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Abstract 
 

Inter-domain traffic engineering is a key issue when 
QoS-aware resource optimization is concerned. Mapping 
inter-domain traffic flows into existing service level 
agreements is, in general, a complex problem, for which 
some algorithms have recently been proposed in the 
literature. Nevertheless, these algorithms have not yet 
been the subject of extensive study. The purpose of this 
paper is to contribute to a better understanding of 
existing inter-domain optimization algorithms, by 
studying and comparing their performance in a variety of 
scenarios. The analysis presented in the paper showed 
that most algorithms fail in complex scenarios. To cope 
with this, several modifications to existing algorithms 
were proposed and tested. In addition, the analysis has 
shown that genetic based algorithms lead to better and 
lower cost solutions, at the expense of processing time. 
 
1. Introduction 
 

The main purpose of inter-domain resource 
optimization is to map incoming inter-domain traffic 
flows into inter-domain network resources, satisfying 
quality of service (QoS) requirements, while aiming at 
optimizing the use of network resources across 
autonomous systems (AS) boundaries. Network resources 
usage is, in any case, conditioned by the existing Service 
Level Specifications (SLSs) that, in turn, result from the 
Service Level Agreements (SLAs) established by each 
domain with its neighbors. For the purpose of this paper, 
the terms ‘domain’ and ‘autonomous system’ are 
synonyms. 

In order to describe the inter-domain relationships of 
an autonomous system, one can build a simple model as 

shown in Figure 1. An autonomous system is 
interconnected to other autonomous systems by means of 
its ingress and egress interfaces. The service offerings 
between autonomous systems as well as their mutual 
responsibilities are described by means of Service Level 
Agreements. In general, each SLA defines a set of 
contractual, administrative and technical requirements. 
The latter are called Service Level Specifications. 
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Figure 1. Inter-domain relationship model 

 
An SLS comprises several items or clauses, including 

identification, application scope, flow identification, 
traffic conformance, excess treatment, and performance 
guarantees. The SLS identification allows for the unique 



identification of the SLS in the context of the SLA. The 
application scope identifies the region over which the 
QoS policy is enforced, normally by specifying their 
boundary ingress and egress points. The flow 
identification defines the kind of data stream, the source 
and destination information, as well as the respective QoS 
classes. On the other hand, the traffic conformance clause 
describes the characteristics that the traffic injected by the 
upstream domain should comply with in order to get the 
specified QoS guarantees. The excess treatment clause 
describes how to the excess traffic, i.e. out-of-profile 
traffic, should be processed. Lastly, the performance 
guarantees clause describes the packet transfer 
performance metrics that the domain should offer to its 
partners.  

In the context of the present work, an SLS is 
characterised by a destination prefix, an inter-domain 
QoS class, i-QC as proposed in [20], the corresponding 
maximum bandwidth requirements, bw, and an egress 
interface. That is, an SLS entry for domain A is: 
 
SLS entry = [(destination prefix) ∉A, i-QC, bw, egress 
interface]  
 

On the other hand, a domain receives from upstream 
domains a collection of d data flows towards other 
domains. Depending on the domain policy and on their 
common characteristics, such as destination and QoS 
class, these flows may be aggregated into m inter-domain 
traffic flows. The flows’ common characterization 
includes the inter-domain class mapping and the 
destination prefix. That is, an aggregated flow entry for a 
domain A is: 
 
Aggregate flow entry = [ingress interface, (destination 
prefix) ∉A, i-QC, rbw]  
 
where rbw is the bandwidth requirement of the 
aggregated flow. Aggregated flows must, then, be 
mapped into the existing SLSs. The appropriate selection 
of the SLSs for the inter-domain traffic flows benefits the 
domain by improving the network resources utilization. 
This task is executed today in a trial-and-error fashion. 

The optimization of inter-domain network resources 
falls into the Generalized Assignment Problem (GAP) 
category, where the objective is to find a minimum cost 
assignment of 0>m  jobs to 0>n   agents, subject to the 
agents’ available capacity. In the specific problem in 
hand, jobs are aggregated traffic flows and agents are the 
established SLSs.  

Formally, the problem can be stated as follows. Let 
},...,2,1{ nI =  be the set of SLSs and },...,2,1{ mJ =   

the set of aggregated traffic flows. For each SLS i there is 
a given resource capacity, expressed in terms of 

bandwidth, 0>ib . For each Ii∈  and each Jj∈  there 
is a given set of costs, 0, >jic , and resource requirements, 

0, >jir , for assigning an aggregated traffic flow j to an 

SLS i. Additionally, jix , is a variable that is set to 1 if the 
traffic flow j is assigned to SLS i and 0 otherwise. The 
mathematical formulation is as follows: 
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The optimization goal is to minimize the cost (1), 
where the capacity constraint (2) ensures that the total 
resource requirements of the traffic flows assigned to 
each SLS do not exceed the available capacity. The 
assignment constraint (3) guarantees that each traffic flow 
is assigned to exactly one SLS. 

The objective of the work presented in this paper is to 
evaluate and compare the more significant inter-domain 
traffic optimization algorithms. This will lead to a better 
understanding of the general problem of inter-domain 
traffic management and to an identification of the main 
obstacles to efficient and effective inter-domain QoS 
provision. In order to reach the stated objective, a set of 
test scenarios was generated. These scenarios take into 
account relevant work by other researchers on the 
characterisation of the Internet hierarchy [1], and were 
used to compare the optimization algorithms proposed in 
the MESCAL European project [2]. At a subsequent stage 
some improvement on the algorithms proposed in [2] was 
introduced.  

Section 2 of this paper presents a description of each 
of the tested traffic engineering algorithms. In section 3 
the evaluation framework is detailed along with some 
implementation strategies. Section 4 presents and 
discusses the obtained comparison results. Section 5 
summarizes the work and presents future research 
directions. 
 
2. Traffic engineering algorithms 
 

Several studies on intra-domain resource optimization, 
such as [4][6][7][8], can be found in the literature. In the 
case of inter-domain, references [2][5][9] and [14] 
constitute the framework for most of the current 
proposals.  Nevertheless, to the best of the authors’ 



knowledge, there is a clear lack of a comprehensive study 
for the evaluation and comparison of the existing 
proposals for inter-domain resource optimization. 

GAP is an NP-Complete problem which is not only 
unsolvable [18], but also very difficult to solve 
approximately [17][19]; thence the only option is relying 
on heuristics. 

The use of greedy heuristic algorithms for selecting 
egress routers for inter-domain traffic with bandwidth 
guarantees, optimising the total bandwidth consumption 
in the network, is proposed in [5]. In this work the 
authors evaluate the use of three heuristic algorithms: 
greedy-cost, greedy-penalty, and greedy-random. 

The optimization of inter-domain resource utilisation 
is being studied in MESCAL project [9]. In the context of 
this project Morand et al. [2] proposed six different 
algorithms for inter-domain resource optimization: 
random assignment, brute force, a genetic algorithm, and 
the three heuristic algorithms already addressed in [5] 
(greedy-cost, greedy-penalty, and greedy-random). 
Morand et al. also propose modifications to these 
algorithms in order to cope with resource exhaustion 
situations. In this context, one of the possible solutions is 
the generation of new SLSs. 

 Following the MESCAL work, our proposal is to 
evaluate algorithms for inter-domain traffic optimization, 
namely random assignment, brute force, greedy-cost, 
greedy-random, greedy-penalty and the combination of a 
genetic-brute force algorithm. 

Genetic algorithms have already been extensively used 
to solve network optimization problems [4][6][7][8][17]. 
These algorithms, belonging to the class of evolution 
strategies used in optimization, resemble the process of 
biological evolution, where each individual is described 
by its genetic code, called a chromosome. On the other 
hand each chromosome is composed of individual genes. 
In the problem in hand, a gene is the assignment of a 
single aggregate traffic flow to an SLS, and an individual 
(i.e., a chromosome) is a potential solution. 

The combination of genetic and non genetic 
algorithms has already been studied by several authors 
[15][16]. In these proposals non genetic algorithms are 
used to generate the initial set of feasible solutions. In our 
proposal we use the brute-force algorithm to generate the 
initial solution. 

 
2.1. Optimization algorithms 
 

This section described the algorithms to be evaluated 
in this paper.  

 
2.1.1. Random assignment  

 
This algorithm is as follows: each aggregated traffic 

flow, of m flows, is randomly assigned to an SLS, out of 

n SLSs that meet the required inter-domain class, 
destination prefix, and which have enough spare 
bandwidth to support the flow’s data rate. If any of the 
flows cannot be assigned, the assignment process is 
restarted and a further attempt is made, up to a maximum 
of M attempts. The algorithm has a computational 
complexity of ( )MmnO . 
 
2.1.2. Brute force 
 

To get a first feasible solution, without taking the cost 
into account, a simplified version of a brute force 
algorithm was built. The algorithm determines all 
possible combinations of mappings between flows and 
SLSs, till a maximum number of combinations c. Then it 
tests each combination in order to check if the bandwidth 
requirement is met. Finally, when a first feasible solution 
is found, the algorithm stops. 

This algorithm has a computational complexity of 
( )cmnO c2 . 

 
2.1.3. Greedy-cost algorithm 
 

This algorithm is based on the proposal presented in 
[2]. It starts by sorting the m aggregate traffic flows in 
descending order, based on their bandwidth requirements, 
and selecting the flows one by one, in that order. Then it 
performs the following steps:  

Step 1 – A pre-selection of SLSs is made, where each 
SLS is evaluated individually in order to determine its 
ability to support the traffic flow. This pre-selection is 
based on information such as destination address prefix, 
QoS class, and available bandwidth. The assignment is 
feasible if the SLS meets the first two parameters and it 
has enough bandwidth to accommodate the flow’s data 
rate. 

Step 2 – Among the set of feasible SLS assignments 
determined in the preceding step, the SLS with the 
minimum cost is selected. The cost of assigning the 
aggregated traffic to an SLS is determined by the 
objective function defined in equation (5), below. 

Step 3 – The next traffic flow is selected and steps 1 
and 2 are repeated, until all traffic flows have been 
considered. 

This algorithm has a computational complexity of 
( )mnO , where n is the number of SLSs. 
 

2.1.4. Greedy-random algorithm 
 
This algorithm is identical to the greedy-cost 

algorithm, with the exception of the step 2.  In this step 
the selection among the set of feasible SLSs is done at 
random. If any of the flows cannot be assigned, the 
assignment process is restarted and a further attempt is 



made, up to a maximum of M attempts, as in the case of 
the random assignment algorithm. This algorithm also has 
a computational complexity of ( )MmnO . 
 
2.1.5.  Greedy-penalty algorithm 
 

This algorithm is based on the proposal presented in 
[2]. It performs the following steps: 

Step 1 – For each traffic flow calculate the desirability 
of assigning it to each SLS that meets the required 
destination address prefix, QoS class and available 
bandwidth. The desirability is the inverse of the cost (see 
equation (5), below) of assigning the flow to a specific 
SLS.  

Step 2 – Evaluate the penalty for each traffic flow 
assignment, which is the difference between the 
desirability of the traffic flow’s best and second best 
selections. If there is only one feasible SLS to 
accommodate the traffic flow, assign the flow to this SLS. 

Step 3 – From all currently unassigned traffic flows, 
select the one yielding the largest penalty and assign it to 
the SLS that corresponds to the highest desirability. If 
multiple traffic flows have the same largest penalty, they 
are placed in order of decreasing bandwidth requirement. 

Steps 1 to 3 are repeated until all traffic flows have 
been considered. This algorithm has a computational 
complexity of ( )mnO , as in the case of the greedy-cost 
algorithm. 
 
2.1.6. Genetic-brute force algorithm 
 

The genetic algorithm is based on the proposal 
presented in [2] with some modifications. As shown in 
Figure 2, the algorithm starts by generating an initial 
random population in which is inserted a brute-force 
generated feasible solution. Then it follows a predefined 
number of generations (G). On each generation, the 
fitness of every chromosome is evaluated by (1) using the 
objective function given in equation (5). Then 
chromosomes are classified and divided into three 
sections: the best, the medium, and poor ones. The best 
chromosomes are saved and following an elitist 
procedure they are passed unchanged to the next 
generation. On the other hand the poorest are discarded. 
Next a process of crossover and mutation are applied to 
the best and the medium chromosomes to generate new 
chromosomes for the next generation. This process results 
in a new population of N chromosomes. 

In the crossover process, two individuals are randomly 
selected, one from the best section of the population, and 
one from the medium section. The genes are randomly 
selected from the fitter parent with a probability of pc, 
plus the remaining genes coming from the other parent 
chromosome. At last each offspring chromosome is 

submitted to a mutation process where its genes are 
randomly changed with a mutation probability pm. 
 
Generate the initial N chromosomes 
population; 
For G generations  

Evaluate fitness of each chromosome; 
Classify chromosomes as: best, medium, 
poor; 
Save the generation’s best chromosome; 
Pass best chromosomes to next 
generation; 
Discard poor chromosomes; 
Crossover best and medium chromosomes; 
Mutate the offspring’s; 

End for 
Choose best chromosome;  

Figure 2. Genetic-brute force algorithm 

 
The effectiveness and convergence rate of the genetic 

algorithm depends on the values of N, pc and pm. In the 
present study, the chosen values were the ones suggested 
by a previous research study by Lin et al. [3]. These are 
150 <= N <= 300, 0.5 <= pc <= 0.8, and 0.001 <= pm <= 
0.1. 

The computational complexity of the simple genetic 
algorithm is of ( )GNmnO , where G is the number of 
generations and ( )cGNmnO c2  when the brute-force 
algorithm was included to generate an initial feasible 
solution. 
 
2.2. Objective function 
 

The following cost function, jic , , or objective 
function, was used in order to measure the egress 
interfaces bottleneck:  
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where i

slsbw  is the available bandwidth on egress 
interface i (the agreed SLS) for some QoS class and 
destination, and j

flowbw  is the bandwidth of the 
aggregate flow j. The value 0.1 was added to the 
denominator in order to limit the value of jic ,  to 100. 
This cost function was used in all algorithms. 
 
3. Evaluation framework 
 

This section describes the framework used to evaluate 
the traffic engineering algorithms. 

 



3.1. Test scenarios 
 
In order to evaluate each algorithm, several scenarios 

were built, each representing a typical autonomous 
system.  

The characterisation of autonomous systems has been 
studied in several pieces of work in the recent past 
[1][12][13]. For the present study, the characterisation 
presented in [1] was used as a basis, as this represents the 
most recent work.  

According to Subramanian et al. [1], ASs can be 
classified as costumer ASs, small regional ISPs, outer 
core, transit core, and dense core. The existing numbers 
of ASs, for each of these categories, are presented in 
Table 1. Still according to the same authors, there are 
certain numbers of ingress and egress interfaces to ASs of 
the same or different class. These numbers are 
reproduced in Table 2 below, where the columns 
represent ingress interfaces and the rows represent egress 
interfaces. For instance, there are 312 ingress interfaces 
between all dense core ASs (i.e., level 0 ASs), 183 
ingress interfaces between dense core and transit core 
ASs, and 29 ingress interfaces between dense core and 
outer core ASs. 

Using the values of Tables 1 and 2 as a base, four 
different evaluation scenarios were constructed, each one 
representing a typical non stub autonomous system of 
type ‘small Regional ISPs’, ‘outer core’, ‘transit core’, 
and ‘dense core’. ASs of type ‘customer’ as stub ASs 
were not considered in the tests.  
 

Level Layer # of ASs 

0 Dense Core 20 

1 Transit core 129 

2 Outer core 897 

3 Small regional ISPs 971 

4 Customers 8898 

Table 1. Hierarchical distribution of ASs [1] 

 
Each of these four scenarios (i.e., typical AS) is 

characterised by a given number of ingress interfaces, 
egress interfaces, supported QoS classes, maximum 
number of destination prefixes, aggregate bandwidth and 
number of aggregate flows, as presented in Table 3. 

In this table, the number of destination prefixes 
corresponds to the total number of ASs, which can be 
found by adding the number of ASs given in Table 1.  
 

Level 0 1 2 3 4 

0 312 626 1091 958 6732 

1 183 850 1413 665 3373 

2 29 145 1600 543 3752 

3 0 0 0 212 2409 

Table 2. Interconnectivity between levels [1] 

 
The number ingress interfaces in Table 3 was found by 

dividing the total number of ingress interfaces presented 
in Table 2 by the number of corresponding ASs presented 
in Table 1 (for instance, in the case of dense core ingress 
interfaces, 26 = (312 + 183 + 29) / 20). The number of 
egress interfaces was given applying the same process to 
egress interfaces of the table. 
 

AS level Dense 
core 

Transit 
core 

Outer 
core 

Small 
Regional ISP 

Test scenario #0 #1 #2 #3 

Ingress Interfaces 26 13 5 2 

Egress Interfaces 486 50 7 3 

QoS classes 3 3 3 3 
Destination 
prefixes 10915 10915 10915 10915 
Bandwidth 
(aggregated) 0..100 0..100 0..100 0..100 

Aggregate flows 454997 227576 65168 42869 

Table 3 – Test scenarios characterization 

 
 A maximum of 3 inter-domain QoS classes was 

selected. The maximum bandwidth per aggregate flow is 
expressed by a number between 0 and 100 (like a 
percentage).  

The domain characteristics defined above were used 
by a flow generator algorithm in order to determine the 
number of aggregate flows for each of the scenarios. This 
algorithm consists of the following three steps: 
 
Step 1: Create a set of ingress traffic 

flows; 
Step 2: Aggregate the flows with the same 

class requirements and the same 
destination; 

Step 3: Randomly and uniformly distribute 
the m aggregate flows by n egress 
interfaces; 

 
In Step 1, the creation of the ingress traffic flows is 

done by randomly distributing, using a uniform 
distribution, a maximum of F flows per each of the q 
inter-domain classes and per m ingress interfaces, for F 



destinations prefixes, where F is the total number of 
autonomous systems previously defined.  

Step 2 generates an aggregate traffic flow matrix, TM: 
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where, 
j – Ingress interface 
q – Inter-domain QoS class 
k – Destination prefix 
b – Flow’s bandwidth 
m – Number of flows  
 

 
Step 3 leads to an SLS matrix, SM: 
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where, 
i – Egress interface 
q – Inter-domain QoS class 
k – Destination prefix 
b – SLS’s bandwidth 
n – Number of SLSs 
 

 
For each generated scenario this algorithm guarantees 

that there exists at least one global assignment solution, 
that is, that it is possible to assign all traffic flows to 
SLSs.  

 
3.2. Implementation issues 
 

As seen above, during the generation process flows at 
a given ingress interface are aggregated by QoS class and 
destination prefix. Nevertheless, in the assignment of 
flow aggregates to SLSs, the ingress interface is 
irrelevant, the relevant parameters being the class, the 
destination and the required bandwidth. This leads to the 
creation of a higher grouping of flows, called aggregate 
block. An aggregate block is a group of aggregate flows 
with the same class and destination, irrespective of the 
ingress interface. 

Similarly, SLSs can be grouped by class and 
destination, irrespective of egress interface. This is called 
an SLS block. 

This organisation is depicted in Figure 3, where for 
each block of aggregated flows it is assumed that it exists 
one block of SLSs. 

On the other hand, it is also assumed that there exists 
one, and only one, aggregate flow per egress interface 
belonging to some class and destination prefix. As a 
consequence, the maximum number of flows per block is 
limited by the number of egress interfaces. 

Ba1 Bs1

Ba2 Bs2

Ba3 Bs3

. . . . . .

Bax Bsx

Aggregates SLSs

 
 

Figure 3. Aggregate blocks and SLS blocks 

 
In the scenarios under study the number of ingress 

interfaces is lower than the number of egress interfaces 
and, for the sake of simplicity, only one flow per class 
and destination per each ingress interface was set up. As a 
result, the maximum block size in the test framework is 
limited by the number of ingress interfaces.  In test 
scenario #0, with 454997 aggregated flows, the biggest 
block had 22 flows and the smallest had only 1 flow. The 
flow generator algorithm returned for each of the 4 test 
scenarios blocks ranging from 1 flow/1 SLS to 22 
flows/22 SLSs. The number of blocks of scenarios #0, #1, 
#2 is depicted in figures 4 to 6 respectively. For scenario 
#3 we have only blocks of sizes 1 and 2.  
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Figure 4. Number of blocks as a function of 

block size for scenario #0 
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Figure 5. Number of blocks as a function of 

block size for scenario #1 
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Figure 6. Number of blocks as a function of 

block size for scenario #2 

 
The algorithms under study were coded using the 

MATLAB language, and the tests were performed in a 
machine with a Pentium 4 processor at 1.7 GHz, 1GBytes 
of RAM, with the MS Windows XP operating system. 
 
3.3. Algorithms comparison 
 

The comparison of the various algorithms under study 
was carried out using the following parameters: 
1. total cost of the solution, given by equation (1); 
2. the cost for each block of aggregated flows, given by 

equation (1) to the aggregate flows in the block; 
3. total processing time spent by the test machine in 

order to run the algorithms for each test scenario;  

4. processing time spent by the test machine in order to 
run the algorithms for each block of aggregated 
flows. 

 
A maximum of 1000 attempts were set up for the 

random assignment algorithm and for the greedy random 
algorithm. The brute force algorithm was limited to 10 
levels of search combinations. The genetic-brute force 
(Genetic-BF) algorithm includes one feasible brute-force 
generated solution on its initial population and was 
configured with a maximum of 500 generations, with 150 
individuals, crossover probability of 0.6 and mutation 
probability of 0.05. 
 
4. Results 

 
Each of the four scenarios presented in Table 3 was 

used for testing each of the assignment algorithms 
presented in Section B. The results of the tests are 
presented below. 

Table 4 presents the total cost of the solution returned 
by each algorithm for each scenario. The letter F in the 
table means that the algorithm fail to return an assignment 
solution (meaning that, considering all blocks in the 
scenario, there exists at least one for which the algorithm 
failed). 

 

Algorithms 
Scenario 0 

(x1e7) 
Scenario 1 

(x1e7) 
Scenario 2  

(x1e6) 
Scenario 3 

(x1e6) 

Random F F 5,86 3,84 

Greedy-cost F F F 3,85 

Greedy-
random F F 5,88 3,85 

Greedy-
penalty F F F 3,85 

Genetic-BF 4,47 2,13 0,59 3,84 

Brute force 4,49 2,14 5,88 3,85 

Table 4. Total cost of the obtained assignment 
solutions 

 
In this table, we verify that for scenario 3 the random 

and the genetic algorithms lead to the lowest cost, with a 
value of 61084.3 × . For the scenario 2 the greedy-cost and 
greedy-penalty algorithms fail and the Genetic-BF 
algorithm returns the lowest cost solution. Lastly, for the 
remaining scenarios, 0 and 1, only the brute force and the 
Genetic-BF algorithms return an assignment solution. The 
Genetic-BF algorithm always leads to the lowest cost 
solutions.  

Figure 7 provides a view on the cost gain of the 
Genetic-BF algorithm over the brute force algorithm, as a 
function of block size. The presented values are the cost 
difference between the value returned by the Genetic-BF 
algorithm and the value given by the brute force 



algorithm. These are average costs of more than 32000 
blocks, with sizes ranging from 1 flow to 22 flows.  
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Figure 7. Genetic – Brute force cost gain 

 
Table 5 presents the processing time spent by each 

algorithm, per each scenario. Once more, the letter F 
appears for the algorithms that could not return an 
assignment solution. 

For scenario 3, the lowest processing time is obtained 
with the greedy-cost algorithm. The Genetic-BF 
algorithm leads to the highest processing time. In scenario 
2, among the successful algorithms the Genetic-BF 
algorithm leads to the highest processing time and the 
brute force algorithm to the lowest. This characteristic 
persists in the remaining scenarios.  

 

Algorithms 
Scen. 0 
(x1e5) 

Scen. 1 
(x1e4) 

Scen. 2 
(x1e4) 

Scen. 3 
(x1e2) 

Random F F 0,35 21,30 

Greedy-cost F F F 0,41 

Greedy-
random F F 0,36 20,90 

Greedy-
penalty F F F 0,54 

Genetic-BF 1,06 1,15 0,59 44,80 

Brute force 0,88 0,12 0,01 0,72 

Table 5. Total processing time in seconds 

 
Figure 8 presents a comparison between the average 

processing times of the brute force algorithm and the 
Genetic-BF algorithm, as a function of block size. These 
values were given for the same blocks of the previous 
figure. The curve of Genetic-BF (G-BF) algorithm is the 
sum of the ‘Brute force’ and simple genetic algorithm 
(GA) curves. 
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Figure 8. Processing times 

 
Summarising the results, one can highlight the 

following: 
 The algorithms proposed in [2] fail in scenarios with 

larger size blocks, such as scenarios #0 and #1 (that is, 
scenarios with more than 5 flows per block). 

The brute-force and the genetic-brute force algorithms 
lead to assignment solutions in all scenarios. As depicted 
in Figure 7, the Genetic-BF algorithm always leads to 
lower cost solutions. Additionally, the same figure clearly 
shows a tendency to a decreasing cost of the assignment 
solutions cost with the increase of the size of the 
processed blocks.  

On the other hand, the Genetic-BF algorithm has the 
highest processing times. Nevertheless, as showed in 
Figure 8, most of the time is spent by the brute force 
algorithm to find a first assignment solution on which the 
genetic algorithm can improve.  
 
5. Conclusion 
 

Inter-domain QoS-aware resource optimization is one 
of the main challenges of current traffic engineering. 
Starting with a set of algorithms for inter-domain 
resource assignment recently proposed in the literature, 
this paper presented extensive testing of these algorithms 
and proposed some modifications in order to improve 
their performance. 

As a general conclusion, one can say that most of the 
existing resource optimization algorithms fail in complex 
scenarios. The proposed genetic-brute force algorithm 
can lead to better solutions than the brute-force algorithm 
alone, although at the cost of high processing time. 
Nevertheless the additional processing time of the simple 
genetic algorithm is only a fraction of the processing time 
of the simple brute-force algorithm.  



The obtained results clearly show that there is still a 
long way to go in order to reach a situation where inter-
domain resource optimization can easily be achieved. 

Further work of the authors will address the main 
limitations of the algorithms under test identified in the 
presented work, which lead to extremely high processing 
time. This work will explore the use of other versions and 
combinations of genetic algorithms, like the hybrids 
proposed in [10][11], as well as the inclusion of other 
QoS parameters in the decision process as, for instance, 
delay and loss. 
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