
  

   
Small and medium size networks with access to the Internet 
are each day more common in SOHO (Small Office/Home 
Office) environments, comprising domestic and small to 
medium size organizations. Inherent to the spread of these 
networks is the search for small access devices that allow the 
connection to the Internet in a very user friendly way but with 
a growing number of offered services, comprising basic IP 
functionalities (e.g., DNS, DHCP, SMTP and NAT), security 
and traffic control services. Traditionally, these services are 
available in dedicated, proprietary, and often-patented 
devices, with complex integration and high cost. More 
recently, new products appeared in the market that integrate 
several services in a single device, as is the case of 
6WINDGATE from 6WIND [1], Access Point from Lucent 
Technologies [2] and ERX Edge Router from Juniper 
Networks [3]. However, these products still present some 
complexity at management and still have medium to high 
cost. To overcome an open space in the market, Critical 
Software and the Laboratory of Communications and 
Telematics (LCT) from University of Coimbra are developing 
a Linux, multi-service edge device, aiming the offering of 
basic and advanced IP services at low cost and with trivial 
management requirements. This paper presents one of the key 
components of this Edge Device, the traffic control system. 
Particularly, it presents a solution for the DiffServ-based 
modeling of upstream and downstream traffic in a single 
Linux router that is also an authentication, NAT (network 
address translation), firewall, service provider and application 
gateway machine. Performance tests of the control traffic 
system and correspondent analyses of the results conclude the 
paper.  
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I. INTRODUCTION 
 
The Edge Device project aims the developing of an 
equipment that will render trivial configuration and 
operation of Internet access for small and medium sized 
organizations, based on four key principles:   
 
1. Integration of Internet Services 
2. Easy of use 
3. Security and availability 
4. Low cost 
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By supporting common physical interfaces (Serial, 
Ethernet, WiFi) with intuitive set up wizards, the 
connection of the entire organization to the Internet would 
be possible without assistance from a network engineer. 
 
Edge Device management application is based on a 
layered architecture and was designed for easy integration 
of new services and applications. Its management offers 
the functionalities common to all services, like 
authentication, authorization in an LDAP repository, 
backup and restoring of configuration, services upgrade, 
etc. It has a well-defined interface with all the services, 
and mediates the relationship between the user interface 
layer and the services layer (Figure 1). 
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Figure 1 Architecture of the Edge Device 
 

A. The Edge Device and the Traffic Control Module 
 

This section mentions the key features of Edge Device 
that directly interact with the traffic control system and 
permit to understand how it works. All the system is being 
developed over Linux 2.4.18, for wired and wireless 
environments.  

 
As already mentioned, Edge Device is a firewall, NAT 
(network address translator) router operating at the edge 
of a LAN (local area network). All users of the LAN, 
including wireless users, must authenticate before they 
connect. Edge Device is also a service server and an 
application gateway, integrating a Squid server for HTTP 
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traffic, operating in transparent mode. In order to 
optimize the generally scarce resources at the access 
border, upstream and downstream traffic is classify by 
user into different DiffServ [4] traffic classes and 
prioritized according to its importance to the 
organization. All system resources are managed according 
to a policy based management. 
 
The paper is organized as follows. The next section 
presents the traffic control system of the Edge Device, 
pointing some problems that arise when integrating 
multiple IP services onto a single Linux machine, and 
presenting a possible solution for up and downstream 
shaping. Section III evaluates the implemented traffic 
control system, and describes two sets of tests related to 
the shaping of upstream and downstream interface 
bandwidth. Section IV concludes the article. 
 

II. TRAFFIC CONTROL SYSTEM 
 
In an edge router accessing the Internet, it is important to 
control the bandwidth of traffic that leaves the LAN and 
enters the ISP link, i.e., the upstream traffic. In the 
example of a 128 Kbps upstream ADSL link connecting a 
medium size enterprise, aggregate uploads that exceed 
this rate will fill the ADSL modem – generally FIFO – 
queues, either leading to packet drops or, in the presence 
of big FIFO queues, to values of latency far too high for 
interactive traffic. A better approach is to conditioning the 
upstream traffic in the edge device up to somewhat less 
than the uplink bandwidth, and to prioritize this traffic 
according to its importance to the organization. Looking 
at the downstream side, the problem is somewhat 
different, in that edge routers do not have effective 
control in what is send do the LAN. Downloads at a 
medium size enterprise, or even at home, easily exceed 
the downstream link capacity, leading to the queuing, 
delaying and possible dropping of packets at the ISP edge 
router, regardless the relative priority of the traffic flows. 
One possible approach for overcoming this situation is to 
take profit of TCP rate control mechanisms by selectively 
dropping packets or even mangling the advertised receive 
window, at the edge device side, in the hope that sender 
side slows down the transmission. Both solutions present 
evident drawbacks1 and need to be thoroughly tested in 
the scope of this project. Next is a description of the 
solution found to the control of upstream and downstream 
traffic in the Edge Device. 
 

                                                           
1 By selectively dropping TCP packets one are indeed 
dropping “perfectly condition” packets that have already 
consumed downstream link bandwidth. One the other end, 
some authors claim that mangling the advertised receive 
window of TCP ACK packets works well on an 
individual flow basis, but has a negative impact on the 
system performance in an congested, mixed traffic link 
(see, e.g., [5]). 

A. Upstream traffic 
 
Linux traffic control can be done at QoS Ingress, QoS 
Egress or at the virtual device IMQ (Intermediate 
Queueing Device [6]), called on PREROUTING and 
POSTROUTING Netfilter hooks (see Figure 2). 
 
 

 
 
Figure 2 Kernel packet travel diagram (based on [7])  
 
QoS Ingress uses a rather limited classless queuing 
discipline (ingress qdisc) that only filters traffic, using a 
token bucket algorithm, and would not be used in the 
Edge Device. On the other hand, IMQ modeling at 
PREROUTING or POSTROUTING is done in the exact 
same way as at QoS Egress, exploring the full capabilities 
of Linux queuing disciplines, classes and filters. As the 
IMQ module at POSTROUTING immediately precedes 
QoS Egress, it cannot perform any better than QoS 
Egress, having the drawback of introducing one more 
queue to the traffic control system.2  
 
The Edge Device traffic control system manages 
upstream traffic at QoS Egress, using some artifacts to 
overcome the effect of NAT and broken TCP connections 
issues. In fact, the transparent redirection of HTTP traffic 
to Squid at PREROUTING and the realization of NAT at 
POSTROUTING pose some difficulties for the 
differentiating of traffic per source IP at the QoS Egress, 
since the addresses seen by the traffic control would be 
the Edge Device address and the NAT address, 
respectively. To overcome Squid drawback, HTTP traffic 
is DSCP-marked at Squid using the tcp_outgoing_dscp 
functionality as follows: 
 
acl tc_service src IP1 IP2 … IPn
http_access allow tc_service
tcp_outgoing_dscp service_dscp tc_service   
 
On the other hand, NATed traffic that does not pass 
through Squid is previously marked in the 
PREROUTING chain (using iptables) in a per user basis, 
as follows: 
 
iptables -t mangle -A PREROUTING -s
ips_from_tc_service -j MARK –-set-mark
tc_service_mark

 

                                                           
2 For further information on Linux QoS, IMQ and 
Netfilter, see [8] and [9]. 
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This way, it is easily seen that HTTP traffic that goes 
through Squid is differentiated and shaped at QoS Egress 
based on the DSCP field, and the remaining NATed 
traffic is differentiated and shaped by iptables mark. 
 

B. Downstream traffic 
 
Downstream traffic differentiation can occur at QoS 
Egress, where NATed and HTTP traffic addresses are 
already resolved. However, this solution presents the 
drawback of shaping HTTP traffic that probably is 
already at Squid cache. Taking this into account, we 
choose to implement downstream traffic control at the 
IMQ device using, once again, an artifact, which consists 
in the registration of IMQ after NAT, at PREROUTING. 
For this, we used the imqnat patch by Patrick McHardy.3 
By changing IMQ and NAT positions at PREROUTING, 
we can guarantee that traffic arriving at IMQ is already 
de-NATed and can, this way, be differentiated by source 
IP.  
 
This does not solve, however, the problem of HTTP 
traffic that goes through Squid. Looking again at the 
kernel packet travel diagram (Figure 2), it is easily 
understandable that HTTP traffic real addresses are 
known after OUT chain, way after the traffic shaping at 
the IMQ virtual device. We came across four possible 
solutions, none of them satisfying us completely: 
 
1. HTTP traffic is not forwarded to IMQ, being shaped 

at Squid delay pools4 instead; 
2. HTTP traffic is differentiated at IMQ and put in a 

specific traffic class, regardless of its real address; 
3. HTTP traffic is not forwarded to IMQ and it is 

shaped at QoS Egress. As was mentioned before, this 
solution has the drawback of shaping all HTTP 
traffic, including the traffic already in cache. 

4. HTTP upstream traffic of certain priority users is not 
forwarded to Squid and, therefore, can be shaped by 
real IP address at IMQ, on the downstream direction. 
The cache benefits associated with the HTTP traffic 
of those priority users are, however, loosed. 

 
As of the writing of this article, it was announced a patch 
for Squid that uses the Stream Identifier option of IP 
header to mark HIT packets [12]. Packets could then be 
classified by Linux traffic control using the u32 filter: 
 
tc filter (…) match u32 0x8804 ABCD
0xffffffff at 20

 
This and the previously solutions need to be thoroughly 
tested in order to choose the best downstream scenario for 
the Edge Device.  
 

                                                           
3 This patch can be found at [10]. 
4 Delay pools are a mechanism provided by Squid to limit 
the bandwidth of certain requests, based on a criteria list 
(see  [11]). 

III. EVALUATION OF THE TRAFFIC CONTROL SYSTEM 
 
Figure 3 presents the testbed used for testing the traffic 
control system of Edge Device. WAN Emulator is a 
Linux QoS-capable router that shapes both interfaces to 
the bandwidth being emulated. When testing upstream 
traffic control, WAN Emulator works as the access device 
(e.g., ADSL modem), shaping both interfaces to the 
ADSL rate. When testing downstream traffic, WAN 
Emulator works as the ISP router, shaping the 
downstream interface according to the downstream ADSL 
link bandwidth and letting upstream interface unchanged. 
 

 
Figure 3 Testbed for Edge Device testing  
 
In all tests, EP1, EP2, EP3 and EP4 are Chariot 
Endpoints and Console is the Chariot Console [13]. The 
Edge Device under test was compiled with full netfilter 
and QoS support, and there were installed iptables-1.2.7a 
package and IMQ, h323-conntrack-nat5 and imqnat 
patches. It was also installed version v.2 of Squid. 
 
Two sets of tests were done with 64 bytes packets. The 
first set tested the capability of a specific Linux DiffServ 
configuration to differentiated upstream traffic using five 
different codepoints, and the performance impact 
associated with the activation of upstream control traffic 
at the Edge Device. It also tested how low priority traffic 
classes access bandwidth in congestion situations and 
how exceeding bandwidth from one class is distributed 
among the others. In the entire set of these testes, we used 
the dsmark qdisc for DSCP retrieval and marking, cbq as 
the primal queueing discipline, tbf for high priority traffic 
classes and sfq for low priority traffic classes. Gred qdisc 
was also used to put medium priority traffic into different 
drop precedences of a DiffServ AF class [14]. An 
explanation of the queue disciplines used can be found at 
[8]. The second set of tests aimed to study the effect of 
shaping TCP traffic in the downstream direction and to 
tune the downstream shaping.  
 

A. Upstream Tests 
 
The set of upstream tests simulated an asymmetric access 
to the Internet, with 256kbit/s available at upstream and 
1500Mbit/s available for downstream traffic. Three test 
flows were generated, each with 0,512 Mbit/s. 
                                                           
5 H323-conntrack-nat patch allows H.323 streaming 
applications (e.g., NetMeeting) to coexist with 
POSTROUTING SNAT (see [9] for source code). 
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Table 1 shows the throughput results obtained with those 
test flows in the absence of traffic control and Figure 4 
plots these results.  
 
   Throughput 
Src. Dst. Flow Rate Av Min Max 
  (Mbit/s) (Mbit/s) (Mbit/s) (Mbit/s) 
EP1 EP4 0,512 0,089 0,066 0,125 
EP2 EP4 0,512 0,084 0,058 0,154 
EP3 EP4 0,512 0,079 0,058 0,135 
   0,252   
 
Table 1 Numerical results for upstream tests without TC 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Graphical results obtained without traffic 
control. Red plot stands for EP1�EP4, green and pink 
for EP2�EP4 and EP3�EP4, respectively. 
 
We repeated these tests with the traffic control service 
activated at the Edge Device. We have assigned drop 
precedence 1 and 2 of a DiffServ AF class to EP1�EP4 
and EP2�EP4 test flows, respectively. Those two flows 
were assigned 80% of the available upstream bandwidth. 
Flow EP3�EP4 was assigned to the best-effort service 
class. Numerical and graphical results of the tests are 
shown at Table 2 and Figure 5, respectively. 
 
   Throughput 
Src. Dst. Flow Rate Av Min Max 
  (Mbit/s) (Mbit/s) (Mbit/s) (Mbit/s) 
EP1 EP4 0,512 0,102 0,082 0,132 
EP2 EP4 0,512 0,093 0,072 0,119 
EP3 EP4 0,512 0,049 0,045 0,050 
   0,242   
 
Table 2 Analytic results for upstream tests with TC 
 
The results show that, even though average throughput 
performance is slightly worse in the presence of traffic 
control (about 96-97% of the average throughput without 
traffic control), there is an effective protection of the most 
critical flows when overload ranges from moderate to 
heavy. It was also seen that limiting upstream bandwidth 
at the Edge Device to a value sensitively equal to the 
ADSL upstream value frees WAN Emulator from drops, 
as expected. Surprising enough, we did not find that 

shaping at a little less than the upstream bandwidth would 
significantly improve the overall performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Results obtained with traffic control 
 

B. Downstream Tests 
 
Preliminary results obtained with different load scenarios 
show that the impact of activating downstream traffic 
control on global throughput is meaningless, and that best 
results are obtained shaping at 95-99% of the downstream 
link capacity. Figure 6 illustrates the results of one of 
those tests, obtained with two 8,448 Mbps downstream 
test flows for an ADSL downstream link of 1,500 Mbps, 
with no traffic control at the Edge Device. Figure 7 
depicts the results obtained with two different priority 
classes defined at the Edge Device. Apart the evident 
protection of priority traffic, it can be seen a slight 
smoothness of traffic in the presence of traffic control.  
 

  
 
Figure 6 Downstream results without traffic control 
 

 
Figure 7 Downstream results with traffic control. Green 
plot corresponds to the highest priority test flow. 
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IV. CONCLUSION 
 
The configuration of a Linux traffic control service in a 
multiple service router is not straightforward. In fact, the 
inclusion in a single machine of firewall, NAT, 
authentication, wireless links and content cache proxy 
poses some difficulties when it comes to differentiate 
traffic based on IP source. This article focused on some 
somehow less discussed questions related to the 
implementation of traffic control in such a multi service 
machine, and described a possible solution for the 
shaping of upstream and downstream traffic. 
 
Several tests were done and are still being done in the 
context of the Edge Device project. The last section of 
this article presented some tests related to the shaping of 
upstream and downstream interface bandwidth. Results 
have shown that limiting upstream to less than 99% of the 
available bandwidth does not improve upstream 
performance. Results have also shown that assigning a tbf 
qdisc to high priority traffic, a gred qdisc to medium 
priority traffic and a sfq qdisc to low priority traffic is 
very effective in terms of performance of the overall 
traffic control system for cable-modem, dsl and alike 
connections. Finally, tests done for the downstream 
scenario showed that best results are obtained shaping at 
95-99% of the downstream link capacity. Also, 
preliminary results seem to show that the limitation of 
downstream rate is a rudimentary rate control mechanism 
that seems to be very effective in the traffic control 
module implemented. 
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