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Abstract. Inter-domain traffic engineering is a key issue when QoS-aware 
resource optimization is concerned. Mapping inter-domain traffic flows into 
existing service level agreements is, in general, a complex problem, for which 
some algorithms have recently been proposed in the literature. In this paper a 
two-phase algorithm to optimize the utilization of domain resources both from a 
technical perspective and a monetary costs perspective is proposed. The first 
phase is carried out by a greedy random algorithm, which returns a feasible 
solution. This is followed by an improvement phase performed by a genetic 
algorithm, which returns the optimal solution. Results show that the first phase 
produces quasi-optimal resource assignments for regional ISPs and outer core 
autonomous systems (AS). For transit core and dense core ASs, where the 
number of aggregate flows is considerably higher, the second phase leads to 
significant improvement.   

1   Introduction 

The main purpose of inter-domain resource optimization is to map incoming inter-
domain traffic flows into inter-domain network resources, satisfying quality of service 
(QoS) requirements, while aiming at optimizing the use of network resources across 
autonomous systems (AS) boundaries. Network resources usage is, in any case, 
conditioned by existing Service Level Specifications (SLSs) that, in turn, result from 
the Service Level Agreements (SLAs) established between each domain and its 
neighbours. For the purpose of this paper, the terms ‘domain’ and ‘autonomous 
system’ are synonyms. 

In order to describe the inter-domain relationships of an autonomous system, one 
can use a simple model, as shown in Figure 1. An autonomous system is 
interconnected with other autonomous systems by means of its ingress and egress 
interfaces.  

The service offerings between autonomous systems as well as their mutual 
responsibilities are described by means of Service Level Agreements. In general, each 
SLA defines a set of contractual, administrative and technical requirements. The latter 
are called Service Level Specifications. An SLS comprises several items or clauses, 
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including identification, application scope, flow identification, traffic conformance, 
excess treatment, and performance guarantees.  
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Figure 1 – Inter-domain relationship model 

In the context of the present work an SLS is characterized by an egress interface, 
an inter-domain QoS class i-QC as proposed in [24], a destination prefix, the 
corresponding maximum bandwidth requirements b, and the monetary cost per unit of 
bandwidth, mc. The latter component reflects the monetary cost associated with the 
established SLA. An SLS entry for a domain with destination prefix D has, then, the 
following format: 

 
SLS entry = [egress interface, i-QC, D, b, mc] 

 
On the other hand, a domain receives from upstream domains a collection of d data 

flows towards other domains. Depending on the domain policy and on their common 
characteristics, such as destination and QoS class, these flows may be aggregated into 
m inter-domain traffic flows. The flows’ common characterization includes the inter-
domain class mapping and the destination prefix. That is, an aggregated flow entry for 
a domain with destination prefix D has the following format: 

 
Aggregate flow entry = [ingress interface, i-QC, D, r] 

 
where r is the bandwidth requirement of the aggregated flow. The flow will be 

mapped into one of the existing SLSs. The appropriate selection of the SLSs for the 
inter-domain traffic flows benefits the domain by improving the network resources 
utilization. This task is executed today in a trial-and-error fashion. 

The optimization of inter-domain network resources falls into the Generalized 
Assignment Problem (GAP) category, where the objective is to find a minimum cost 
assignment of 0>m  jobs to 0>n  agents, subject to the agents’ available capacity. In 
the specific problem at hand, jobs are aggregated traffic flows and agents are the 
established SLSs.  

Formally, the problem can be stated as follows. Let },...,2,1{ nI =  be the set of 
SLSs and },...,2,1{ mJ =  the set of aggregated traffic flows. For each SLS i there is a 
given resource capacity, expressed in terms of bandwidth, 0>ib . For each Ii∈  and 
each Jj∈  there is a given set of costs, 0, >jic , and resource requirements, 0, >jir , 
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for assigning an aggregated traffic flow j to an SLS i. Additionally, 
jix ,
 is a variable 

that is set to 1 if the traffic flow j is assigned to SLS i and 0 otherwise. The 
mathematical formulation is as follows: 
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The optimisation goal is to minimize the cost (1), where the capacity constraint (2) 
ensures that the total resource requirements of the traffic flows assigned to each SLS 
do not exceed the available capacity. The assignment constraint (3) guarantees that 
each traffic flow is assigned to exactly one SLS. 

The objective of the work presented in this paper is to propose a two-phase 
algorithm to optimize the utilization of domain resources both from a technical 
perspective and a monetary costs perspective. The proposed algorithm is a modified 
version of a Greedy Randomised Adaptive Search Procedure (GRASP) [15] with only 
one trial. The first phase is supported by a greedy random algorithm which finds a 
first feasible solution with respect to domain resources. Then it is followed by an 
optional second phase carried out by a genetic algorithm to reach an optimal solution. 
The genetic algorithm includes the solution found in the first phase in its initial 
population, on which it improves towards an optimum assignment solution during the 
generation cycles. The improvement resulting from the second phase is achieved at 
the expense of a considerable increase in the processing time. 

This work also proposes the inclusion of monetary costs in the traffic optimization 
strategy, in line with [25]. For this, an objective function is proposed, which includes 
the domain’s resources technical cost and the monetary cost. 

In section 2 of this paper an overview of related work is given. This is followed by 
a presentation of the proposed algorithms and proposed objective function in section 
3. In order to validate our work, an evaluation framework comprising a set of test 
scenarios, each one representing a type of internet autonomous system [1], is 
presented in section 4. Section 5 presents and discusses the obtained results. The 
conclusions and guidelines for further work are presented in section 6.   

2   Related Work 

Several studies on intra-domain resource optimization, such as [4][6][7][8] and [14], 
can be found in the literature. In the case of inter-domain, references [2][5] and [9] 
constitute the framework for most of the current proposals. For inter-domain traffic 
optimization we can point the study developed in the MESCAL project [9] from 
which resulted the proposals presented in [5] and [26]. The first proposal uses greedy 
algorithms for selecting egress routers for inter-domain traffic with bandwidth 
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guarantees in order to optimise the total bandwidth consumption in the network. 
Nevertheless, this proposal gives us a partial image of a domain, limiting the number 
of egress routers to 30 and the number of prefixes to 1000. On the other hand, the 
second proposal [26] presents a genetic algorithm to solve the same problem, using a 
more limited scenario with 100 destination prefixes only. Moreover it does not give 
any clue about the processing times. 

In the proposal presented in this paper, we employ a two-phase algorithm strategy 
which uses a greedy random algorithm to generate a first feasible solution. This 
solution is next improved on a second phase through a genetic algorithm. The 
improvement of greedy-random-generated solutions to find locally optimum solutions 
has already been proposed by several authors [21][15] in what is called greedy 
randomized adaptive search procedures (GRASP). An extensive list of bibliography 
about GRASP can be found in [16]. GRASP procedures are iterative procedures in 
which each iteration consists of two phases: a construction phase, in which a feasible 
solution is produced, and a local search phase, in which a local optimum is searched 
in the neighbourhood of the solution. At the end of the process, the best overall 
solution is kept as the result.  

GRASP procedures have already been applied in the networking area.  In [19] they 
are used to design a survivable Wide Area Network backbone. In [20] they are used to 
take routing decisions about private virtual circuits in frame relay networks. 

Our proposal employs a genetic algorithm during the local search phase of the 
GRASP procedure. GRASP hybridization with a genetic algorithm has already been 
proposed by other authors like in [22][23] and has been applied, for example, in the 
Unmanned Air Vehicles area [17]  to take routing decisions. 

In what concerns genetic algorithms, they already have been used to solve network 
optimization problems [3][4][6][7][8][14]. These algorithms, belonging to the class of 
evolution strategies used in optimisation, resemble the process of biological 
evolution, where each individual is described by its genetic code, called a 
chromosome. On the other hand each chromosome is composed of individual genes. 
In the problem at hand, a gene is the assignment of a single aggregate traffic flow to 
an SLS, and an individual (i.e., a chromosome) is a potential solution. 

To the best of the authors’ knowledge, there is a clear lack of a comprehensive 
study about traffic optimization for the different types of existing domains as defined 
in [1]. On the other hand, there is also no proposal comparing the processing times of 
genetic algorithms with other types of algorithms for the inter-domain traffic 
optimization problem.  

As in [26], our proposal contemplates both technical costs and monetary costs for 
traffic optimization. The latter are usually only considered at a high level of domain 
management. The proposed approach extends the use of monetary cost to low level 
decisions of traffic engineering. 

3   Proposal 

This section presents the proposed two-phase traffic engineering optimization 
algorithm. The first phase is carried out by a greedy random algorithm, with the 
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purpose of determining feasible solution after a very short computation time. The 
second phase is performed by a genetic algorithm that, without the constraints of short 
response time, improves on the solution returned by the first phase. This section also 
presents the proposed objective function for cost determination. 

3.1 Objective cost function 

The resource usage optimisation goal is the minimisation of the cost function (5) or 
objective function ji ,ψ  . This function has two components, one that measures the 
egress interfaces bottleneck, or technical cost (6), and one that measures the monetary 
cost of the assignment (7). The weight of each component is regulated by the 
parameter α. For example, when α=0 only the monetary cost component is considered 
and when α=1 only the technical cost component is taken into consideration. The cost 
function and its components are as follows:  

jijiji MR ,,, )1( ⋅−+⋅= ααψ      with [ ]1,0∈α  

and 

(5) 

( )2, 1.0
1
+−

=
ji

ji bb
R  (6) 

jiji bcM ⋅=,  (7) 

where ib  and jb  are the SLS i available bandwidth and the aggregated flow j 

required bandwidth, respectively. ic  is the SLS i monetary cost. In the denominator of 
(6) the value 0.1 was added in order to limit the value of  the technical cost to 100. 
 

3.2 First phase – Greedy Random Algorithm 

The algorithm used in the fist phase is a variation of the greedy random algorithm 
proposed in [18]. On a limited number of trials the algorithm tries to find a feasible 
solution. Each trial a cycle starts by finding the restricted candidate list (RCL) of the 
current flow. The RCL contains the set of feasible SLSs. The selection of these SLSs 
is based on information such as destination address prefix, QoS class, and available 
bandwidth, and the resource cost returned by equation (7) (see section 3.1). Then it 
randomly assigns the flow to one of the SLSs in the RCL.  

This algorithm fails if no solution is found after M trials. In our tests a solution was 
found after 20 trials on average, and the algorithm never failed for the studied 
scenarios. This algorithm has a computational complexity of ( )MmnO , where m is the 
number of flows and n the number of SLSs. 
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3.3 Second phase - Solution refinement 

The algorithm used to perform a refinement of the solution returned in the first phase 
is a variation of the proposal in [13] and different from the one presented in [26]. As 
shown in Figure 2, the algorithm starts by building the restricted candidate gene list 
(RCGL), in the same way as the construction of the RCL list of the first phase. Then 
the flows are randomly and uniformly distributed by the RCGL elements, leading to 
the initial population. The solution returned by the algorithm in the first phase is also 
inserted into this population. Then the population is submitted to an evolution for a 
predefined number of generations.  

On each generation the fitness of every chromosome is evaluated by (1) using the 
objective function given in equation (5). The chromosomes are ranked and the 
generations’ best fitted individual is saved.  Then the fraction of the more fitted 
individuals is retained for the next generation and the fraction of the less fitted is 
discarded. After that, two chromosomes from the higher fitness fraction of the 
population are randomly selected and submitted to a crossover process to produce an 
offspring. In this process a set of genes of the higher fitness chromosome are 
randomly selected with probability pc, and combined with a set of genes of the lower 
fitness chromosome, in order to compose a new chromosome for the next generation. 
This offspring is then submitted to a mutation process where its genes are randomly 
changed with a mutation probability pm. These new genes belong to the RCGL 
initially created. 

 
Build the restricted candidate gene list (RCGL); 
Generate a population of N chromosomes; 
For each generation  

Calculate the fitness of each chromosome; 
Rank the population by fitness; 
Save the generation’s best chromosome; 
Pass a fraction of the higher fitness individuals to next generation; 
Discard a fraction of lower fitness individuals 
Crossover the remaining chromosomes to generate new individuals 
Mutate the new individuals  

Endfor. 

Figure 2 – Proposed genetic algorithm 

Empirical trials gave us the most suitable values for N, pc and pm, as 60, 0.7, and 
0.07 respectively. For the number of generations we found the value of 40 suited, 
higher values leading to no improvement. 

The computational complexity of this algorithm is ( )GNmnO , where G is the 
number of generations. 

4   Evaluation Framework 

In order to evaluate each algorithm, several scenarios were built, each representing a 
typical autonomous system.  
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The characterisation of autonomous systems has been studied in several pieces of 
work in the recent past [1][10][11]. For the present study, the characterisation 
presented in [1] was used as a basis, as this represents the most recent work.  

According to [1], ASs can be classified as costumer ASs, small regional ISPs, outer 
core, transit core, and dense core. The existing numbers of ASs, for each of these 
categories, are presented in Table 1. 

 

Table 1. Hierarchical distribution of ASs [1] 

Level Layer # of ASs
0 Dense Core 20 
1 Transit core 129 
2 Outer core 897 
3 Small regional ISPs 971 
4 Customers 8898  

Table 2. Interconnectivity between levels [1] 

Level 0 1 2 3 4 
0 312 626 1091 958 6732 
1 183 850 1413 665 3373 
2 29 145 1600 543 3752 
3 0 0 0 212 2409  

 
Still according to [1], there are certain numbers of ingress and egress interfaces to 

ASs of the same or different class. These numbers are reproduced in Table 2, where 
the columns represent ingress interfaces and the rows represent egress interfaces. For 
instance, there are 312 ingress interfaces between all dense core ASs (i.e., level 0 
ASs), 183 ingress interfaces between dense core and transit core ASs, and 29 ingress 
interfaces between dense core and outer core ASs. 

Using the values of Tables 1 and 2 as a basis, four different evaluation scenarios 
were constructed, each one representing a typical non stub autonomous system of type 
‘small Regional ISPs’, ‘outer core’, ‘transit core’, and ‘dense core’. ASs of type 
‘customer’ as stub ASs were not considered in the tests.  

Each of these four scenarios (i.e., typical AS) is characterised by a given number of 
ingress interfaces, egress interfaces, supported QoS classes, maximum number of 
destination prefixes, aggregate bandwidth and number of aggregate flows, as 
presented in Table 3.       

Table 3 – Test scenarios characterization 

AS level Dense 
core 

Transit 
core 

Outer 
core 

Small 
Regional ISP 

Test scenario #0 #1 #2 #3 
Ingress Interfaces 26 13 5 2 
Egress Interfaces 486 50 7 3 

QoS classes 3 3 3 3 
Destinat. prefixes 10915 10915 10915 10915 
Bandwidth (aggr.) 0..100 0..100 0..100 0..100 
Aggregate flows 454997 227576 65168 42869 

 
In this table, the number of destination prefixes corresponds to the total number of 

ASs, which can be found by adding the number of ASs given in Table 1.  
The number ingress interfaces in Table 3 was found by dividing the total number 

of ingress interfaces presented in Table 2 by the number of corresponding ASs 
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presented in Table 1 (for instance, in the case of dense core ingress interfaces, 26 = 
(312 + 183 + 29) / 20). The number of egress interfaces was given applying the same 
process to egress interfaces of the table. 

 A maximum of 3 inter-domain QoS classes was selected. The maximum 
bandwidth per aggregate flow is expressed by a number between 0 and 100 (like a 
percentage).  

The domain characteristics defined above were used by a flow generator algorithm 
in order to determine the number of aggregate flows for each of the scenarios. This 
algorithm consists of the following five steps: 

 
Step 1: Create a set of ingress traffic flows; 
Step 2: Aggregate the flows with the same class requirements and the same 

destination; 
Step 3: Randomly and uniformly distribute m aggregate flows by n egress 

interfaces; 
Step 4: Create some spare bandwidth summing a random, uniformly-distributed 

value between 0 and 10 to each SLS; 
Step 5: Set a monetary cost to each SLS adding a random, uniformly-distributed 

value between 1 and 10. This value is not correlated with the SLSs’ 
bandwidth.  

 
In Step 1, the creation of the ingress traffic flows is done by randomly and 

uniformly distributing a maximum of F flows by each of the q inter-domain QoS 
classes and by m ingress interfaces, for F destinations prefixes, where F is the total 
number of autonomous systems previously defined. On the other hand, in step 2, the 
flows are aggregated, and on the remaining steps 3 to 5 the traffic flow and the SLS 
matrices are created. 

For each generated scenario this algorithm guarantees that there exists at least one 
global assignment solution, that is, that it is possible to assign all traffic flows to 
SLSs.  

The algorithms under study were coded using the MATLAB language, and the 
tests were performed in a machine with a Pentium 4 processor at 1.7 GHz, 1GBytes of 
RAM, with the MS Windows XP operating system. 

The comparison of the algorithms was carried out using the following parameters: 
1. total cost of the solution, given by equation (1), with the cost given by (5) for 

α={0, 0.5, 0.98, 1}; 
2. total processing time spent by the test machine in order to run the algorithms 

for each test scenario. 

5   Results 

Each of the four scenarios presented in Table 3 was used for testing the assignment 
algorithms presented in Section 3. The results of the tests are presented below. 

Figure 3 shows the comparison between the processing times of both algorithms. 
The processing time of the genetic algorithm varies from 36 to 155 times the 
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processing time of the greedy random algorithm. The processing time of the genetic 
algorithm includes the time taken by the greedy random algorithm in order to find the 
first-phase solution. 

#0 #1 #2 #3
0

2.5

5

7.5

10

12.5

15

Scenarios

P
ro

c.
 ti

m
e 

(h
ou

rs
)

GA
Greedy Random

 
Figure 3 – Processing time comparison between the genetic algorithm (GA) and the 

greedy random algorithm. 

Figure 4 presents the technical costs comparison having by reference a set of 
“optimal” values that resulted from the best values of the overall test trials. This 
figure shows that for scenarios #2 and #3 the values returned by the greedy random 
algorithm are almost optimal and little improvement is achieved with the genetic 
algorithm. Additionally, the figure also shows that the genetic algorithm produces 
considerable improvement for scenarios #0 and #1. The technical costs are reduced 
nine times for scenario #0 and six times for scenario #1. The optimal values of the 
technical costs are reached with α = 0.98.  

Figure 5 presents a similar comparison, this time in terms of monetary costs. 
Again, the greedy random algorithm returns quasi optimal results for scenarios #2 and 
#3, while the genetic algorithm leads to considerable improvement in scenarios #0 
and #1. The optimal values of the monetary costs are reached when α is lower than 
0.98. 
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Figure 4 – Technical costs comparison between the reference values and the greedy 

random and the genetic algorithms 
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Figure 5 – Monetary costs comparison between the reference values and the greedy 

random and the genetic algorithms 
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6   Conclusions 

Inter-domain QoS-aware resource optimisation is one of the main challenges of 
current traffic engineering. In this paper, a two-phase algorithm for the optimisation 
of inter-domain traffic assignment was proposed. This optimisation can be done with 
respect to two different and independent variables, the technical cost and the 
monetary cost of the used resources.  

The evaluation of the proposed algorithm has shown that the use of a two-phase 
approach has several benefits. The first phase leads to a feasible solution within a 
relatively short time. Moreover, the solution provided by this phase is quasi-optimal 
for Outer Core and Small Regional ISP scenarios. The second phase leads to 
optimised results, at the expense of processing power and time. The benefits of this 
phase are apparent in the Dense Core and Transit Core scenarios, for which it leads to 
an improvement of technical cost up to 9 times and a monetary improvement of more 
than 1.5 times.  

The work has also shown that it is possible optimize traffic flows assignment not 
only in terms of technical cost but also in terms of monetary cost.  

The work presented in this paper has unveiled several other issues for future work. 
The inclusion of other QoS parameters in the decision process is an obvious field for 
further research. In this respect, ways of efficiently linking network operation 
information (e.g. QoS routing information) with high-level traffic engineering 
decisions will be explored in the context of on-going projects. Another line of 
research will be the proposal and evaluation of new assignment algorithms, in order to 
significantly reduce the processing time. 
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