

Small and medium size networks with access to the Internet
are each day more common in SOHO (Small Office/Home
Office) environments, comprising domestic and small to
medium size organizations. Inherent to the spread of these
networks is the search for small access devices that allow the
connection to the Internet in a very user friendly way but with
a growing number of offered services, comprising basic IP
functionalities (e.g., DNS, DHCP, SMTP and NAT), security
and traffic control services. Traditionally, these services are
available in dedicated, proprietary, and often-patented
devices, with complex integration and high cost. More
recently, new products appeared in the market that integrate
several services in a single device, as is the case of
6WINDGATE from 6WIND [1], Access Point from Lucent
Technologies [2] and ERX Edge Router from Juniper
Networks [3]. However, these products still present some
complexity at management and still have medium to high
cost. To overcome an open space in the market, Critical
Software and the Laboratory of Communications and
Telematics (LCT) from University of Coimbra are developing
a Linux, multi-service edge device, aiming the offering of
basic and advanced IP services at low cost and with trivial
management requirements. This paper presents one of the key
components of this Edge Device, the traffic control system.
Particularly, it presents a solution for the DiffServ-based
modeling of upstream and downstream traffic in a single
Linux router that is also an authentication, NAT (network
address translation), firewall, service provider and application
gateway machine. Performance tests of the control traffic
system and correspondent analyses of the results conclude the
paper.

Keywords: Resource management, congestion control, QoS,
edge device, Linux

I. INTRODUCTION

The Edge Device project aims the developing of an
equipment that will render trivial configuration and
operation of Internet access for small and medium sized
organizations, based on four key principles:

1. Integration of Internet Services
2. Easy of use
3. Security and availability
4. Low cost

Main author’s affiliation: stmaria@dei.uc.pt, LCT,
Universidade de Coimbra, Pólo II, Pinhal de Marrocos,
3030-290, Coimbra, Portugal, http://lct.dei.uc.pt.

By supporting common physical interfaces (Serial,
Ethernet, WiFi) with intuitive set up wizards, the
connection of the entire organization to the Internet would
be possible without assistance from a network engineer.

Edge Device management application is based on a
layered architecture and was designed for easy integration
of new services and applications. Its management offers
the functionalities common to all services, like
authentication, authorization in an LDAP repository,
backup and restoring of configuration, services upgrade,
etc. It has a well-defined interface with all the services,
and mediates the relationship between the user interface
layer and the services layer (Figure 1).

Service 1 Service 2 Service n

Service Layer

Management LayerService Plug-In

User Interface Layer

Figure 1 Architecture of the Edge Device

A. The Edge Device and the Traffic Control Module

This section mentions the key features of Edge Device
that directly interact with the traffic control system and
permit to understand how it works. All the system is being
developed over Linux 2.4.18, for wired and wireless
environments.

As already mentioned, Edge Device is a firewall, NAT
(network address translator) router operating at the edge
of a LAN (local area network). All users of the LAN,
including wireless users, must authenticate before they
connect. Edge Device is also a service server and an
application gateway, integrating a Squid server for HTTP

Joana Urbano, António Alves, António Raposo, Edmundo Monteiro

Traffic Control in a Linux, Multiple Service
Edge Device

Traffic Control in a Linux, Multiple Service Edge Device

traffic, operating in transparent mode. In order to
optimize the generally scarce resources at the access
border, upstream and downstream traffic is classify by
user into different DiffServ [4] traffic classes and
prioritized according to its importance to the
organization. All system resources are managed according
to a policy based management.

The paper is organized as follows. The next section
presents the traffic control system of the Edge Device,
pointing some problems that arise when integrating
multiple IP services onto a single Linux machine, and
presenting a possible solution for up and downstream
shaping. Section III evaluates the implemented traffic
control system, and describes two sets of tests related to
the shaping of upstream and downstream interface
bandwidth. Section IV concludes the article.

II. TRAFFIC CONTROL SYSTEM

In an edge router accessing the Internet, it is important to
control the bandwidth of traffic that leaves the LAN and
enters the ISP link, i.e., the upstream traffic. In the
example of a 128 Kbps upstream ADSL link connecting a
medium size enterprise, aggregate uploads that exceed
this rate will fill the ADSL modem – generally FIFO –
queues, either leading to packet drops or, in the presence
of big FIFO queues, to values of latency far too high for
interactive traffic. A better approach is to conditioning the
upstream traffic in the edge device up to somewhat less
than the uplink bandwidth, and to prioritize this traffic
according to its importance to the organization. Looking
at the downstream side, the problem is somewhat
different, in that edge routers do not have effective
control in what is send do the LAN. Downloads at a
medium size enterprise, or even at home, easily exceed
the downstream link capacity, leading to the queuing,
delaying and possible dropping of packets at the ISP edge
router, regardless the relative priority of the traffic flows.
One possible approach for overcoming this situation is to
take profit of TCP rate control mechanisms by selectively
dropping packets or even mangling the advertised receive
window, at the edge device side, in the hope that sender
side slows down the transmission. Both solutions present
evident drawbacks1 and need to be thoroughly tested in
the scope of this project. Next is a description of the
solution found to the control of upstream and downstream
traffic in the Edge Device.

1 By selectively dropping TCP packets one are indeed
dropping “perfectly condition” packets that have already
consumed downstream link bandwidth. One the other end,
some authors claim that mangling the advertised receive
window of TCP ACK packets works well on an
individual flow basis, but has a negative impact on the
system performance in an congested, mixed traffic link
(see, e.g., [5]).

A. Upstream traffic

Linux traffic control can be done at QoS Ingress, QoS
Egress or at the virtual device IMQ (Intermediate
Queueing Device [6]), called on PREROUTING and
POSTROUTING Netfilter hooks (see Figure 2).

Figure 2 Kernel packet travel diagram (based on [7])

QoS Ingress uses a rather limited classless queuing
discipline (ingress qdisc) that only filters traffic, using a
token bucket algorithm, and would not be used in the
Edge Device. On the other hand, IMQ modeling at
PREROUTING or POSTROUTING is done in the exact
same way as at QoS Egress, exploring the full capabilities
of Linux queuing disciplines, classes and filters. As the
IMQ module at POSTROUTING immediately precedes
QoS Egress, it cannot perform any better than QoS
Egress, having the drawback of introducing one more
queue to the traffic control system.2

The Edge Device traffic control system manages
upstream traffic at QoS Egress, using some artifacts to
overcome the effect of NAT and broken TCP connections
issues. In fact, the transparent redirection of HTTP traffic
to Squid at PREROUTING and the realization of NAT at
POSTROUTING pose some difficulties for the
differentiating of traffic per source IP at the QoS Egress,
since the addresses seen by the traffic control would be
the Edge Device address and the NAT address,
respectively. To overcome Squid drawback, HTTP traffic
is DSCP-marked at Squid using the tcp_outgoing_dscp
functionality as follows:

acl tc_service src IP1 IP2 … IPn
http_access allow tc_service
tcp_outgoing_dscp service_dscp tc_service

On the other hand, NATed traffic that does not pass
through Squid is previously marked in the
PREROUTING chain (using iptables) in a per user basis,
as follows:

iptables -t mangle -A PREROUTING -s
ips_from_tc_service -j MARK –-set-mark
tc_service_mark

2 For further information on Linux QoS, IMQ and
Netfilter, see [8] and [9].

NEW2AN 2004 St.Petersburg, Russia

This way, it is easily seen that HTTP traffic that goes
through Squid is differentiated and shaped at QoS Egress
based on the DSCP field, and the remaining NATed
traffic is differentiated and shaped by iptables mark.

B. Downstream traffic

Downstream traffic differentiation can occur at QoS
Egress, where NATed and HTTP traffic addresses are
already resolved. However, this solution presents the
drawback of shaping HTTP traffic that probably is
already at Squid cache. Taking this into account, we
choose to implement downstream traffic control at the
IMQ device using, once again, an artifact, which consists
in the registration of IMQ after NAT, at PREROUTING.
For this, we used the imqnat patch by Patrick McHardy.3
By changing IMQ and NAT positions at PREROUTING,
we can guarantee that traffic arriving at IMQ is already
de-NATed and can, this way, be differentiated by source
IP.

This does not solve, however, the problem of HTTP
traffic that goes through Squid. Looking again at the
kernel packet travel diagram (Figure 2), it is easily
understandable that HTTP traffic real addresses are
known after OUT chain, way after the traffic shaping at
the IMQ virtual device. We came across four possible
solutions, none of them satisfying us completely:

1. HTTP traffic is not forwarded to IMQ, being shaped

at Squid delay pools4 instead;
2. HTTP traffic is differentiated at IMQ and put in a

specific traffic class, regardless of its real address;
3. HTTP traffic is not forwarded to IMQ and it is

shaped at QoS Egress. As was mentioned before, this
solution has the drawback of shaping all HTTP
traffic, including the traffic already in cache.

4. HTTP upstream traffic of certain priority users is not
forwarded to Squid and, therefore, can be shaped by
real IP address at IMQ, on the downstream direction.
The cache benefits associated with the HTTP traffic
of those priority users are, however, loosed.

As of the writing of this article, it was announced a patch
for Squid that uses the Stream Identifier option of IP
header to mark HIT packets [12]. Packets could then be
classified by Linux traffic control using the u32 filter:

tc filter (…) match u32 0x8804 ABCD
0xffffffff at 20

This and the previously solutions need to be thoroughly
tested in order to choose the best downstream scenario for
the Edge Device.

3 This patch can be found at [10].
4 Delay pools are a mechanism provided by Squid to limit
the bandwidth of certain requests, based on a criteria list
(see [11]).

III. EVALUATION OF THE TRAFFIC CONTROL SYSTEM

Figure 3 presents the testbed used for testing the traffic
control system of Edge Device. WAN Emulator is a
Linux QoS-capable router that shapes both interfaces to
the bandwidth being emulated. When testing upstream
traffic control, WAN Emulator works as the access device
(e.g., ADSL modem), shaping both interfaces to the
ADSL rate. When testing downstream traffic, WAN
Emulator works as the ISP router, shaping the
downstream interface according to the downstream ADSL
link bandwidth and letting upstream interface unchanged.

Figure 3 Testbed for Edge Device testing

In all tests, EP1, EP2, EP3 and EP4 are Chariot
Endpoints and Console is the Chariot Console [13]. The
Edge Device under test was compiled with full netfilter
and QoS support, and there were installed iptables-1.2.7a
package and IMQ, h323-conntrack-nat5 and imqnat
patches. It was also installed version v.2 of Squid.

Two sets of tests were done with 64 bytes packets. The
first set tested the capability of a specific Linux DiffServ
configuration to differentiated upstream traffic using five
different codepoints, and the performance impact
associated with the activation of upstream control traffic
at the Edge Device. It also tested how low priority traffic
classes access bandwidth in congestion situations and
how exceeding bandwidth from one class is distributed
among the others. In the entire set of these testes, we used
the dsmark qdisc for DSCP retrieval and marking, cbq as
the primal queueing discipline, tbf for high priority traffic
classes and sfq for low priority traffic classes. Gred qdisc
was also used to put medium priority traffic into different
drop precedences of a DiffServ AF class [14]. An
explanation of the queue disciplines used can be found at
[8]. The second set of tests aimed to study the effect of
shaping TCP traffic in the downstream direction and to
tune the downstream shaping.

A. Upstream Tests

The set of upstream tests simulated an asymmetric access
to the Internet, with 256kbit/s available at upstream and
1500Mbit/s available for downstream traffic. Three test
flows were generated, each with 0,512 Mbit/s.

5 H323-conntrack-nat patch allows H.323 streaming
applications (e.g., NetMeeting) to coexist with
POSTROUTING SNAT (see [9] for source code).

Traffic Control in a Linux, Multiple Service Edge Device

Table 1 shows the throughput results obtained with those
test flows in the absence of traffic control and Figure 4
plots these results.

 Throughput
Src. Dst. Flow Rate Av Min Max
 (Mbit/s) (Mbit/s) (Mbit/s) (Mbit/s)
EP1 EP4 0,512 0,089 0,066 0,125
EP2 EP4 0,512 0,084 0,058 0,154
EP3 EP4 0,512 0,079 0,058 0,135
 0,252

Table 1 Numerical results for upstream tests without TC

Figure 4 Graphical results obtained without traffic
control. Red plot stands for EP1�EP4, green and pink
for EP2�EP4 and EP3�EP4, respectively.

We repeated these tests with the traffic control service
activated at the Edge Device. We have assigned drop
precedence 1 and 2 of a DiffServ AF class to EP1�EP4
and EP2�EP4 test flows, respectively. Those two flows
were assigned 80% of the available upstream bandwidth.
Flow EP3�EP4 was assigned to the best-effort service
class. Numerical and graphical results of the tests are
shown at Table 2 and Figure 5, respectively.

 Throughput
Src. Dst. Flow Rate Av Min Max
 (Mbit/s) (Mbit/s) (Mbit/s) (Mbit/s)
EP1 EP4 0,512 0,102 0,082 0,132
EP2 EP4 0,512 0,093 0,072 0,119
EP3 EP4 0,512 0,049 0,045 0,050
 0,242

Table 2 Analytic results for upstream tests with TC

The results show that, even though average throughput
performance is slightly worse in the presence of traffic
control (about 96-97% of the average throughput without
traffic control), there is an effective protection of the most
critical flows when overload ranges from moderate to
heavy. It was also seen that limiting upstream bandwidth
at the Edge Device to a value sensitively equal to the
ADSL upstream value frees WAN Emulator from drops,
as expected. Surprising enough, we did not find that

shaping at a little less than the upstream bandwidth would
significantly improve the overall performance.

Figure 5 Results obtained with traffic control

B. Downstream Tests

Preliminary results obtained with different load scenarios
show that the impact of activating downstream traffic
control on global throughput is meaningless, and that best
results are obtained shaping at 95-99% of the downstream
link capacity. Figure 6 illustrates the results of one of
those tests, obtained with two 8,448 Mbps downstream
test flows for an ADSL downstream link of 1,500 Mbps,
with no traffic control at the Edge Device. Figure 7
depicts the results obtained with two different priority
classes defined at the Edge Device. Apart the evident
protection of priority traffic, it can be seen a slight
smoothness of traffic in the presence of traffic control.

Figure 6 Downstream results without traffic control

Figure 7 Downstream results with traffic control. Green
plot corresponds to the highest priority test flow.

NEW2AN 2004 St.Petersburg, Russia

IV. CONCLUSION

The configuration of a Linux traffic control service in a
multiple service router is not straightforward. In fact, the
inclusion in a single machine of firewall, NAT,
authentication, wireless links and content cache proxy
poses some difficulties when it comes to differentiate
traffic based on IP source. This article focused on some
somehow less discussed questions related to the
implementation of traffic control in such a multi service
machine, and described a possible solution for the
shaping of upstream and downstream traffic.

Several tests were done and are still being done in the
context of the Edge Device project. The last section of
this article presented some tests related to the shaping of
upstream and downstream interface bandwidth. Results
have shown that limiting upstream to less than 99% of the
available bandwidth does not improve upstream
performance. Results have also shown that assigning a tbf
qdisc to high priority traffic, a gred qdisc to medium
priority traffic and a sfq qdisc to low priority traffic is
very effective in terms of performance of the overall
traffic control system for cable-modem, dsl and alike
connections. Finally, tests done for the downstream
scenario showed that best results are obtained shaping at
95-99% of the downstream link capacity. Also,
preliminary results seem to show that the limitation of
downstream rate is a rudimentary rate control mechanism
that seems to be very effective in the traffic control
module implemented.

V. ACKNOWLEDGMENT

This work was partially funded by Agência de Inovação,
in the aim of the EDGEDEVICE project.

VI. REFERENCES

[1] 6WIND Homepage, http://www.6wind.com
[2] Lucent Technologies Homepage, http://www.lucent.com
[3] Juniper Networks Homepage, http://www.lucent.com.
[4] X S. Blake et al., “An Architecture for Differentiated Services

Framework”, RFC 2475, http://www.cis.ohio-state.edu/cgi-
bin/rfc/rfc2475.html

[5] Check Point Homepage, http://www.checkpoint.com
[6] The Intermediate Queueing Device,

http://luxik.cdi.cz/~patrick/imq/
[7] http://www.docum.org
[8] Linux Advanced Routing & Traffic Control Homepage,

http://www.lartc.org/
[9] Netfilter Homepage, http://www.netfilter.org
[10] The imqnat patch,

http://mailman.ds9a.nl/pipermail/lartc/2002q3/004725.html
[11] Squid delay pools, http://www.squid-

cache.org/Doc/FAQ/FAQ-19.html
[12] M. Stavrev, Zero Penalty Hit patch for SQUID (ZPH),

http://www.it-academy.bg/zph/
[13] NetIQ Chariot, http://www.netiq.com/products/chr/default.asp
[14] J. Heinanen, “Assured Forwarding PHB”, RFC 2597,

http://www.faqs.org/rfcs/rfc2597.html

