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Abstract

The Differentiated Services model (DS) maps traffic into services that offer different quality

levels. However, flows are treated unfairly in each service, since the DS model lacks a policy to

distribute service bandwidth between flows that form the service aggregate traffic. We present

a signaling protocol called Session-Aware Popularity-based Resource Allocation (SAPRA) that

fairly distributes resources along the path of each session, with an amount of resources propor-

tional to their receiver population. We assume that scalable sessions are layered hierarchically,

with each layer sent to a different multicast group. We evaluate the efficiency of SAPRA using

theoretical analysis and simulation. 1
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1 Introduction

Current popular Internet multimedia applications, such as RealNetworks SureStream3 and Microsoft

Windows Media 4 stream the same content at different rates, depending on receiver capabilities. How-

ever, even if they use multicast, each stream in this multi-rate encoding contains a complete encoding,

thus wasting bandwidth. This problem can be solved by using scalable encoding [20, 10]. Scalable en-

coding divides a video stream into cumulative layers with different rates and importance. The stream

rate is then the sum of its layers. Sources send only one stream to all receivers, mapping each layer to a

different multicast group. All layers belonging to the same stream form a session, as in the Real-Time

protocol (RTP) [19].

Due to their real-time characteristics, multimedia sessions need quality guarantees from networks,

which can be provided by the DS model [3]. This model allows network providers to aggregate traffic

into different services at the boundaries of their network according to per-hop behaviors (PHB) that

characterize the allocation of resources needed to give an observable forwarding behavior (loss, delay,

jitter) to the service aggregated traffic. However, inside each service, sessions are treated unfairly,

since the DS model has no policy to distribute bandwidth between sessions that compose the service

aggregated traffic, i.e., services lack inter-session fairness.

We propose a fairness protocol called Session-Aware Popularity-based Resource Allocation (SAPRA),

which provides inter-session fairness inside each service by assigning more bandwidth to sessions with

larger audiences. In the presence of scalable sessions, SAPRA also provides intra-session fairness,

assigning to each layer a drop precedence that matches its importance. But, this is only possible if

the service has the capability to assign different drop precedences to flows, as happen with services

based upon the Assured Forwarding PHB [6]. To achieve its goal, SAPRA adds agents and markers

to edge routers. Agents manage sessions to provide inter-session fairness; markers deal with layers,

providing intra-session fairness. In the spirit of the DS model, agents and markers are placed only in

edge routers, since they do not need access to the aggregate traffic of each service.

3http://www.realnetworks.com/resources/producer
4http://www.microsoft.com/windows/windowsmedia/
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SAPRA also includes a punishment function and a resource utilization maximization function.

The former punishes high-rate sessions, that is, sessions with a rate above their fair rate during pe-

riods of congestion, motivating sessions to adapt to the network capacity. The latter avoids waste of

resources when there are sessions with rate lower than their fair share of bandwidth, in which case

the bandwidth not used is equally distributed between the other sessions. The behavior of agents and

markers is described and evaluated in [14]. In this paper, we describe and study the SAPRA signal-

ing protocol used by agents to exchange information about sessions, allowing a fair distribution of

resources in the path of each session. The theoretical analysis and simulations show that the proto-

col has small bandwidth overhead, is efficient in providing agents with accurate information about

sessions, and supplies receivers with timely reports about the quality of their sessions.

The remainder of the paper is organized as follows. Section 2 briefly describes work related to

SAPRA. In Section 3, we describe and evaluate the SAPRA protocol. Section 4 presents simulation

results. Finally, Section 5 presents conclusions and future work.

2 Related Work

The amount of resources reserved for each DS service depend on service-level agreements (SLAs)

between domains. The management of multicast traffic can be done with static SLAs for flows with

more than one egress router. However, since multicast traffic is both heterogeneous and dynamic,

static SLAs needs over-provisioning of resources in the domain. This problem can be solved by

dynamic SLAs, which can be managed by bandwidth brokers [15] or approaches that use intra-domain

signaling protocols, e.g., the Resource Reservation Protocol (RSVP) [4], to reserve resources where

they are needed, avoiding over-provisioning along certain branches of a multicast tree. However

these approaches don’t distribute reserved service resources across several domains, between sessions

that constitute the service aggregate traffic. To solve this issue some proposals present inter-session

fairness mechanisms based upon the max-min fairness definition [2], but this definition cannot exist

with discrete set of rates [17]. Sarkar et al. present a fairness algorithm [18] that considers discrete
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set of rates, but does not consider the population of sessions, and its scalability and efficiency is not

proved in an Internet-like scenario. The population of sessions is considered by Legout et al. [11],

but their proposal doesn’t consider intra-session fairness for scalable sources, requires changes in all

routers, doesn’t maximize resources and doesn’t punish high rate flows. Li et al. present [12] another

inter-session fairness mechanism, but it is also based upon the max-min fairness definition, assumes

only one shared link, and doesn’t consider the population of a session, as well as the importance of its

layers.

3 SAPRA Protocol

In this section we describe and evaluate SAPRA. We assume that edge routers have an accurate notion

about resources reserved for each service, based upon static or dynamic SLA, and that mechanisms

implemented in each domain are a policy issue and beyond the scope of this paper.

In our model, scalable sources distribute media content in sessions. Each session consists of

multiple layers. Each layer is identified by a source-specific multicast (SSM) channel, namely the

sender IP address and the destination multicast group [7]. SAPRA does not depend on number of

multimedia sources. Multicast branch points can be located in edge and interior routers, but receivers

are attached only to edge routers.

SAPRA is most suited for long-lived multicast sessions with large receiver populations such as

Internet TV and periodic near-video-on-demand systems [1].

SAPRA also integrates non-scalable sources and unicast traffic. Non-scalable sources are treated

like scalable sources with one layer. Unicast flows are treated as sessions with one layer and one

receiver.

Not all autonomous systems have to implement SAPRA, as SAPRA signaling messages are ex-

changed between SAPRA-speaking agents. However, receivers in non-SAPRA domains do not count

toward the session population and thus sessions with large numbers of receivers outside of SAPRA

domains are left with a smaller share of resources than they deserve.
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Receivers can join sessions by, for example, listening to Session Announcement Protocol (SAP)

[5] messages. Receivers first join the multicast group for the most important (lowest) layer and then

increase their reception quality by joining additional (higher) layers. Each layer requires all layers

below it. Agents in leaf edge routers use IGMPv3 “State-Changes” reports, issued when receivers join

a layer, to measure the local receiver population for each session.

SAPRA agents and markers allocate resources to sessions, rather than managing multicast groups

without concern about their semantic relationship. If the structure of sessions were hidden from agents

and markers, agents would not be able to implement inter-session fairness, markers would fail to

provide intra-session fairness, and sessions will have lower and less stable quality levels.

We propose two methods that allow agents in leaf routers to collect information about the compo-

sition of sessions, using consecutive address ranges and IGMP extensions. We assume SSM, where

multicast addresses are locally allocated by each source, from a pool of 224 addresses in IPv4 and 232

addresses in IPv6. For the first method, each sender allocates consecutive multicast addresses to all

layers inside a session and keeps a gap of at least one address between sessions. Since receivers join

layers sequentially, an agent can detect a new session if its multicast address differs by at least two

from any other session address. Alternatively, if the number of layers per session can be bounded, the

address bits can be divided into high-order session and low-order layer bits.

For the second method, we add the address of the most important layer to the IGMPv3 [8], using

the “auxiliary” data field. The address of the most important layer then identifies the session.

For both methods, agents deduce the relationship between layers in a session by the order receivers

join them. Details can be found in [14].

We define downstream as the direction from the data source to the receivers, and upstream as the

opposite. Session receivers are attached to leaf routers in the multicast tree. Ingress routers deliver

data into a domain, while egress routers transport data from a domain elsewhere. In our model, all

leaf routers are egress routers. We also define the Downstream Fair Rate (DFR), the Local Fair Rate

(LFR) and the Used Fair Rate (UFR) in a link. The DFR is the fair rate downstream the link, the LFR

is the fair rate of the link and the UFR is the lesser of the LFR and the DFR. By using the UFR instead
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Figure 1: Fair rate computation in edge routers

of the LFR, sessions that cannot make use of resources further downstream don’t waste bandwidth.

Fig. 1 illustrates how agents compute the UFR of two sessions, S1 and S2, in a domain with

three edge routers. This computation requires information about sessions population and DFR, which

agents collect from downstream neighbors using the SAPRA signaling protocol. As we described in

[14], agents compute the LFR by assigning more resources to sessions with larger receiver population.

For example, assuming that all links have 5 Mb/s, the LFR of S1 is 1.25 Mb/s in E2, because S1 has

100 receivers and the total population in the link is 400.

In this example, the UFR of each session is equal to its LFR at egress routers, since its DFR is

zero. At the ingress router, the population of a session is the sum of its receivers in each egress router

and its DFR is the maximum value of its UFR in each egress router. This maximum value satisfies

the heterogeneous requirements of receivers downstream different egress routers without congesting

links downstream the domain, since packets will be dropped at egress routers in conformity with the

UFR that session has at those routers. As mentioned before, we assume that each domain has policies

to assign resources to each service in order to avoid congestion in interior routers.

At the ingress router, S1, for example, has a population of 300 receivers, a DFR of 2 Mb/s and an

UFR of 2 Mb/s, which is the minimum value between LFR (2.5 Mb/s) and DFR. The estimated UFR

of each session is passed to the markers in the downstream link, being used to mark packets in or out
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of profile, depending if the session estimated rate is lower or higher than its UFR.

3.1 Overview of Protocol Operation

Agents use two messages, UPDATE and SYNC, to propagate information. UPDATE messages deliver

the UFR and population size of each session to upstream neighbors, allowing agents along the path

to compute fair rates. SYNC messages propagate information about session quality to downstream

neighbors. When session listeners get a SYNC message, they can adapt to quality changes.

Messages are exchanged only between neighboring agents, increasing scalability. For robustness,

SAPRA runs over TCP, eliminating the need to implement fragmentation and re-transmission. UP-

DATEs are forwarded using Border Gateway Protocol’s (BGP) [16] routing information and SYNCs

follow the path of the UPDATEs in reverse, similar to RSVP PATH and RESV messages.

SAPRA agents send messages periodically, not synchronized to receiving messages from else-

where, gathering up information during the interval. Periodic messages are suppressed if there has

been no significant change in the information to be propagated. Sending intervals are short to reduce

the time it takes for resource allocations to converge. Sending intervals are not synchronized; each

nominal interval is varied by a small random about of 10%.

As an alternative, agents could send messages only after receiving a message of the same type, a

SYNC from the upstream neighbor in the path to the session source or an UPDATE from each down-

stream neighbor where that session is present. However, this approach increases UPDATEs propagation

delay since agents can take a long time to gather information about each session from all downstream

neighbors. This happens, for example, when there is a different number of routers between the agent

and each neighbor, or when neighbors send information about the same session at different times.

3.1.1 UPDATE messages

UPDATE messages are sent with a minimum nominal interval of 1 s. They are triggered when an agent

receives the first join from local receivers or when it receives the first UPDATE from a downstream

neighbor. Each message includes information about non-stationary sessions, i.e., sessions whose pop-
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ulation or UFR has changed significantly since the last time they were included in an UPDATE, con-

sidering the total population and total UFR in the upstream link where the message is going to be

sent. So, the agent doesn’t send any UPDATE if there are only stationary sessions. But, when a session

ends, its information (no receiver, UFR of zero) is always included in the next UPDATE allowing the

immediate release of unnecessary state in upstream agents. Minimum state variation is set to 25%,

which appears to be a good compromise between the number of UPDATEs and the propagation of

accurate information to allow a fair allocation of resources. This restriction allows the use of 1 s in-

tervals, improving the protocol accuracy: since sessions are long and their population normally varies

significantly only when they begin and end, intervals as short as 1 s are enough to propagate significant

changes in the state of sessions.

Sessions have hard-state, since state starts and ends with the reception of UPDATEs. However it is

also refreshed by periodic complete UPDATEs that include information about all sessions. This soft-

state property makes SAPRA cope with routing changes and link failures, so the default values for the

interval of complete UPDATEs and for the time agents wait before deleting state were chosen based

upon BGP variables: the former is 30 s, the value of the BGP keep_alive_time variable, and

the latter 90 s, the value of the BGP hold_time variable. When agents receive complete UPDATEs,

they only update the state of those sessions whose DFR varies more than a set minimum to avoid

computations that do not affect the local resource distribution. However, the population estimate is

always updated, to avoid cumulative rounding errors.

3.1.2 SYNC messages

SYNC messages are sent with a minimum nominal interval of 1 s. They are triggered when an agent

with local sources receives the first UPDATE from a downstream neighbor, or when an agent without

local sources receives the first SYNC from an upstream neighbor. A SYNC carries information about

sessions present in the downstream link where the message is being sent. If the source of a session is

local, that information is the UFR of that session in the downstream link, otherwise it is the minimum

value between the local and upstream UFR. In both cases, the fair rate is only included if it is different
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Figure 2: Protocol operation

from the one sent in the previous SYNC, which allows the use of sending intervals of 1 s.

3.2 Example of Protocol Operation

Fig. 2 illustrates how SAPRA works using two sessions, S1 and S2. We assume that intra-domain

links have 10 Mb/s of bandwidth and inter-domain links between routers 1 and 2, routers 5 and 8, and

routers 4 and 6 have 10 Mb/s, 3 Mb/s, and 4 Mb/s of bandwidth, respectively. We label edge router i

as ri, the agent on that router as ai, and the link between ri and rj as (ri; rj). In Fig. 2, the notation

Un@t indicates that the nth UDPATE is being sent at time t; Yn@t has a similar meaning for SYNCs.

For example, U8@14s means that the eighth UPDATE was sent at second 14.

When receivers join S1, a7 sends U1 toward a0. When a1 receives U4, it is triggered to start

sending SYNCs, since it has a local source; but since the source isn’t from S1, a1 doesn’t send a SYNC

at second 6. The first SYNC is sent by a0 toward a7 at second 7, with 4 Mb/s as minimum UFR of S1

on the tree, the UFR on (r4; r6). Receivers on r7 get a reports 11 s after joined S1.
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When receivers join S2, a9 sends U6 toward a1, whose router is directly connected to the source of

S2. No UPDATE is sent from a1 to a0 since S2 is absent from (r0; r1), and the state of S1 remains the

same. At second 8, a1 sends Y2 with 3 Mb/s as minimum UFR of S2 on the tree — UFR on (r5; r8).

That information is received by a9, on Y9, 8 s after receives joined S2. No SYNC is sent from a2

toward a7, through a4, since S2 is absent in that branch and S1 upstream state remains the same.

Considering an hypothetical scenario, if we had used a bandwidth of 5 Mb/s to (r1; r2), the LFR

for the two sessions would be 2.5 Mb/s, which is lower than the DFR of S1 and S2. For this case, a1

would send an UPDATE to a0 at second 16 indicating a decrease of UFR of S1 from 4 Mb/s to 2.5 Mb/s

and would include in Y6 the UFR of S2 and S1, both equal to 2.5 Mb/s. Therefore, a2 would send also a

SYNC to a4, in addition to the one sent to a5. Since the minimum value between the UFR (4 Mb/s) and

the upstream fair rate (2.5 Mb/s) in a4 is different from the value sent in the previous SYNC (4 Mb/s),

a SYNC would be sent to a6. This way, S1 receivers on r7 would get a second report at second 20,

updating the UFR from 4 Mb/s to 2.5 Mb/s. After second 20, no other message is exchanged, because

there are no changes in population or fair rates. However agents send a complete UPDATE at second

30, the default sending interval for those messages.

3.3 Protocol evaluation

To evaluate the protocol, we analyze the memory it requires to store state, its bandwidth overhead, and

the time it takes to update UFR of all sessions in all agents as well as to notify receivers about their

session quality, when changes happen in the state of sessions.

For N sessions, SAPRA agents need to store O(N) amount of state. In particular, the stored state

does not depend on the number of receivers, increasing SAPRA scalability.

The protocol bandwidth overhead is significantly reduced, because messages are not sent in every

sending interval and they are only exchanged between neighbors. This means that the overhead is

independent from the network size, being dependent only on the number of sessions and sending

intervals. Therefore, we analyze the protocol scalability for a worst-case scenario where the sending

interval of both messages is short (1 s) and the number of sessions is high (1,000). We assume that
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all sessions are present on all links, that each session has three layers with total rate of 1.8 Mb/s, and

that their population is very dynamic, with significant changes occurring every second. Since the

information about each session occupies 48 bytes in UPDATEs and 12 bytes in SYNCs, the control

information between any two agents consumes 480 kb/s. Due to this and the data rate of all sessions

in each link (1,800 Mb/s), the ratio between control and data bandwidth is of 0.03%. Even in the

presence of low-rate sessions the overhead is still insignificant: for example, if we assume sessions

with 64 kb/s, the protocol overhead is 0.75%.

The time taken by SAPRA to update UFR of all sessions in all agents depends on the number

of agents in each session path and if agents were already triggered to start sending messages. Time

required to notify receivers also depends on one additional factor: if the minimum UFR of the session,

in the path to its source, increases or decreases.

The maximum time to update UFR of a session is given by (na� 1) as, and the maximum time to

deliver a report to its receivers by (2 (na � 1) + 1) as, where na is the number of agents in the session

path and as the sending interval. This maximum time occurs only during the first update, because

the first UPDATE triggers all agents to start sending messages and so it is delayed by the total as in

each agent. After this, the delay is lower than as. So, for a path with six domains and 12 agents, the

maximum time required to update UFR of sessions is 11 s and receivers get their first report 23 s after

joining their session. We assume paths with lengths up to six domains since the percentage of longer

paths is very low. For example, a November 2001 study of 60,978 different Autonomous Systems

(AS) [21] showed that only 0.5% of paths cross seven domains and 0.1% eight domains.

However, receivers are notified faster if the minimum UFR of their session is decreased by an

agent that is not the agent closest to the source of their session, because that agent immediately sends

a SYNC and so na is lower than the number of agents in the session path. This is possible because in

each stabilized network branch the upstream fair rate in each link is equal to the minimum UFR on the

branch. If changes happen in different branches at the same time, stabilization of fair rates is achieved

first in each branch and only afterwards in the entire network.

When the UFR decreases below the upstream fair rate, the agent includes it in the next SYNC.
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Figure 3: Simulation scenario

Therefore, if the UFR remains higher than the upstream fair rate in all agents, the new minimum UFR

is only establish by the agent closest to the source, and so the notification of receivers is slower if

the UFR of sessions increase. On the one hand, slower notification of higher minimum UFR leads

to a higher stability, since receivers only join layers when resources of their session are updated in

the entire path. On the other hand, faster notification of lower minimum UFR optimize resource

utilization, since receivers leave layers more quickly, reducing network traffic.

4 Simulations

In this section we present simulations that show the protocol ability to allocate resources between

sessions in multicast trees across several domains. We use a scenario with ten domains, one domain

per AS as shown in Fig. 3, where the longest path has six domains. We used the ns simulation tool.

The topology has four sessions, S1 to S4, in different domains, multicast branches across different

number of domains, domains with multicast branches in ingress and interior routers, receivers in

ingress and egress routers, and egress routers only with local receivers and also with downstream links.
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Due to the lack of information about traffic distribution among different ASs, we use the distribution

of addresses by AS distance [21] to decide upon receiver locations. Hence, we place 26%, 40%, 26%,

9%, and 2.5% of receivers in domains at a distance of two, three, four, five, and six domains from their

source, respectively. In Fig. 3, Rx(Y ) denotes Y receivers of session Sx.

We assume that service capacity in inter-domain links is equal to the link bandwidth and that

intra-domain links have enough bandwidth to avoid congestion. We also assume that each queue

has a size of 64 packets, which is the default value in Cisco IOS 12.2, and that interior routers have

FIFO queues, since these are the simplest ones. We use data packets with 1,000 bytes since this is a

value between the MTU of dial-up connections, 576 bytes, and the MTU of ethernet and high speed

connections, 1,500 bytes. Since control messages are mainly exchanged between routers, UPDATE

and SYNC packets have a size of 1,500 bytes, which is the default MTU in Cisco routers.

Session S1 spans seconds 10 through 230, S2 20 to 170, S3 30 to 200, and S4 50 to 150. Each

session has three layers with total rate of 1.8 Mb/s. The most important layer consumes 303 kb/s, the

medium importance one 606 kb/s, and the least important one 909 kb/s. Although SAPRA can deal

with any number of layers, three layers provide a good quality/bandwidth trade-off and additional

layers only provide marginal improvements [9]. The simulation covers 240 s, which is enough to

identify transient state when sessions start and end. To simplify the presentation, we assume that all

receivers for a session join and leave simultaneously. For longer simulations, sessions remain stable

for a longer time and the time needed for their state to stabilize does not change. Results for 600 s

simulations are available in [13]. We use the session rate monitored by receivers and the minimum

UFR they receive in reports from agents in leaf routers. dumped every 5 s by S1 receivers on r5, r10,

r13, and r16 (Fig. 4 a)) and the UFR of sessions on (r7; r11) (Fig. 4 b)) to analyze SAPRA efficiency.

Results for S2, S3, and S4 are available in [13]. Simulation results show that SAPRA is efficient

keeping the rate of sessions below their UFR, and updating the UFR of all sessions in all agents and

notifying receivers.

Fig. 4 a) shows that the rate of S1 is kept below its minimum UFR, with the exception of the rate

monitored by r13 receivers from seconds 29 to 89. This happens because the UFR of all sessions on

13
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(r7; r11) is always lower than the link capacity, as is shown in Fig. 4 b), and so a percentage of out

packets from all sessions pass through r7 allowing r13 receivers to get a rate higher than the minimum

UFR. Nevertheless, Fig. 4 a) also shows that S1 rate on r13 decreases in that interval. This is due to

the punishment mechanism that starts filtering layers of S1 when this session is identified as a high-

rate session during the congestion of (r7; r11). High-rate sessions are sessions with a rate higher than

their UFR plus their share of the available bandwidth. Bandwidth is available, because other sessions

have a UFR lower than their LFR, to match their DFR, releasing local resources. For each link, the

available bandwidth is divided in equal parts between all sessions with rate above their UFR.

Fig. 4 b) also shows that SAPRA is able to distribute resources in each link, decreasing UFR of

sessions to release resources for new sessions or increasing them to use resources made available by

sessions that ended. The only irregular behavior is the initial variation of the UFR of S4, which shows

up since a7 gets information about receivers of S4 on r13 and r19 at different moments: at second 51,

a7 has only knowledge about receivers on r13, because the UPDATE from a13 arrives to a7 first than

the one from a19. At that time the LFR of S2, S3 and S4 is 0.6 Mb/s and the one of S1 is 1.2 Mb/s,

since S1 has 20 receivers, and S2 and S3 have 10 receivers each; however S1 has DFR of 0.6 Mb/s,

making 0.6 Mb/s available to increase the UFR of S2 and S3 to 0.667 Mb/s, their DFR, and S4 to

1.06 Mb/s. At second 52, a7 gets information about only one S4 receiver on r19, because only one

receiver joined S4 when a19 sent an UPDATE on second 50; therefore, the UFR of S4 is reduced to

0.06 Mb/s, since this is its UFR on link (r14; r15). After second 53, a7 already knows about all S4

receivers on r19 and so the UFR of S4 increases to 0.5 Mb/s.

Next, we analyze the efficiency of SAPRA updating UFR of all sessions in all agents and notifying

receivers when S1 and S2 receivers join and leave their sessions. When receivers join S1, receivers

closer to the source take relatively more time to get their first report than receivers closer to the leaves,

in proportion to their distance to the source, since it is their first UPDATE that triggers upstream agents.

When receivers join and leave S2, the time that SAPRA takes to notify S1 receivers also depends

on the variation of the minimum UFR of S1, in addition to the session path length to their leaf router.

Table 1 presents more clearly the times seen in Fig 4 a).
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router 5 router 10 router 13 router 16

S2 join at second 20 27 s 24 s 29 s 25 s

S2 leaveat second 170 177 s 179 s 179 s 181 s

Table 1: Moment when receivers are notified about S1 minimum UFR in their path from the source

This table shows that reports notifying a decrease of the minimum UFR, when S2 starts, arrive

to receivers earlier than reports notifying an increase, when S2 ends. Receivers on r5 and r13 are

exceptions, because they are located upstream the links where the minimum UFR of S1 is decreased,

(r5; r9) and (r14; r15) respectively, and so their notifications are always generated by a SYNC sent by

the agent closest to the source. Since r10 is downstream (r5; r9) and r16 is downstream (r14; r15),

receivers on those routers are notified about a decrease of the minimum UFR first than r5 and r13

receivers, respectively. For example, after receivers joined S2 on r19, the UFR of S1 decreases to

1 Mb/s in (r14; r15). Since this value is lower than the upstream fair rate (2 Mb/s), a14 includes 1 Mb/s

as the minimum UFR of S1 in the next SYNC.

Although r5 receivers are notified about the minimum UFR of S1 at second 27, Fig. 4 shows that

they get a transient UFR of 2.8 Mb/s at second 21. This happens because changes occur at the same

time in the branch from the source to r5 and in the branch from r5 to r10, when receivers joined S2

on r5 and r10, which means that the stabilization of UFR of S1 is achieved first in each branch and

only after in the entire S1 path to r10. This transient value represents the minimum UFR in the branch

upstream r5 before second 21, but it isn’t the minimum UFR in the entire S1 path to r10, since the

UFR of S1 on the branch from r5 to r10 wasn’t considered yet upstream of r5. Fig. 5 shows how the

minimum UFR of S1 is stabilized in the entire path to r10 after being computed in each branch.

When a5 gets a SYNC at second 21 with an UFR of 2.8 Mb/s, it sends a notification to receivers

on r5, since this is the current minimum UFR of S1 in the path from the source. At that time, S1 has

an UFR of 2 Mb/s on the branch from r5 to r10, which correspond to the UFR computed by a5 on

(r5; r9) after received an UPDATE from a10. At second 22, a SYNC is sent toward a10 with an UFR

of 2 Mb/s, since this value is lower than the upstream fair rate on a5 (2.8 Mb/s) and it is different from

the fair rate previously sent (4 Mb/s). At the same time, a5 also sends an UPDATE with an UFR of
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Figure 5: Messages after joining S2

2 Mb/s toward the source and so r5 receivers get, at second 27, a report with the final minimum UFR

for S1 (2 Mb/s). When a5 receives this SYNC, it doesn’t sent another SYNC toward a10, because this

value is equal to the one sent in the previous SYNC.

When S2 ends, the UFR of S1 becomes higher than its upstream fair rate in all links, and so only

the agent closest to the source includes the new UFR of S1 in a SYNC. Therefore, receivers closer to

the source are notified first, as shown in table 1, and the notification time increases downstream in a

order of O(na; as), where na is the number of agents and as is 1 s. So, results presented in this section

confirm the theoretical analysis of SAPRA.

5 Conclusion and Future Work

This paper describes and evaluates SAPRA, a protocol that allows the distribution of service resources

along each session path proportional to the audience size of each session. SAPRA notifies receivers

about the fair share of their sessions, allowing them to adapt to quality variations. We simulated a

topology with ten domains, where the longest path has six domains. Theoretical analysis and simu-

lation results show that SAPRA has a small bandwidth overhead, and that the protocol is efficient in

updating session resources and sending notifications to receivers when sessions change significantly.
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When the state of sessions changes, receivers get reports very quickly if the minimum fair rate of their

session decreases. That time becomes longer if the minimum fair rate increases, because in this case

a SYNC message is sent only by the agent closest to the source after session state was updated in all

agents. Results also show that the time to notify receivers about increasing fair rates grows linearly

with the number of agents in the path.

Although SAPRA aims mainly to distribute services resources with fairness, it also provides in-

formation about the quality of sessions and their population, which can be used to settle SLAs in each

domain.

We plan to study a receiver-driven adaptation mechanism, where receivers adapt to bandwidth

changes when they receive network reports. This synchronization helps to solve the leave latency

problem and improves the adaptive mechanism stability. Being based upon the fair rate of sessions,

the adaptive mechanism should solve unfairness between them. We will also study SAPRA in mobile

environments, where the location of receivers change frequently.
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