
Comparative Study of Inter-Domain Traffic Optimization Algorithms

Manuel Pedro1,2, Edmundo Monteiro2, and Fernando Boavida2
1Polytechnic Institute of Leiria

ESTG, Morro do Lena – Alto do Vieiro
2411-901 Leiria

PORTUGAL

2University of Coimbra
Pólo II, Pinhal de Marrocos,

3030-290 Coimbra
PORTUGAL

E-mail:{macpedro, edmundo, boavida}@dei.uc.pt

Abstract

Inter-domain traffic engineering is a key issue when
QoS-aware resource optimization is concerned. Mapping
inter-domain traffic flows into existing service level
agreements is, in general, a complex problem, for which
some algorithms have recently been proposed in the
literature. Nevertheless, these algorithms have not yet
been the subject of extensive study. The purpose of this
paper is to contribute to a better understanding of
existing inter-domain optimization algorithms, by
studying and comparing their performance in a variety of
scenarios. The analysis presented in the paper showed
that most algorithms fail in complex scenarios. To cope
with this, several modifications to existing algorithms
were proposed and tested. In addition, the analysis has
shown that genetic based algorithms lead to better and
lower cost solutions, at the expense of processing time.

1. Introduction

The main purpose of inter-domain resource
optimization is to map incoming inter-domain traffic
flows into inter-domain network resources, satisfying
quality of service (QoS) requirements, while aiming at
optimizing the use of network resources across
autonomous systems (AS) boundaries. Network resources
usage is, in any case, conditioned by the existing Service
Level Specifications (SLSs) that, in turn, result from the
Service Level Agreements (SLAs) established by each
domain with its neighbors. For the purpose of this paper,
the terms ‘domain’ and ‘autonomous system’ are
synonyms.

In order to describe the inter-domain relationships of
an autonomous system, one can build a simple model as

shown in Figure 1. An autonomous system is
interconnected to other autonomous systems by means of
its ingress and egress interfaces. The service offerings
between autonomous systems as well as their mutual
responsibilities are described by means of Service Level
Agreements. In general, each SLA defines a set of
contractual, administrative and technical requirements.
The latter are called Service Level Specifications.

Subscribed SLSs

Aggregated flows

i=1,2,…,n

j=1,2,…,m

Upstream
domains

Downstream
domains

D
om

ai
n

Eg
re

ss

in
te

rf
ac

es
In

gr
es

s
in

te
rf

ac
es

z=1,2,…,d

Figure 1. Inter-domain relationship model

An SLS comprises several items or clauses, including

identification, application scope, flow identification,
traffic conformance, excess treatment, and performance
guarantees. The SLS identification allows for the unique

identification of the SLS in the context of the SLA. The
application scope identifies the region over which the
QoS policy is enforced, normally by specifying their
boundary ingress and egress points. The flow
identification defines the kind of data stream, the source
and destination information, as well as the respective QoS
classes. On the other hand, the traffic conformance clause
describes the characteristics that the traffic injected by the
upstream domain should comply with in order to get the
specified QoS guarantees. The excess treatment clause
describes how to the excess traffic, i.e. out-of-profile
traffic, should be processed. Lastly, the performance
guarantees clause describes the packet transfer
performance metrics that the domain should offer to its
partners.

In the context of the present work, an SLS is
characterised by a destination prefix, an inter-domain
QoS class, i-QC as proposed in [20], the corresponding
maximum bandwidth requirements, bw, and an egress
interface. That is, an SLS entry for domain A is:

SLS entry = [(destination prefix) ∉A, i-QC, bw, egress
interface]

On the other hand, a domain receives from upstream
domains a collection of d data flows towards other
domains. Depending on the domain policy and on their
common characteristics, such as destination and QoS
class, these flows may be aggregated into m inter-domain
traffic flows. The flows’ common characterization
includes the inter-domain class mapping and the
destination prefix. That is, an aggregated flow entry for a
domain A is:

Aggregate flow entry = [ingress interface, (destination
prefix) ∉A, i-QC, rbw]

where rbw is the bandwidth requirement of the
aggregated flow. Aggregated flows must, then, be
mapped into the existing SLSs. The appropriate selection
of the SLSs for the inter-domain traffic flows benefits the
domain by improving the network resources utilization.
This task is executed today in a trial-and-error fashion.

The optimization of inter-domain network resources
falls into the Generalized Assignment Problem (GAP)
category, where the objective is to find a minimum cost
assignment of 0>m jobs to 0>n agents, subject to the
agents’ available capacity. In the specific problem in
hand, jobs are aggregated traffic flows and agents are the
established SLSs.

Formally, the problem can be stated as follows. Let
},...,2,1{ nI = be the set of SLSs and },...,2,1{ mJ =

the set of aggregated traffic flows. For each SLS i there is
a given resource capacity, expressed in terms of

bandwidth, 0>ib . For each Ii∈ and each Jj∈ there
is a given set of costs, 0, >jic , and resource requirements,

0, >jir , for assigning an aggregated traffic flow j to an

SLS i. Additionally, jix , is a variable that is set to 1 if the
traffic flow j is assigned to SLS i and 0 otherwise. The
mathematical formulation is as follows:

() ∑∑
= =

⋅=
n

i

m

j
jiji xcxc

1 1
,, (1)

subject to

,,
1

,, Iibxr
m

j
ijiji ∈∀≤⋅∑

=

 (2)

∑
=

∈∀=
n

i
ji Jjx

1
, ,,1 (3)

.,},1,0{, JjIix ji ∈∀∈∀∈ (4)

The optimization goal is to minimize the cost (1),
where the capacity constraint (2) ensures that the total
resource requirements of the traffic flows assigned to
each SLS do not exceed the available capacity. The
assignment constraint (3) guarantees that each traffic flow
is assigned to exactly one SLS.

The objective of the work presented in this paper is to
evaluate and compare the more significant inter-domain
traffic optimization algorithms. This will lead to a better
understanding of the general problem of inter-domain
traffic management and to an identification of the main
obstacles to efficient and effective inter-domain QoS
provision. In order to reach the stated objective, a set of
test scenarios was generated. These scenarios take into
account relevant work by other researchers on the
characterisation of the Internet hierarchy [1], and were
used to compare the optimization algorithms proposed in
the MESCAL European project [2]. At a subsequent stage
some improvement on the algorithms proposed in [2] was
introduced.

Section 2 of this paper presents a description of each
of the tested traffic engineering algorithms. In section 3
the evaluation framework is detailed along with some
implementation strategies. Section 4 presents and
discusses the obtained comparison results. Section 5
summarizes the work and presents future research
directions.

2. Traffic engineering algorithms

Several studies on intra-domain resource optimization,
such as [4][6][7][8], can be found in the literature. In the
case of inter-domain, references [2][5][9] and [14]
constitute the framework for most of the current
proposals. Nevertheless, to the best of the authors’

knowledge, there is a clear lack of a comprehensive study
for the evaluation and comparison of the existing
proposals for inter-domain resource optimization.

GAP is an NP-Complete problem which is not only
unsolvable [18], but also very difficult to solve
approximately [17][19]; thence the only option is relying
on heuristics.

The use of greedy heuristic algorithms for selecting
egress routers for inter-domain traffic with bandwidth
guarantees, optimising the total bandwidth consumption
in the network, is proposed in [5]. In this work the
authors evaluate the use of three heuristic algorithms:
greedy-cost, greedy-penalty, and greedy-random.

The optimization of inter-domain resource utilisation
is being studied in MESCAL project [9]. In the context of
this project Morand et al. [2] proposed six different
algorithms for inter-domain resource optimization:
random assignment, brute force, a genetic algorithm, and
the three heuristic algorithms already addressed in [5]
(greedy-cost, greedy-penalty, and greedy-random).
Morand et al. also propose modifications to these
algorithms in order to cope with resource exhaustion
situations. In this context, one of the possible solutions is
the generation of new SLSs.

 Following the MESCAL work, our proposal is to
evaluate algorithms for inter-domain traffic optimization,
namely random assignment, brute force, greedy-cost,
greedy-random, greedy-penalty and the combination of a
genetic-brute force algorithm.

Genetic algorithms have already been extensively used
to solve network optimization problems [4][6][7][8][17].
These algorithms, belonging to the class of evolution
strategies used in optimization, resemble the process of
biological evolution, where each individual is described
by its genetic code, called a chromosome. On the other
hand each chromosome is composed of individual genes.
In the problem in hand, a gene is the assignment of a
single aggregate traffic flow to an SLS, and an individual
(i.e., a chromosome) is a potential solution.

The combination of genetic and non genetic
algorithms has already been studied by several authors
[15][16]. In these proposals non genetic algorithms are
used to generate the initial set of feasible solutions. In our
proposal we use the brute-force algorithm to generate the
initial solution.

2.1. Optimization algorithms

This section described the algorithms to be evaluated
in this paper.

2.1.1. Random assignment

This algorithm is as follows: each aggregated traffic

flow, of m flows, is randomly assigned to an SLS, out of

n SLSs that meet the required inter-domain class,
destination prefix, and which have enough spare
bandwidth to support the flow’s data rate. If any of the
flows cannot be assigned, the assignment process is
restarted and a further attempt is made, up to a maximum
of M attempts. The algorithm has a computational
complexity of ()MmnO .

2.1.2. Brute force

To get a first feasible solution, without taking the cost
into account, a simplified version of a brute force
algorithm was built. The algorithm determines all
possible combinations of mappings between flows and
SLSs, till a maximum number of combinations c. Then it
tests each combination in order to check if the bandwidth
requirement is met. Finally, when a first feasible solution
is found, the algorithm stops.

This algorithm has a computational complexity of
()cmnO c2 .

2.1.3. Greedy-cost algorithm

This algorithm is based on the proposal presented in
[2]. It starts by sorting the m aggregate traffic flows in
descending order, based on their bandwidth requirements,
and selecting the flows one by one, in that order. Then it
performs the following steps:

Step 1 – A pre-selection of SLSs is made, where each
SLS is evaluated individually in order to determine its
ability to support the traffic flow. This pre-selection is
based on information such as destination address prefix,
QoS class, and available bandwidth. The assignment is
feasible if the SLS meets the first two parameters and it
has enough bandwidth to accommodate the flow’s data
rate.

Step 2 – Among the set of feasible SLS assignments
determined in the preceding step, the SLS with the
minimum cost is selected. The cost of assigning the
aggregated traffic to an SLS is determined by the
objective function defined in equation (5), below.

Step 3 – The next traffic flow is selected and steps 1
and 2 are repeated, until all traffic flows have been
considered.

This algorithm has a computational complexity of
()mnO , where n is the number of SLSs.

2.1.4. Greedy-random algorithm

This algorithm is identical to the greedy-cost

algorithm, with the exception of the step 2. In this step
the selection among the set of feasible SLSs is done at
random. If any of the flows cannot be assigned, the
assignment process is restarted and a further attempt is

made, up to a maximum of M attempts, as in the case of
the random assignment algorithm. This algorithm also has
a computational complexity of ()MmnO .

2.1.5. Greedy-penalty algorithm

This algorithm is based on the proposal presented in
[2]. It performs the following steps:

Step 1 – For each traffic flow calculate the desirability
of assigning it to each SLS that meets the required
destination address prefix, QoS class and available
bandwidth. The desirability is the inverse of the cost (see
equation (5), below) of assigning the flow to a specific
SLS.

Step 2 – Evaluate the penalty for each traffic flow
assignment, which is the difference between the
desirability of the traffic flow’s best and second best
selections. If there is only one feasible SLS to
accommodate the traffic flow, assign the flow to this SLS.

Step 3 – From all currently unassigned traffic flows,
select the one yielding the largest penalty and assign it to
the SLS that corresponds to the highest desirability. If
multiple traffic flows have the same largest penalty, they
are placed in order of decreasing bandwidth requirement.

Steps 1 to 3 are repeated until all traffic flows have
been considered. This algorithm has a computational
complexity of ()mnO , as in the case of the greedy-cost
algorithm.

2.1.6. Genetic-brute force algorithm

The genetic algorithm is based on the proposal
presented in [2] with some modifications. As shown in
Figure 2, the algorithm starts by generating an initial
random population in which is inserted a brute-force
generated feasible solution. Then it follows a predefined
number of generations (G). On each generation, the
fitness of every chromosome is evaluated by (1) using the
objective function given in equation (5). Then
chromosomes are classified and divided into three
sections: the best, the medium, and poor ones. The best
chromosomes are saved and following an elitist
procedure they are passed unchanged to the next
generation. On the other hand the poorest are discarded.
Next a process of crossover and mutation are applied to
the best and the medium chromosomes to generate new
chromosomes for the next generation. This process results
in a new population of N chromosomes.

In the crossover process, two individuals are randomly
selected, one from the best section of the population, and
one from the medium section. The genes are randomly
selected from the fitter parent with a probability of pc,
plus the remaining genes coming from the other parent
chromosome. At last each offspring chromosome is

submitted to a mutation process where its genes are
randomly changed with a mutation probability pm.

Generate the initial N chromosomes
population;
For G generations

Evaluate fitness of each chromosome;
Classify chromosomes as: best, medium,
poor;
Save the generation’s best chromosome;
Pass best chromosomes to next
generation;
Discard poor chromosomes;
Crossover best and medium chromosomes;
Mutate the offspring’s;

End for
Choose best chromosome;

Figure 2. Genetic-brute force algorithm

The effectiveness and convergence rate of the genetic

algorithm depends on the values of N, pc and pm. In the
present study, the chosen values were the ones suggested
by a previous research study by Lin et al. [3]. These are
150 <= N <= 300, 0.5 <= pc <= 0.8, and 0.001 <= pm <=
0.1.

The computational complexity of the simple genetic
algorithm is of ()GNmnO , where G is the number of
generations and ()cGNmnO c2 when the brute-force
algorithm was included to generate an initial feasible
solution.

2.2. Objective function

The following cost function, jic , , or objective
function, was used in order to measure the egress
interfaces bottleneck:

()2,
1.0

1
+−

=
j
flow

i
sls

ji
bwbw

c (5)

where i

slsbw is the available bandwidth on egress
interface i (the agreed SLS) for some QoS class and
destination, and j

flowbw is the bandwidth of the
aggregate flow j. The value 0.1 was added to the
denominator in order to limit the value of jic , to 100.
This cost function was used in all algorithms.

3. Evaluation framework

This section describes the framework used to evaluate
the traffic engineering algorithms.

3.1. Test scenarios

In order to evaluate each algorithm, several scenarios

were built, each representing a typical autonomous
system.

The characterisation of autonomous systems has been
studied in several pieces of work in the recent past
[1][12][13]. For the present study, the characterisation
presented in [1] was used as a basis, as this represents the
most recent work.

According to Subramanian et al. [1], ASs can be
classified as costumer ASs, small regional ISPs, outer
core, transit core, and dense core. The existing numbers
of ASs, for each of these categories, are presented in
Table 1. Still according to the same authors, there are
certain numbers of ingress and egress interfaces to ASs of
the same or different class. These numbers are
reproduced in Table 2 below, where the columns
represent ingress interfaces and the rows represent egress
interfaces. For instance, there are 312 ingress interfaces
between all dense core ASs (i.e., level 0 ASs), 183
ingress interfaces between dense core and transit core
ASs, and 29 ingress interfaces between dense core and
outer core ASs.

Using the values of Tables 1 and 2 as a base, four
different evaluation scenarios were constructed, each one
representing a typical non stub autonomous system of
type ‘small Regional ISPs’, ‘outer core’, ‘transit core’,
and ‘dense core’. ASs of type ‘customer’ as stub ASs
were not considered in the tests.

Level Layer # of ASs

0 Dense Core 20

1 Transit core 129

2 Outer core 897

3 Small regional ISPs 971

4 Customers 8898

Table 1. Hierarchical distribution of ASs [1]

Each of these four scenarios (i.e., typical AS) is

characterised by a given number of ingress interfaces,
egress interfaces, supported QoS classes, maximum
number of destination prefixes, aggregate bandwidth and
number of aggregate flows, as presented in Table 3.

In this table, the number of destination prefixes
corresponds to the total number of ASs, which can be
found by adding the number of ASs given in Table 1.

Level 0 1 2 3 4

0 312 626 1091 958 6732

1 183 850 1413 665 3373

2 29 145 1600 543 3752

3 0 0 0 212 2409

Table 2. Interconnectivity between levels [1]

The number ingress interfaces in Table 3 was found by

dividing the total number of ingress interfaces presented
in Table 2 by the number of corresponding ASs presented
in Table 1 (for instance, in the case of dense core ingress
interfaces, 26 = (312 + 183 + 29) / 20). The number of
egress interfaces was given applying the same process to
egress interfaces of the table.

AS level Dense
core

Transit
core

Outer
core

Small
Regional ISP

Test scenario #0 #1 #2 #3

Ingress Interfaces 26 13 5 2

Egress Interfaces 486 50 7 3

QoS classes 3 3 3 3
Destination
prefixes 10915 10915 10915 10915
Bandwidth
(aggregated) 0..100 0..100 0..100 0..100

Aggregate flows 454997 227576 65168 42869

Table 3 – Test scenarios characterization

 A maximum of 3 inter-domain QoS classes was

selected. The maximum bandwidth per aggregate flow is
expressed by a number between 0 and 100 (like a
percentage).

The domain characteristics defined above were used
by a flow generator algorithm in order to determine the
number of aggregate flows for each of the scenarios. This
algorithm consists of the following three steps:

Step 1: Create a set of ingress traffic

flows;
Step 2: Aggregate the flows with the same

class requirements and the same
destination;

Step 3: Randomly and uniformly distribute
the m aggregate flows by n egress
interfaces;

In Step 1, the creation of the ingress traffic flows is

done by randomly distributing, using a uniform
distribution, a maximum of F flows per each of the q
inter-domain classes and per m ingress interfaces, for F

destinations prefixes, where F is the total number of
autonomous systems previously defined.

Step 2 generates an aggregate traffic flow matrix, TM:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅
⋅⋅⋅⋅

=

mmmm bkqj

bkqj

TM

1111

where,
j – Ingress interface
q – Inter-domain QoS class
k – Destination prefix
b – Flow’s bandwidth
m – Number of flows

Step 3 leads to an SLS matrix, SM:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅
⋅⋅⋅⋅

=

nnnn bkqi

bkqi

SM

1111

where,
i – Egress interface
q – Inter-domain QoS class
k – Destination prefix
b – SLS’s bandwidth
n – Number of SLSs

For each generated scenario this algorithm guarantees

that there exists at least one global assignment solution,
that is, that it is possible to assign all traffic flows to
SLSs.

3.2. Implementation issues

As seen above, during the generation process flows at
a given ingress interface are aggregated by QoS class and
destination prefix. Nevertheless, in the assignment of
flow aggregates to SLSs, the ingress interface is
irrelevant, the relevant parameters being the class, the
destination and the required bandwidth. This leads to the
creation of a higher grouping of flows, called aggregate
block. An aggregate block is a group of aggregate flows
with the same class and destination, irrespective of the
ingress interface.

Similarly, SLSs can be grouped by class and
destination, irrespective of egress interface. This is called
an SLS block.

This organisation is depicted in Figure 3, where for
each block of aggregated flows it is assumed that it exists
one block of SLSs.

On the other hand, it is also assumed that there exists
one, and only one, aggregate flow per egress interface
belonging to some class and destination prefix. As a
consequence, the maximum number of flows per block is
limited by the number of egress interfaces.

Ba1 Bs1

Ba2 Bs2

Ba3 Bs3

.

Bax Bsx

Aggregates SLSs

Figure 3. Aggregate blocks and SLS blocks

In the scenarios under study the number of ingress

interfaces is lower than the number of egress interfaces
and, for the sake of simplicity, only one flow per class
and destination per each ingress interface was set up. As a
result, the maximum block size in the test framework is
limited by the number of ingress interfaces. In test
scenario #0, with 454997 aggregated flows, the biggest
block had 22 flows and the smallest had only 1 flow. The
flow generator algorithm returned for each of the 4 test
scenarios blocks ranging from 1 flow/1 SLS to 22
flows/22 SLSs. The number of blocks of scenarios #0, #1,
#2 is depicted in figures 4 to 6 respectively. For scenario
#3 we have only blocks of sizes 1 and 2.

4 6 8 10 12 14 16 18 20 22 24
0

1000

2000

3000

4000

5000

6000
Test set #0

Block size

N
um

be
r o

f b
lo

ck
s

Figure 4. Number of blocks as a function of

block size for scenario #0

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1000

2000

3000

4000

5000

6000

7000

8000
Test set #1

Block size

N
um

be
r o

f b
lo

ck
s

Figure 5. Number of blocks as a function of

block size for scenario #1

1 2 3 4 5
0

5000

10000

15000
Test set #2

Block size

N
um

be
r o

f b
lo

ck
s

Figure 6. Number of blocks as a function of

block size for scenario #2

The algorithms under study were coded using the

MATLAB language, and the tests were performed in a
machine with a Pentium 4 processor at 1.7 GHz, 1GBytes
of RAM, with the MS Windows XP operating system.

3.3. Algorithms comparison

The comparison of the various algorithms under study
was carried out using the following parameters:
1. total cost of the solution, given by equation (1);
2. the cost for each block of aggregated flows, given by

equation (1) to the aggregate flows in the block;
3. total processing time spent by the test machine in

order to run the algorithms for each test scenario;

4. processing time spent by the test machine in order to
run the algorithms for each block of aggregated
flows.

A maximum of 1000 attempts were set up for the

random assignment algorithm and for the greedy random
algorithm. The brute force algorithm was limited to 10
levels of search combinations. The genetic-brute force
(Genetic-BF) algorithm includes one feasible brute-force
generated solution on its initial population and was
configured with a maximum of 500 generations, with 150
individuals, crossover probability of 0.6 and mutation
probability of 0.05.

4. Results

Each of the four scenarios presented in Table 3 was

used for testing each of the assignment algorithms
presented in Section B. The results of the tests are
presented below.

Table 4 presents the total cost of the solution returned
by each algorithm for each scenario. The letter F in the
table means that the algorithm fail to return an assignment
solution (meaning that, considering all blocks in the
scenario, there exists at least one for which the algorithm
failed).

Algorithms
Scenario 0

(x1e7)
Scenario 1

(x1e7)
Scenario 2

(x1e6)
Scenario 3

(x1e6)

Random F F 5,86 3,84

Greedy-cost F F F 3,85

Greedy-
random F F 5,88 3,85

Greedy-
penalty F F F 3,85

Genetic-BF 4,47 2,13 0,59 3,84

Brute force 4,49 2,14 5,88 3,85

Table 4. Total cost of the obtained assignment
solutions

In this table, we verify that for scenario 3 the random

and the genetic algorithms lead to the lowest cost, with a
value of 61084.3 × . For the scenario 2 the greedy-cost and
greedy-penalty algorithms fail and the Genetic-BF
algorithm returns the lowest cost solution. Lastly, for the
remaining scenarios, 0 and 1, only the brute force and the
Genetic-BF algorithms return an assignment solution. The
Genetic-BF algorithm always leads to the lowest cost
solutions.

Figure 7 provides a view on the cost gain of the
Genetic-BF algorithm over the brute force algorithm, as a
function of block size. The presented values are the cost
difference between the value returned by the Genetic-BF
algorithm and the value given by the brute force

algorithm. These are average costs of more than 32000
blocks, with sizes ranging from 1 flow to 22 flows.

2 4 6 8 10 12 14 16 18 20

-12

-10

-8

-6

-4

-2

Genetic - Brute force cost comparison

Block size

C
os

t d
ec

re
as

e

Figure 7. Genetic – Brute force cost gain

Table 5 presents the processing time spent by each

algorithm, per each scenario. Once more, the letter F
appears for the algorithms that could not return an
assignment solution.

For scenario 3, the lowest processing time is obtained
with the greedy-cost algorithm. The Genetic-BF
algorithm leads to the highest processing time. In scenario
2, among the successful algorithms the Genetic-BF
algorithm leads to the highest processing time and the
brute force algorithm to the lowest. This characteristic
persists in the remaining scenarios.

Algorithms
Scen. 0
(x1e5)

Scen. 1
(x1e4)

Scen. 2
(x1e4)

Scen. 3
(x1e2)

Random F F 0,35 21,30

Greedy-cost F F F 0,41

Greedy-
random F F 0,36 20,90

Greedy-
penalty F F F 0,54

Genetic-BF 1,06 1,15 0,59 44,80

Brute force 0,88 0,12 0,01 0,72

Table 5. Total processing time in seconds

Figure 8 presents a comparison between the average

processing times of the brute force algorithm and the
Genetic-BF algorithm, as a function of block size. These
values were given for the same blocks of the previous
figure. The curve of Genetic-BF (G-BF) algorithm is the
sum of the ‘Brute force’ and simple genetic algorithm
(GA) curves.

0 5 10 15 20 25
0

50

100

150

200

250

GA total

Brute
force

GA

G-BF

Block size

Ti
m

e
(s

)

Figure 8. Processing times

Summarising the results, one can highlight the

following:
 The algorithms proposed in [2] fail in scenarios with

larger size blocks, such as scenarios #0 and #1 (that is,
scenarios with more than 5 flows per block).

The brute-force and the genetic-brute force algorithms
lead to assignment solutions in all scenarios. As depicted
in Figure 7, the Genetic-BF algorithm always leads to
lower cost solutions. Additionally, the same figure clearly
shows a tendency to a decreasing cost of the assignment
solutions cost with the increase of the size of the
processed blocks.

On the other hand, the Genetic-BF algorithm has the
highest processing times. Nevertheless, as showed in
Figure 8, most of the time is spent by the brute force
algorithm to find a first assignment solution on which the
genetic algorithm can improve.

5. Conclusion

Inter-domain QoS-aware resource optimization is one
of the main challenges of current traffic engineering.
Starting with a set of algorithms for inter-domain
resource assignment recently proposed in the literature,
this paper presented extensive testing of these algorithms
and proposed some modifications in order to improve
their performance.

As a general conclusion, one can say that most of the
existing resource optimization algorithms fail in complex
scenarios. The proposed genetic-brute force algorithm
can lead to better solutions than the brute-force algorithm
alone, although at the cost of high processing time.
Nevertheless the additional processing time of the simple
genetic algorithm is only a fraction of the processing time
of the simple brute-force algorithm.

The obtained results clearly show that there is still a
long way to go in order to reach a situation where inter-
domain resource optimization can easily be achieved.

Further work of the authors will address the main
limitations of the algorithms under test identified in the
presented work, which lead to extremely high processing
time. This work will explore the use of other versions and
combinations of genetic algorithms, like the hybrids
proposed in [10][11], as well as the inclusion of other
QoS parameters in the decision process as, for instance,
delay and loss.

Acknowledgement

This work was partially carried out with the support of

the E-NEXT Network of Excellence (Emerging
Networking Experiments and Technologies, IST-FP6-
506869)

References

[1] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz.

Characterizing the Internet hierarchy from multiple vantage
points. Proc. IEEE INFOCOM, 2002.

[2] P. Morand, et al. D1.1: Specification of Business Models
and a Functional Architecture for Inter-domain QoS
Delivery. IST-2001-37961, unpublished, June 2003.
[Online]. Available: www.mescal.org/

[3] X. Lin, Y. Kwok and V. Lau. A genetic algorithm based
approach to route selection and capacity flow assignment.
Computer Communications, Vol. 26, pp.961-974, 2003.

[4] M. Ericsson, M. Resende, and P. Pardalos. A genetic
algorithm for the weight setting problem in OSPF routing.
ATT Shannon Laboratory 180 Park Avenue Florham Park,
NJ 07932, Tech. Rep., 2001. [Online]. Available:
citeseer.ist.psu.edu/526656.html

[5] K. Ho, N. Wang, P. Trimintzios, G. Pavlou, M. Howarth. On
Egress Router Selection for Inter-domain Traffic with
Bandwidth Guarantees. Proceedings of the IEEE Workshop
in High Performance Switching and Routing (HPSR'2004),
Phoenix, Arizona, USA, IEEE, April 2004.

[6] L. Buriol, M. Resende, C. Ribeiro, and M. Thorup. A
memetic algorithms for OSPF routing. In Proc. 6th
INFORMS Telecom, pp. 187--188, 2002.

[7] L. Buriol, , M. Resende, C Ribeiro, and M. Thorup. A
hybrid genetic algorithm for the weight setting problem in
OSPF/IS-IS routing. unpublished, 2003. [Online].
Available: www.optimization-
online.org/DB_FILE/2003/06/674.pdf

[8] A. Riedl. A hybrid genetic algorithm for routing
optimization in IP networks utilizing bandwidth and delay
metrics. IEEE Workshop on IP Operations and
Management (IPOM), Dallas, October 2002.

[9] MESCAL project [website]: www.mescal.org.
[10] P. Chu and J. Beasley. A genetic algorithm for the

generalised assignment problem. Computers & Operations
Research, 24:17–23, 1997.

[11] G. Raidl and H. Feltl. An improved hybrid genetic
algorithm for the generalized assignment problem. In H. M.

Haddadd et al., editors, Proceedings of the 2003 ACM
Symposium on Applied Computing, pages 990-995. ACM
Press, 2004.

[12] L. Gao. On inferring autonomous system relationships in
the Internet. IEEE/ACM Trans. Networking, vol. 9, no. 6,
December 2001.

[13] Z. Ge, D. Figueiredo, S. Jaiwal, L.Gao. On the hierarchical
structure of the logical Internet graph. In Proceedings SPIE
ITCOM, August 2001

[14] T. Bressoud, R. Rastogi, and M. Smith. Optimal
Configuration for BGP Route Selection. In Proceedings of
IEEE INFOCOM’ 2003, San Francisco, March/April 2003.

[15] R. Ahuja, J. Orlin, and A. Tiwari. A greedy genetic
algorithm for the quadratic assignment problem. Computers
and Operations Research, vol. 27, pag. 917–934, 2000.

[16] S. Areibi, and A. Vannelli. Efficient hybrid search
techniques for circuit partitioning. In proc. IEEE 4th World
Multiconference on Circuits, Systems, Communications &
Computers, 2000.

[17] M. Pioro and D. Medhi. Routing, Flow, and Capacity
Design in Communication and Computer Networks. Morgan
Kaufmann Series in Networking, 2004.

[18] T.Cormen, C. Leiserson, R. Rivest and C. Stein.
Introduction to Algorithms, Second Edition, MIT Press,
2001.

[19] D. Shmoys and E. Tardos. An approximation algorithm for
the generalized assignment problem. Mathematical
Programming, vol. 62, pp. 461–474, 1993.

[20] P. Levis, M. Boucadair, P. Morand, P. Trimintzios. The
Meta-QoS-Class concept: a step towards global QoS inter-
domain services. Proc. of IEEE International Conference
on Software, Telecommunications and Computer Networks
(SoftCOM 2004), 2004.

