TOWARDS INTEGRATED MANAGEMENT
OF FIREWALL APPLIANCES

Luis Pinto, Edmundo Monteiro, Paulo Simdes
CISUC - Dep. Eng. Informatica
University of Coimbra, Pélo 11
3030-290 Coimbra, Portugal

ABSTRACT

In the last few years we witnessed a remarkable
proliferation of network firewalls, driven by security
concerns and supported by the emergence of low-cost
firewall solutions. However, the subsequent relegation of
firewall management to less trained technicians — or even
to final users, in some cases — also increased the risk of
security problems due to configuration and administration
malpractices. This is a troublesome situation. It is
impossible to hire highly trained technicians to manage
every firewall appliance, and it is also unfeasible — in
most cases — to simplify firewall administration to the
point where it requires no expertise at all.

This problem is particularly serious in small to medium-
scale networks: they already require professional-level
expertise, but they are still too small to justify the most
sophisticated and expensive solutions.

In this paper we present a platform for remote
management of firewall appliances that is particularly
targeted to such environments. When compared with
traditional practices, this platform brings two key
advantages: it reduces installation and maintenance costs
and, at the same time, it improves the configuration and
monitoring practices.

Key Words

Network & Security Management, Firewall Management

1. INTRODUCTION

As the number of network firewalls in each network
continues to grow, in order to deal with external and
internal threats, related operations and maintenance
(O&M) costs also increase at an almost proportional rate.

This problem is well known by the industry, which
responded in two different ways.

For the corporate market, whose large networks easily
justify the investment in expensive commercial products
offering integrated and centralized firewall management,
vendors such as Checkpoint [1], NetScreen [2], Cisco [3]
or Clavister [4] already offer some degree of support for
remote configuration and monitoring operations.

Protecting simple low-segment SOHO networks is also
relatively straightforward, since low-cost Cable or ADSL

routers generally include basic VPN and/or filtering
support, as well as simplified Web-based configuration
interfaces. Despite the lack of advanced security features
or sophisticated remote/centralized management tools,
those devices reasonably satisfy the basic needs of such
networks.

There are also several noteworthy research projects
addressing this problem, most of them focusing on the
application of policy-based networking (PBN [5])
concepts for firewall management [6-9]. PBN goes
beyond simple remote firewall management: it envisions
a network where enterprise-wide high-level policies are
automatically and dynamically reflected in the
configuration of network devices such as routers,
firewalls, switching equipment and servers. However,
despite the promising results achieved so far, a lot of
research is still needed before this long-term vision
becomes reality.

Nevertheless, even with a relative abundance of firewall
management proposals, our own field experience — based
on the management of several geographically dispersed
networks belonging to different clients — showed us that,
sometimes, currently available solutions simply do not fit.

This is especially true for the growing segment of middle
sized networks that already require a considerable degree
of flexibility and functionality but are still too small to
justify corporate-grade solutions. A large part of these
networks uses firewalls based on open source BSD or
GNU/Linux distributions, complemented with filtering
tools, like iptables [10], and freely available VPN
software [11-12]. This approach might be motivated by
economic reasons, but its recognized flexibility and
robustness are also determinant.

The problem is that installing and configuring such
firewalls is time-consuming and error-prone. In order to
simplify this task, there are several firewall kits based on
GNU/Linux, such as LRP [13], SmoothWall [14] and Leaf
[15]. These kits propose lightweight GNU/Linux
installations — removing all the unnecessary applications
and services — and, in a few cases, enhanced configuration
methods. However, they still lack the remote/centralized
management tools needed to scale down management
costs associated with the management of several
geographically dispersed firewalls.

The platform we present in this paper is inspired by those
open source firewall kits but goes one step further,
addressing the problems of simplified distribution,
centralized management and O&M cost reduction.

It is also inspired by some PBN assumptions, namely the
need for more automated high-level configuration
interfaces. However, it follows a much more pragmatic
approach, sacrificing the support for heterogeneous
firewall implementations (focusing instead in a single
reference implementation) and coordinated configuration
of interrelated network nodes (each firewall configuration
is self-contained).

This paper proceeds as follows: Section 2 identifies the
key requirements we took into account in the design of
the platform. Section 3 presents the architecture of the
platform, which is further detailed in Section 4 (firewall
appliances) and Section 5 (Management Station). Section
6 presents the associated high-level configuration
language, while Section 7 concludes the paper.

2. KEY REQUIREMENTS

The platform was designed to tackle with very specific
problems we had in the outsourcing services we provide
to a number of local customers. In the context of these
services, we are responsible for the management of more
than a dozen different networks, belonging to several
distinct clients and totaling more than twenty firewalls.
Each network comprises a few hundred desktops, as well
as the typical suite of internet and intranet servers.

In order to keep competitive costs, time-consuming tasks
such as user helpdesk and desktop maintenance are
locally handled by technicians assigned to a single
network/customer, while a centralized core of specialists
in areas like security, databases and network engineering
provides support to the whole set of managed networks.
This set-up, combined with the error-prone configuration
mechanisms of GNU/Linux firewalls, was a fertile ground
for unnoticed installation problems and/or faulty
configurations. Furthermore, even with strict operation
guidelines, in order to normalize managed firewall and
stimulate scale economies, costs were still almost
proportional to the number of installed firewalls. We
needed an alternative approach, focused on the following
requirements:

e extensive remote management functionality, reducing
as much as possible the need for local interventions.

e homogeneous managed firewall appliances. Even slight
versioning differences from device to device — or minor
configuration variations due to human factors — imply
an increased effort to tackle with security threats,
affecting scale economies.

e reduced probability of human errors. This implies
minimizing the need for operator interventions (local or
remote) and concentrating configuration in a single,
easier-to-use, higher-level interface.

o centralized configuration storage, in order to simplify
security audits and to accelerate emergency repairs in
the case of hardware fault.

e monitoring mechanisms. These must include both on-
line monitoring, to check the current health of managed
devices, and off-line fine-grain analysis, based on the
examination of the log files retrieved from each
firewall.

3. ARCHITECTURE

From an architecture viewpoint, the platform is a classic
remote management infrastructure (see Figure 1). It is
centered on the Management Station, which controls the
settings and execution of managed devices, stores
management information in a relational database
(including individual firewall configurations, historical
log data, security and administrative settings, etc.) and
provides a Web-based console to the systems operator.
Section 5 discusses the key aspects of the management
station, while Section 6 describes the user interface.

The managed appliances consist of classic GNU/Linux
firewall kits, comprising iptables, DNS, NTP and DHCP
servers and HTTP proxies. They are also enhanced with
support for high-level firewall configuration syntaxes and
the so-called Remote Management Layer, which controls
the device configuration and handles communication with
the Management Station. Section 4 provides a more
detailed presentation of the managed firewalls.

Management Console

GUI
Web browser ——
RDBMS
HTTPS A SQL
Management Station
Apache WebServer ¢
Management Logic
Interface Layer
? + SOAP Syslog data ? é
v E (XML/HTTPS) (over SSL) v E

Remote Management Layer

DHCP horewall
DNS Shorewa
NTP

WebProxy IpTables

GNU/Linux Image

Managed Managed | | Managed
Firewall Firewall Firewall

Figure 1: Platform Architecture

4. MANAGED FIREWALL APPLIANCES

Managed appliances are GNU/Linux-based firewalls that
differ from other available firewall kits in three areas: the
distribution and installation mechanism; the support for
high-level firewall configuration syntaxes; and the
Remote Management Layer that provides an interface
with the centralized management station.

4.1. Normalized, CDROM-based Appliances

When managing a large number of firewalls, even small
differences — such as different software versions or minor
configuration changes — become annoying. They are
difficult to keep track off, and often result in system
malfunctions or security threats.

Furthermore, installing each firewall from scratch is a
time-consuming and error-prone task, even when
adopting rigid operation guidelines. It takes hours to
install the base operating system, remove unnecessary
components, install specific firewall services, configure
them and perform the final tests before launching the
firewall into production.

The need for normalization, reduced installation costs and
reduced exposure to human-errors motivated us to follow
a less traditional approach: to run firewalls directly from a
bootable CDROM that contains the operating system, the
firewalling services and the remote management modules.

In our case the CDROM was built by making a few
adjustments to a regular Debian Linux distribution [16],
in order to reduce its footprint and make it work directly
from the CDROM. The very few node-specific settings
(such as network addresses, firewalling rules, and security
keys for communication with the server) were moved to a
floppy disk-based partition, and system logs are sent
directly to the Management Station.

This simple solution turns firewalls into diskless
appliances running stable and normalized software, with
no file system corruption problems or unnoticed
installation faults. Furthermore, a number of security
attacks become unfeasible (or not worthwhile) when the
target firewall is based on a read-only file system.

Firewall installation also becomes simpler: the on-site
technician just inserts the CDROM and a blank floppy
disk and boots the system. He is then prompted to provide
the basic data the firewall needs to contact the central
server (a couple of network addresses and security keys).
After that the firewall automatically contacts the server to
retrieve its full configuration (filtering rules, monitoring
settings, DHCP and DNS configuration, etc.) which
should be already stored in the central database. This also
accelerates hardware repairs, since configuration is
rapidly restored after replacing the faulty equipment.

There are, however, a few downsides. The worst is the
need for local interventions every time the software
requires an upgrade. In our specific case the need to
replace the firewall CDROM a few times a year is not
relevant, since we already have an on-site technician.

However, in other scenarios this might justify alternative
approaches based on read-write file systems and dynamic
software update mechanisms, such as PreOS management
[17] or hot-swapping [18].

CDROM reliability is another potential drawback.
However, although we found no studies comparing the
reliability of hard drives and CDROMs, we believe they
have more or less the same mechanical reliability.
Furthermore, CDROM failures are simpler to detect and
to solve (just replace the CDROM or the CDROM drive),
while disk failures often result in unnoticed file system
corruption and/or data loss. However, in some cases this
could justify the investment in more robust solutions,
such as flash memory.

4.2. Support for High-Level Configuration

Another distinctive feature of the managed firewalls is the
support for a high-level configuration language. This
language is based on an enhanced and extended version of
the syntax used by Shorewall [19], a tool for high-level
configuration of iptables.

This language is the platform’s lingua franca. Its
metaphors provide the basis for the firewall configuration
GUI; it is used to store configurations in the central
database; and it is used by the central station to upload
configurations into the managed firewalls.

Managed firewalls feature a translation module that
converts high-level configurations into low-level, service-
specific configurations. In order to do this, the original
Shorewall tool was extended to support other services,
such as DNS, DHCP and NTP.

A more detailed discussion of the configuration language
is presented in Section 6.

4.3. Remote Management Layer

The Remote Management Layer controls the firewall
configuration on behalf of the Management Station.

The Remote Management Layer tries to check local
configurations (stored in the floppy disk) each time the
firewall boots. If there are no local configurations — or if
there are differences between local and central
configurations — the central settings are retrieved and
applied. On the other hand, during normal execution
configuration updates are usually triggered by the
Management Station.

The Remote Management Layer also comprises two
monitoring services. The first one provides basic health
check funcionality, while the second simply transfers raw
system logs to the central database, for latter analysis.
This raw transfer may sound inefficient, but in most cases
its effective impact does not justify any optimizations.

This layer consists of a number of Perl Scripts [20].
Except for the log transfer service, that uses an SSL
tunnel, communication with the Management Station in
based on an XML/SOAP interface [21] over HTTPS,
implemented using SOAP::Lite [22].

5. MANAGEMENT STATION

The Management Station provides firewall configuration
management services and monitoring services.

Installation of a new firewall begins with the registration
of the firewall configuration, using a web-based interface.
This configuration includes administrative data (e.g.
physical location, hardware description and assigned
technicians), IP settings, security keys, high-level filtering
rules, and settings for services like DNS, DHCP and NTP.
Configuration is then stored in the database, ready to be
transferred to the firewall. As already mentioned, the local
technician just needs to boot the firewall and provide a
couple of settings (IP addresses and security keys) so that
the firewall appliance can contact the management station
to retrieve complete configuration settings. Later on, the
same menus are used to review or update the firewall
settings. Updated settings are registered in the database
and, optionally, immediately transferred to the managed
firewall. It is also possible to keep in the database several
alternative configuration sets for the same firewall. Figure
2 shows the firewall configuration summary page.

On-line monitoring consists of a simple health monitor
service that periodically checks the firewall status,
looking for interface failures and other signs of potential

problems. This is mostly a poll-based operation, even
though managed firewalls may also trigger alarms in a
few exceptional circumstances.

Off-line monitoring is no more than a centralized syslog
service that transfers log data from the firewalls to the
central database, for later analysis.

The Management Station also features a fine-grained
administrative model. Administration is shared by a team
of technicians with different roles. Field technicians are
usually assigned to a single location (and a small number
of firewall appliances) and, in most cases, just perform
monitoring and hardware maintenance tasks. Remote
managers, on the other way, are typically responsible for
the configuration of a large number of devices belonging
to different costumers. In order to reflect this model,
permissions to access the Management Station are
definable per user, per managed firewall and per task.

The Management Station was implemented using a
GNU/Linux distribution. The Web interface is provided
by an Apache WebServer [23], while the associated
database uses MySQL [24]. Like the Remote
Management Server, on the firewall side, the
Management Station’s logic was mostly developed using
Perl scripts and SOAP::Lite.

/3 Firewall Administration - |
J File Edit “ew Favorites Tools Help ﬁ
J Bk v = v (D 7at ‘ Phsearch [ElFavorites Meda % | - S = H
JAQE'TESSI http: jifw.dei.uc. ptperlf ftask=Ffirewallstaction=detalsaindex=2 j @GD
1=
Firewall Admin
. Listaof Refreshing information for FCDEF Fwl: Dane.
Eirewalls
. Mew
Eirewall ‘Name ||FCDEF Furl |LDEatIDn ||Bast|dor 54
——— [Zones |Palicies
. Chande i > Out - ACCEPT
Password j;?”t Cut -z Any - DROP
. Logout Ary -= Any - REJECT
el Edit policies
|A|:tmn Origin |Dest|nat|nm |Dest|natmn PDr‘t|PrDtDcn\ |E:Durce Paort(s) |Or|g|na\ Dest
|accEPT [any finswwow fodefue.pt (B0 [ten
[oMaT Jout neiFzae0.2s [smip [ten
Rules: [oMaT Jout Ini17zae.0.4 |https [ten
[oMeT [out ni17zae.0.3 [ssh,http [tep
[Redirect[tn |- [3128 [tep [- [1172.16.0.43
Edit Rules
‘Edit DNS and DHCP Clients |Number of network interfaces: | 2=
‘Interfal:e 1out =l
‘DNS Hame ([For Feclef.ue.pt |DNS 1 [183.136.212.1
‘DNS 2 |193.136.212.2 |DN5 3 I
‘NTF‘ i |193.136.212.2 |NTF‘ 2 I
‘11:1 [193.137.211.5 |Brc|adcast 1 [152.137 211,255
‘Netmaskl [255.255.255.0 |Default Gateway [153.137.211.254
‘Interfal:e 2|in =l
‘NetwokfDrNAT[172‘16.0.1/24]2 ||172.16.D.Df24
‘IPE‘ [172.16.0.1 |Bmadcast 2 |172.16.0.255
‘Netmaskz |255.255.255.0
|show configuration
Change | Resetl b
[

&

’_ l_ l_ E Local intranet

Figure 2: Configuration Management Interface

6. CONFIGURATION LANGUAGE

Firewall configuration is an error-prone task for two main
reasons. First, because settings are disperse across several
different files, each with its own structure. Network
interfaces are defined in one place, DNS configurations
are written somewhere else, iptables in a third file and so
on. It is difficult to keep coherence between so many
disperse configurations. The second reason has to do with
the counterintuitive syntax used by iptables to define
filtering rules.

To solve these problems, we decided to concentrate the
firewall configuration in a single location and to use
higher-level metaphors to define the filtering rules.

Instead of defining a whole new language from scratch,
we chose to extend Shorewall [19], an open source tool
that converts high-level filtering rules into iptables native
definitions. It is much simpler to use than plain iptables
and, although it is just text-based, it was easy to extend
with a Web-based GUI and an XML structure. Other
services, such as DNS and DHCP, were also added to the
original language. We evaluated several multiplatform
alternatives [6-9,25] but, in the context of iprables,
Shorewall had the best balance between functionality,
flexibility and easiness of use.

For the filtering rules section, for instance, the following
abstraction entities are defined (see Figure 3):

e interfaces map physical or logical network interfaces;

e zones define the different zones connected to the
firewall, such as the Internet, a private network, a
demilitarized zone, etc;

¢ policies define general policies regarding establishment
of connections between existing zones. They can
specify the traffic to be accepted, denied, or rejected;

e rules are exceptions to the default policies. They fine-
tune the default policies, for instance enabling traffic
from an non-trusted network to one specific host;

External

v=pp TUNNEIS === Networks

4

Rules

Policies €--- Masquerading

A T

4 ~\ (~\ 4 N\
Zone Zone Zone
A A A
(] (] (]
(] (] (]
\4 \4 v
Interface Interface Interface
N J . J A\ J

Figure 3: Abstractions for Rule Definition

e masquerading Rules define IP Masquerading and
Source Network Address Translation (SNAT) rules,
enabling one private network to access other zones
using address translation;

e tunnels define IPSec, OpenVPN, PPTP and IPv6 to
IPv4 tunnels.

The configuration language is the basis of communication
between the Management Station and managed devices.
The Management Station creates a Perl associative array
with the firewall’s network settings, filtering rules and the
various service configurations (DNS, DHCP, etc.). That
array is then translated into XML and sent over HTTPS.
Figure 4 presents an excerpt of the SOAP conversation
between the Management Station and the firewall.

The systems manager, however, does not deal with text
configurations. Instead, he just deals with the Web-based
interface (see Figure 2) that represents a structured view
of the firewall’s settings.

<conf xsi:type="namesp2:SOAPStruct">

<zones xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[2]">

<item xsi:type="xsd:string">
In.Intranet.Internal Zone
</item>
<item xsi:type="xsd:string">
Out.Internet.External
</item>
</zones>

<dhcpd.conf xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:string[4]">

<item xsi:type="xsd:string">
option domain-name "fd.uc.pt";

</item>

<item xsi:type="xsd:string">

option domain-name-servers "193.136.212.2";

</item>
<item xsi:type="xsd:string">

option domain-name-servers "193.136.212.22";

</item>
</dhcpd.conf>
</conf>

Figure 4: Excerpt of the SOAP Conversation

7. CONCLUSIONS

In this paper we presented a platform for centralized
management of firewall appliances. This platform extends
traditional open source firewall kits with high-level
remote configuration and remote monitoring mechanisms.

Although sharing some assumptions with more ambitious
approaches, such as PBN and high-end commercial
products, is follows a much more pragmatic approach.
Focusing in the reduction of O&M costs and the provision
of easy-to-use interfaces, while sacrificing support for
multiple firewall implementations and excessively
abstract rule definition languages, it was possible to build
a simple and cost-effective platform without much effort.
The current implementation is not a full-fledged product.
It still lacks more sophisticated monitoring (such as
dynamically defined threshold alarms and advanced log
analysis), and VPN configuration also needs further
integration work. Furthermore, the firewall distribution
mechanism becomes questionable whenever there are no
on-site technicians to periodically replace CDROM:s.
Nevertheless, we are already wusing it to manage
production firewalls, with a noticeable improvement of
O&M costs and, more important, an enhanced control
over each firewall’s configuration correctness.

References

[1] Checkpoint Software Technologies,
http://www.checkpoint.com/

[2] NetScreen Firewall,
http://www.netscreen.com/products/firewall/

[3] Cisco Secure Policy Manager, http://www.cisco.com

[4] Clavister Firewall-SW Series,
http://www.clavister.com/

[5] D. Kosiur, Understanding Policy-Based Networking
(Willey, 2001).

[6] F.Caldeira & E. Monteiro, A Policy-Based Approach
to Firewall Management, Proc. of NetCon2002,
Network Control and Engineering for QoS, Security
and Mobility with focus on Policy-based Networking,
Kluwer Academic Publishers, Paris, 2002.

[7] V. Kurland & V. Zaliva, Firewall Builder Project,
http://www.fwbuilder.org

[8] Filter Language Compiler,
http://coombs.anu.edu.au/~avalon/

[9] S. Chudley & U. Ultes-Nitsche, An XML-based
Approach to Modeling and Implementing Firewall
Configurations, Proc. of ISSA 2002 Information
Security Conference, South Africa, July 2002

[10] netfilter/iptables Homepage, www.netfilter.org/
[11]Linux FreeS/Wan Project, http://www.freeswan.org/
[12]OpenVPN Project, http://openvpn.sourceforge.net/

[13]Linux Router Project, http://www.linuxrouter.org/

[14] SmoothWall Project, http://www.smoothwall.org

[15]Leaf, Linux Embedded Appliance Firewall,
http://leaf.sourceforge.net

[16] Debian Project, http://www.debian.org/

[17]T. Cruz & P. Simdes, Enabling PreOS Desktop
Management, Proc. of the 8" IFIP/IEEE
International Symposium on Integrated Network
Management (IM'2003), Kluwer Academic Press,
March 2003

[18]N. Feng, A. Gang, T. White and B. Pagurek,
Dynamic Evolution of Network Management
Software by Software Hot-Swapping, Proc. of the 7
IFIP/IEEE International Symposium on Integrated
Network Management (IM 2001), May 2001.

[19] Shorewall Project, http://www.shorewall.net/
[20] Perl, http://www.perl.com

[21]Simple Object Access Protocol (SOAP) 1.1,
http://www.w3.0org/TR/SOAP/

[22] SOAP::Lite, http://www.soaplite.com
[23] Apache Software Foundation, http://www.apache.org
[24]MySQL Database Server, http://www.mysql.com

[25]HLFL, High Level Firewall Language,
http://www.hlfl.org/

