction
based on measurements using the ITU-T Emodel.

The MBAC model of the framework has been implemented in a
simulator and analysis showed that the it generally performs very
well. This is interesting as yet not all improvements have applied for
this analysis. But also some issues have been indentified, one of the
goals of this investigation. Solutions are currently being evaluated
and will be published in a follow-up of this work.
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