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Abstract— There is an obvious need for Quality of Service 

(QoS) on the Internet and QoS routing is an important 
component of the overall QoS framework. The role of a QoS 
routing strategy is to compute paths that are suitable for the 
different types of traffic generated by the various applications, 
while maximizing the utilization of network resources. The 
fulfilment of these objectives requires the development of 
algorithms that find multi-constrained paths taking into 
consideration the state of the network and the traffic 
requirements, namely, considering its needs in terms of delay, 
jitter, loss rate and available bandwidth. However, the problem 
of finding multi-constrained paths has high computational 
complexity, and thus there is the need to use algorithms that 
address this difficulty. This paper presents and discusses the 
main approaches used to reduce QoS routing algorithm 
complexity and to improve the overall network performance.  
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I. INTRODUCTION 
HE path computation algorithm is at the core of QoS 

routing strategies. Instead of using a shortest path 
algorithm based on statically configured metrics, as in 
traditional routing protocols, the algorithm must select several 
alternative paths that are able to satisfy a set of constraints 
regarding, for instance, end-to-end delay bounds and 
bandwidth requirements. However, the algorithms to solve 
such a problem have been shown to have, in general, high 
computational complexity. Several approaches have been 
proposed to address the complexity of multi-constrained path 
computation problem. The selection of QoS paths subject to 
multiple constraints can be defined as the Multi-Constrained 
Path (MCP) problem. In order to present the definition of the 
MCP problem, some definitions are introduced, as follows: a 
network is represented by a directed graph G(V,E) composed 
of a set of vertices (V) and a set of edges (E). The number of 
vertices of G is given by n = |V| and the number of edges is 
given by m = |E|. Each edge, is represented by the link 
between two vertices e = (u,v) and has associated q weights 
corresponding to QoS metrics such that wi(u,v) >= 0,and  i = 
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1,2,…,q. The constraint for each QoS metric is Li.  The Multi-
Constrained Path problem is to find a path P from a source s 
to a destination d such that all the QoS constraints are met, as 
depicted in the following equation: 

( ) , 1, 2,...,i iw P L i q≤ =  (1) 
The paths that satisfy these constraints are called feasible 

paths [1]. The solution of the MCP problem requires a path 
computation algorithm that finds paths that satisfy all the 
constraints as expressed in Equation 1. Since the optimal 
solution of this type of problems for multiple additive and 
independent metrics is NP-complete, usually heuristics or 
approximation algorithms are used.  

The first approach considered is used when bandwidth is 
one of the constraints that must be satisfied by the path 
computation algorithm. In this case, the MCP problem is 
defined as a Bandwidth Restricted Path (BRP) problem [2].  

The second approach is called Restricted Shortest Path 
(RSP) and is a simplification of the original MCP problem, 
when two additive metrics are used [1]. In this case, all the 
paths that satisfy the constraint associated with one of the 
metrics are computed and then the best path according to the 
second metric is selected.  

Metrics Combination (MC) is the third approach for the 
solution of the MCP problem [3]. By combining a set of QoS 
metrics in a single metric, it is possible to use existing path 
computation algorithms, such as Bellmand-Ford or Dijkstra.  

Algorithms that solve the multi-constrained path problem 
using the above strategies are described in the following 
sections. 

II. BANDWIDTH RESTRICTED PATHS  
Bandwidth is widely used as a metric for QoS routing, alone 

or associated with other metrics, such as delay or number of 
hops [4]. The utilization of bandwidth in association with other 
metric simplifies the original MCP due to the fact that it is a 
concave metric that has a non-cumulative composition rule 
over a path. Metric Ordering is one of the main heuristics used 
for the solution of the BRP problem. This heuristic requires 
the identification of the metric that has higher priority and the 
computation of the best paths according to this metric. 
Afterwards, it is computed the best path according to the 
second metric. The algorithms that solve the BRP problem 
using metric ordering are the Widest-Shortest Path (WSP) and 
Shortest-Widest Path (SWP) algorithms. In these families of 
algorithms, the width of a path is depicted by the available 
bandwidth and its length can correspond either to the number 
of hops or to delay. The nature of the delay that is used for 
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path computation, namely, propagation, transmission, queuing 
delay, depends on the specific algorithm. 

A. Widest-Shortest Path algorithms 
The objective of Widest-Shortest Path algorithms is to 

select the shortest path that is a feasible path according to the 
bandwidth constraint of flows. The main metric considered in 
WSP algorithms is the number of hops, and the second metric 
is available bandwidth. The algorithm proceeds as follows. In 
the first stage all existing shortest paths between each source 
and all destinations in the network are computed. In the second 
stage, bandwidth is used to break ties among paths that have 
the same number of hops, and it is selected the path that has 
the highest amount of available bandwidth. Widest-Shortest 
Paths can be computed by modified versions of Bellman-Ford 
or Dijkstra algorithms. Extensions to the Bellman-Ford 
algorithm, named Iterative Bellman-Ford, were presented by 
Ma and Steenkiste [5] and Apostolopoulos et al. [6]. Ma and 
Steenkiste proposed a modification of the Dijkstra algorithm 
for the computation of Widest-Shortest Paths [5]. Extensions 
to the Dijkstra algorithm for the computation of Widest-
Shortest Paths were also done by Sobrinho [7]. 

The main performance objective of WSP algorithms is to 
reduce network cost. Network resource consumption is limited 
because the shorter paths are favored over wider paths. Since 
resource preservation is especially important when the network 
is congested, this type of algorithm shows very good 
performance when the network load is high. Widest-Shortest 
Path algorithms also show good behavior when the routing 
decision is taken upon information of the state of the network 
that is inaccurate [5, 8]. This is due to the fact that the main 
metric used (number of hops) is not significantly influenced by 
the inaccuracy of routing information since it changes less 
often than available bandwidth. WSP performs well because it 
is simultaneously conserves resources by choosing the shortest 
path and does load balancing by choosing the widest path 
among those that have the same length.  

B. Shortest-Widest Path algorithms 
The objective of Shortest-Widest Path algorithms is to find 

the paths with the highest amount of bandwidth available, the 
widest path. In a second phase, if there are several paths with 
the same amount of available bandwidth, it is selected the 
shortest path according to the length metric used, either 
number of hops or end-to-end delay. Ma and Steenkiste 
proposed extensions to the Dijkstra and Bellman-Ford 
algorithms to compute SWP paths where the path length is 
measured by the number of hops [5].  Wang and Crowcroft 
also proposed extensions to the Dijkstra and Bellman-Ford 
algorithms to compute SWP paths. However, in their approach 
called Delay Aided Bandwidth Search (DABS), the path 
length corresponds to the propagation delay of the path [5]. 
The DABS algorithms perform path pre-computation in a 
distributed manner with complexity similar to the complexity 
of the originating algorithm. However, the DABS algorithm 
based on the Dijkstra algorithm has been shown incapable of 

computing Shortest-Widest Paths in hop-by-hop routing [5, 7]. 
Despite the previous results, the DABS algorithm can be used 
to successful compute Shortest-Widest Paths in source routing.  

A source routing variant of DABS has been used in the first 
phase of the MAximally DiSjoint WIdest Paths (MADSWIP) 
[9]. This algorithm uses a combined approach of path pre-
computation and on-demand path computation in order to 
select maximally disjoint paths that satisfy flow QoS 
requirements in a connection oriented network.  

Load balancing is the main performance objective of 
Shortest-Widest Path algorithms. This is achieved through the 
selection of the path with the highest availability of bandwidth. 
The main advantages of SWP algorithms are simplicity and 
pre-computation1 capability. The former allows for scalability 
and the latter allows for a reduced flow setup time. SWP 
algorithms have, however, two main disadvantages. The first 
pertains to the increase in network cost because, in general, the 
widest path corresponds to a longer path [2, 5]. The second 
pertains to the degradation of traffic performance, due to the 
selfish behavior of the path computation algorithm. Therefore, 
the utilization of the widest path can restrict the admission of 
flows with more strict requirements, which could otherwise be 
avoided by computing a path with just the enough available 
bandwidth to satisfy the requirements of the flow. This 
approach would however require a more complex algorithm. 

C. Hybrid algorithm 
A compromise between the two performance objectives of 

WSP and SWP algorithms is achieved by the All Hops 
Optimal Path (AHOP) algorithm [10]. The AHOP algorithm is 
a variant of the shortest-widest algorithm family that tries to 
reduce network cost while achieving load balancing. The 
AHOP algorithm uses an extended version of the Iterative 
Bellman-Ford algorithm to pre-compute the minimum hop 
count path that meets the bandwidth constraints of the flow. 
The algorithm computes alternative shortest paths between the 
source and all destinations with increasing hop count. The 
shortest path is chosen if it can satisfy the request of the flow 
in terms of available bandwidth. Otherwise, it is chosen the 
shortest possible path that has enough available bandwidth. 
This means that a longer path is only used if it has more 
available bandwidth. Since the proposed solution uses hop 
count as the main metric, it is able to minimize network cost, 
while providing load balancing among admitted flows. 

III. RESTRICTED SHORTEST PATH 
The Restricted Shortest Path problem is a special case of the 

MCP problem when two additive metrics are used. This class 
of routing problems is solved by algorithms that find feasible 
paths according to one of the constraints and from those it 
computes an optimal path according to the other constraint, if 
such a path exists. A widely studied case of the RSP problem 

 
1 While path pre-computation reduces flow setup time, it may lead to the 

use of stale routing information and produce paths that are not able to support 
the requested QoS.  
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group is the Delay-Constrained Least Cost problem (DCLC). 
The definition of the DCLC problem is the following [11]: 
Each edge has two associated non-negative metrics: a cost, 
c(e) and a delay, d(e). Given a source node s and a destination 
node d, P(s, d) is the set of all paths from s to d. The cost and 
delay of path Pi is given by the following equation: 

( ) ( ) ( ) ( )
i i

i i
e P e P

c P c e and d P d e
∈ ∈

= =∑ ∑  (2) 

P’(s, d) is the subset of P(s, d) that satisfies the delay 
constraint ∆delay as depicted in the following equation: 

( )i delayd P ≤ ∆  (3) 

From this subset, the path that minimizes the cost is the 
delay-constrained least cost path according to: 

' ( , )
min ( )

i
iP P s d

c P
∈

 (4)  

The DCLC problem is NP-complete. The main algorithms 
used to solve this problem are described next.   

The Delay Constrained Unicast Routing (DCUR) algorithm 
proposed by Salama and Reeves uses a heuristic to compute 
delay constrained least cost paths in a distributed manner [11]. 
The DCUR algorithm is based on a Distance-Vector algorithm 
and has a complexity of Θ(n3).  

Chen and Nahrstedt proposed a heuristic to solve the RSP 
problem called Delay-Cost Constrained Routing (DCCR) [12]. 
The heuristic reduces the complexity of the initial problem by 
modifying the cost function, making a transformation of the 
real valued metrics in integer values, therefore restraining the 
search space granularity. An example concerning the 
transformation of the delay metric is presented in Equation 5, 
where d(e) is the original delay of link e, ∆delay is the constraint 
relative to delay, coef is a positive integer and d(s,t) is the 
number of hops between the source node s and the destination 
node, d. nd(e) is the new integer value concerning delay. 

( ). . ( , )( )
delay

d e coef d s tnd e
 

=  ∆  
 (5) 

Afterwards, a source routing shortest path algorithm, either 
extended Dijkstra or extended Bellman-Ford, is used to 
compute the end-to-end delay and cost constrained paths. 

Cheng and Ansari propose a source routing algorithm called 
Dual Extended Bellman-Ford (DEBF) to solve the DCLC 
problem [13]. The heuristic used by the DEBF algorithm is a 
bi-directional application of the Extended Bellman-Ford 
(EBF) algorithm previously proposed by the authors. In the 
forward phase the EBF is applied to compute the least cost 
feasible path from the source to the destination using the delay 
metric. If a path that satisfies the delay constraint is found on 
the forward phase, the cost metric is used in the backward 
phase. Since the DEBF algorithm executes the EBF twice, it 
has time complexity of Θ(2nm). 

IV. METRICS COMBINATION 
Metrics combination reduces the complexity of the RSP 

problem by combining both metrics in a single metric and then 

using a traditional shortest-path algorithm to compute the path 
that minimizes the resulting metric. Metrics composition: can 
use linear, non-linear, and Lagrange relaxation composition.  

The combination of additive metrics using linear functions 
has been used in several proposals, namely the Multi-
constrained Energy Function based Pre-computation 
Algorithm (MEFPA) [16] and simplified for two metrics in the 
Jaffe Approximation Algorithm (JAA) [15] and in the QoS 
Routing strategy of the University of Coimbra [17]. For 
additive metrics, each represented by wi, for an edge e, the 
composition rule is expressed in Equation 8, where ai is the 
relative weight of metric wi. The link weights are computed 
through linear energy functions, where each energy function is 
a weighted sum of the link metrics, as depicted in Equation 8.  

[ ]
1 1

( ) , 0,1 , 1
k k

i i i i
i i

l e a w a a
= =

= ∈ =∑ ∑  (6) 

Even tough metrics combination contributes to the 
simplification of path computation algorithms it has, however, 
the drawback of preventing the provisioning of guarantees 
regarding the constraints associated with each one of the 
metrics involved. In order to overcome this problem, there is 
the need to define the proper weights used in the combination 
rule of metrics. This can be achieved by using Lagrange 
relaxation techniques to define the weights of the composition 
function [18]. Korkmaz et al. proposed the Binary Search for 
Lagrange Relaxation (BSLR) algorithm that uses a refined 
Lagrange relaxation technique to define the weights of the 
metrics composition rule [19]. In BSLR a binary search is 
performed to find the adequate value of k. It uses a hierarchical 
version of the Dijsktra algorithm, applied iteratively with 
evolving metrics, which computes shortest paths according to 
both metrics and keeps information concerning the total 
weights of the best shortest path of each metric.  

Jüttner et al. proposed the LAgrange Relaxation based 
Aggregated Cost (LARAC) algorithm is a polynomial time 
solution for the delay constrained least cost routing problem 
[20]. The metrics considered are delay and number of hops, 
represented respectively by d(P) and c(P). Since the number of 
hops is minimized, network resource utilization is optimized. 
The delay and cost metrics are combined in a single cost 
function shown in Equation 7: 

( ) ( ) ( )c P c P d Pλ λ= +  (7) 
Afterwards, the Lagrange multiplier is adjusted in 

consecutive iterations of the Dijkstra algorithm using the 
above defined cost. The running time complexity of the 
algorithm is Θ (m3log4m) and even though the algorithm does 
not give an exact solution, it always gives a bound for the 
solution. However, the linear combination of metrics may 
originate a metric whose minimization may not lead to a 
feasible solution, especially if the two metrics are not co-
related [14, 21]. As an alternative, a non-linear function may 
be used, as in the next two algorithms. 

The Delay-Cost Constrained Routing (DCCR) algorithm 
finds a near optimal solution to the Restricted Shortest Path 
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problem. DCCR and its extension, the Search Space Reduction 
DCCR (SSR-DCCR) compute a path that satisfies delay and 
cost bounds, if such a path exists. In a first stage, a cost bound 
is defined according to network state. The weight of a path P 
from node s to node u is given by Equation 8, where d(P) and 
c(P) are the delay and cost of path P, respectively. 

cos

cos

( ) ,
1 ( ) /

( )
( ) ( )

,

t

delay t

d P
c P

w P if d P c p
otherwise


 − ∆=  ≤ ∆ ∧ ≤ ∆
 ∞

 (8) 

Afterward, this non-linear combination of path delay and 
cost are used by the K-Shortest Path algorithm to search for a 
path that satisfies both constraints. This algorithm finds a list 
of k paths with the minimum cost, for a given source-
destination pair in a graph. K-Shortest Path algorithms store 
multiple shortest paths at each node in increasing weight order.  

Neve and Mieghem proposed the Tunable Accuracy 
Multiple Constraints Routing Algorithm (TAMCRA) [14]. 
Metrics are combined according to Equation 9 and a k-
Shortest Path algorithm us used to compute the shortest path 
between the source and the destination.   

cos( ) max( ( ) / , ( ) / )t delayl P c P d P= ∆ ∆  (9) 

Lagrange relaxation based algorithms have low time 
complexity and results in the literature show that they can very 
often achieve either feasible or optimal solutions. Feng et al. 
make an evaluation of algorithms that use Lagrange relaxation 
to solve the Delay Constrained Least Cost problem using both 
linear and non-linear cost functions [22]. The approaches 
using combined metrics have strengths and weaknesses, 
specifically, the combination of metrics in a single metric 
allows for simple and well known path computation 
algorithms, however, the rule for combination of the metrics is 
not always straightforward. 

V. CONCLUSIONS 
The need of Quality of Service on the Internet has motivated 

the development of several mechanisms to evolve actual IP 
networks. Quality of Service routing is one of these 
components and was the main subject of this paper, namely in 
the subject of path computation algorithm complexity.  

QoS routing has as main objective the selection of paths that 
satisfy the requirements of traffic in the network, while 
contributing to improved network resource utilization. The 
main problem to be solved by QoS routing algorithm is the 
Multi-Constraint Path problem. Algorithms to solve this family 
of problems are kwon to heuristics to reduce the complexity of 
the path computation problem, however, at the expense of not 
attaining the optimal solution for the problem, finding just a 
feasible solution. Within this framework, the QoS routing 
algorithms presented were grouped in the categories of 
Bandwidth Restricted Path algorithms, Restricted Shortest 
Path algorithms and algorithms that use metrics combination 
and the advantages and disadvantages of each approach were 

highlighted. 
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