
A Queue Management System for Differentiated-
Services IP Routers

Goncalo Quadros, Antonio Alves, Joao Silva, Henrique Matos, Edmundo
Monteiro, Fernando Boavida

CISUC – Center for Informatics and Systems of the University of Coimbra
Communications and Telematic Services Group

- Pólo II, 3030 COIMBRA - PORTUGAL
Tel.: +351-39-790000, Fax: +351-39-701266,

E-mail: {quadros, aalves, jonas, kikas, edmundo,
boavida}@dei.uc.pt

Abstract. Packet scheduling and queue management strategies are key issues of
DiffServ per-hop behaviours. This paper proposes a queue management system
that, in conjunction with scheduling mechanisms, is able to support class
differentiation. The general principles and the architecture of the queue
management system are presented. The proposal is supported by a prototype
that was subject to several tests, in terms of packet drops and burst tolerance.
The test results are presented and analysed, allowing an assessment of the
usefulness and effectiveness of the underlying ideas.

1 Introduction and Framework

One of the most challenging demands for the new generation of network elements
able to provide quality of service (QoS) is to provide better ways to manage packet
queues lengths, as it is well known that some form of "active queue management" is
needed to obtain better performance levels of the communication system - for
instance, less transit delay, less packet loss level, better use of the available
bandwidth, etc.. Important research is being conducted by many teams studying and
discussing models and approaches for supporting such systems [2], [7], [8].

This paper contributes to that discussion by presenting a strategy for queue
management (QM) specifically in QoS-capable IP networks following the
differentiated services (DS) framework1 [3]. The work presented here was conducted
to fulfil the requirements of a broader project, whose main goal is to develop a new
approach for the support of traffic classes in IP networks, while following the same
framework.

This broader, on-going project has three main goals: (1) to develop mechanisms to
provide effective QoS capabilities in Network Elements (NE); (2) to conceive ways to
select adequate, QoS-aware paths for packet forwarding along communication

1 This framework is being promoted by the Differentiated Services Working Group of the IETF

[5].

systems; (3) to implement effective ways for system management, including a
strategy for traffic admission control.

This paper results from the work done in relation to goal (1), which drove to the
proposal of a new PHB (per-hop behaviour) and to the construction of a router
prototype that implements it [13]. Two main contributions of this prototype are a new
IP packet scheduling strategy, presented in [14], and a new IP queue management
strategy, presented here.

In Section 2 the general principles which rule the design of the proposed QM
system are presented. Section 3 discusses its architecture, focusing on a prototype
developed to test the underlying ideas. Section 4 presents the tests carried out on
developed prototype and discusses the corresponding results.

2 General Operational Principles of a DS Queue Management
System

Two important drawbacks characterise the traditional approach in use in the Internet
for queue management, known as the tail drop (TD) approach [2]. The first drawback
is called the lockout phenomenon, which happens when a single or few flows
monopolise the queue space, preventing other flows from getting the space that
normally they would use. The second drawback is known as the full queue problem
and occurs because the TD approach allows full, or almost full, queues, during long
periods of time. This increases the delay seen by packets and reduces the NE
tolerance to packet bursts. In turn, lower tolerance to packet bursts results in a higher
percentage of dropped packets and lower link utilisation levels, because packets are
dropped in sequence and flows that are responsive to congestion (like, for instance,
TCP flows) back-off synchronously. As a rule of thumb, a QM system should always
provide room for a packet arriving at a network element.

The tail drop approach is, therefore, inadequate for the modern Internet. In
addition, and considering the DS framework, a network element should have an
effective way to share its resources among different traffic classes, according to their
QoS needs. As buffer space is an important resource, QM disciplines have an
important responsibility in terms of resource sharing, side by side with packet
scheduling disciplines.

When executing drops, queue management systems should also consider the nature
of the involved traffic. They should avoid dropping consecutive UDP packets
belonging to the same flow, because the impact of loss will be dependent on the
distance between dropped packets [9] for most applications that use this transport
protocol. Consecutive dropping should also be avoided for TCP packets, in order to
minimize the probability of eliminating packets belonging to the same TCP flow.

Still related to the diverse nature of traffic, QM systems should deal with the
growing volume of flows that are unresponsive to congestion (for the purpose of this
discussion, UDP flows are considered to be unresponsive to congestion; nevertheless,
UDP flows can also be responsive to congestion, depending on the upper layer
protocols that are using this transport protocol). For this, they should use mechanisms
to protect responsive flows from unresponsive flows − currently, the resources freed
by the former are immediately, and unfairly, used by the latter, when congestion

happens. Additionally, QM systems should implement effective means to manage
unresponsive flows, to avoid congestion.

The queue management system developed at LCT-CISUC was motivated by the
previous considerations. In broad terms, its design addressed two, closely related
fields. In the first one, the idea was to design enqueuing and dropping processes in a
way that avoids lockout, promotes burst tolerance and minimises the impact of packet
loss on applications. In the second field, the idea was to conceive an effective way to
manage queue lengths in order to control the drop level seen by the flows of each
class2. Accordingly, the prototype constructed to test the proposed ideas was
implemented in two phases, which resulted in two different modules: the packet drop
management module and the queue length management module. These modules are
presented in the next section.

3 Architecture of the Queue Management system

Figure 2 of [13], in the present QofIS’2000 Proceedings, depicts the QoS-capable
router prototype implemented in LCT-CISUC, highlighting the central object of the
queue management system operation − the IP output queues.

At IP level, after the IP processing activity, packets are classified and stored
accordingly in an output queue. It is there that the mechanisms which differentiate the
QoS provided to classes act. The classifier/marker is responsible for determining each
packet class and/or for setting the information related to it in the packet's header,
following the strategy defined by IETF-DSWG3 [11].

The monitor continuously measures the QoS provided to classes, applying a QoS
metric developed for this purpose. Its operation is discussed with more detail below.

The scheduler is responsible for choosing the next packet to process. The dropper
is responsible for choosing the packets to drop and also, in close relation to the
monitor, for adjusting some operational parameters such as queue lengths.

The queue management system, seen as whole, involves the process of storing
packets in IP output queues and the action of the dropper. It is presented in the next
two subsections, through the discussion of its two main modules.

3.1 The Packet Drop Management Module

There are two important parameters related to the dropper operation, that characterise
each output queue: q_physical_limit, the maximum possible length for each
queue (which is arbitrarily large); and q_virtual_limit, the desired maximum
length for each queue.

Each time a packet is to be enqueued and the physical limit is reached it will be
immediately dropped. As this limit is made extremely large, this will be uncommon.
Thus, every packet or burst of packets will normally be enqueued.

2 Each class has its own and exclusive queue in an NE.
3 Internet Engineering Task Force - Differentiated Services Working Group

From time to time the dropper is activated. This time is adjustable and should
reflect the length of packet bursts to be accommodated (the default value is 15
packets). When the dropper is activated, it verifies whether or not there are more
packets than the amount imposed by the virtual_limit for each queue. If this is the
case, the dropper discards the excess packets in order for that limit to be respected.
TCP packets will only be dropped if they exceed a given percentage of the total
number of packets; moreover, TCP and UDP packets are randomly dropped.

The logical operation of the Packet Drop Management Module is presented in
figure B.1 of [13]. In short, the module always provides room for an incoming packet,
packet bursts are naturally tolerated, the drop of UDP packets is scattered and it is
possible to protect TCP traffic from UDP traffic.

3.2 Queue Length Management Module

The Queue Length Management Module is responsible for the dynamic allocation
of buffers to classes. The allocation of buffer space to queues is performed in
conjunction with the scheduler action (which distributes the transmitter capacity
among classes). The former controls the level of packet drops, and the latter controls
the delay seen by packets [13].

The strategy used to share buffer resources follows the one used by the scheduler
to share transmitter capacity [14]. The LCT-CISUC QoS metric [13][15] is nuclear to
that strategy. According to this QoS metric, the quality of service is quantified
through a variable named congestion index (CI). There is a CI related to delay and a
CI related to loss. The queue length management module uses the latter.

Each class is characterised by a degradation slope (DSLOPE), which determines
the classes' sensitivity to the degradation of the loss level. As can be seen in figure 1,
a traffic class highly sensitive to loss degradation will have a high degradation
DSLOPE.

C I t 1

C I

d 1
d 2

d 3

L o w
S e n s i t i v i t y

H i g h
S e n s i t i v i t y

D e g r a d .
S l o p e

L o s s

Fig. 1. CIs for three traffic classes w/ different sensitivities to loss degradation (d1, d2 and d3
represent the loss level experienced by each class when the congestion index has the value CIt)

It is easy to understand that, with growing loads – that is, as the loss CI grows – the
drop level seen by most sensitive classes is lower than the drop level seen by less

sensitive classes. Using other words, more sensitive classes are protected by less
sensitive classes, which absorb the major part of the degradation.

Figure 2 presents the logical operation of the Queue Length Management Module.

Fig. 2. Queue length management module logical operation

4 Tests

The initial testbed used to carry out the tests consisted of a small isolated network
with 4 Intel Pentium PC machines configured with a Celeron 333Mhz CPU, 32 MB
RAM and Intel EtherExpress Pro100B network cards. The prototype router (Router)
ran FreeBSD 2.2.6 [6], patched with ALTQ version 1.0.1 [4], with 64MB RAM. Two
hosts, Source1 and Source2, generated traffic directed towards a destination host
(Sink) through Router. Each host only generated traffic of a given class, in order to
guarantee the independence of the generated packet streams. To perform additional
tests involving one more class, another host – Source3 – was installed in a subsequent
phase.

The tests were performed with the aid of three basic tools: Nttcp [12], QoStat [1]
and a modified version of Mgen [10] - Mgen_m.

Nttcp and QoStat were used to test the Queue Length Management Module. The
former was used to generate data flows at the maximum possible rate according to a
uniform load distribution, which competed for all the resources available in the
communication system. The latter was used to monitor the kernel – namely the

Get TIME

Reset FLAG for adjusting
virtual limits

Update NEXT_TIME

Set FLAG for
adjusting virtual limits

 CALL
IFSTART

No

BEGIN
PACKET DEQEUE

FLAG for
adjusting

virtual limits > 0

Yes

Get class with
HIGHER_DROP CI,

and class with
LOWER_DROP CI

Calculate NUMBER of
packet buffers

to exchange between
classes

l

Exchange NUMBER of
packet buffers from
LOWER_DROP to

HGHER_DROP classes

TIME >
NEXT_TIME for CI

calculation

No

Drop CI calculation

Yes

operation of the QM system and the QoS it provided to classes. QoStat was also used
to dynamically change the operational parameters related to queue management.

Mgen_m was used to test the Packet Drop Management Module. It was
constructed using some parts of the MGEN code, with performance and reliability (in
what respects to packet logging) in mind. The MGEN tool was also deeply modified
in what respects packet generation, in order to allow the generation of IPRAW packet
streams and bursty packet streams according to a strategy followed in [8], as
described in 4.2 under ‘General Test Conditions’.

4.1 Test of the Queue Length Management Module

The first set of tests involved only two classes and high loads, with packets of 1400-
byte length. The maximum number of packets in the queuing system
(MAX_PCKS_ONQ) was configured to 60.

Moreover, the two classes were configured with the same sensitivity to delay
degradation: sensitivity slope equal to 45 degrees. On the other hand, the loss
degradation sensitivity of the traffic classes changed with time, starting with a slope
degradation of 45 degrees for both classes and, after each 25s time interval, taking up
the following values (class1-class2): 40-50; 30-60; 25-65; and finally 20-70.

The results of the tests are presented in figure 3. The capacity of the prototype to
differentiate classes is obvious, namely in terms of the ability to provide different loss
levels to classes. When they have the same sensitivity to loss degradation, both
classes suffer nearly the same loss level. Changing their sensitivity to degradation
results in a coherent change of the rate of dropped packets. When a class becomes
more sensitive to loss degradation (see class 2 in figure 3) the rate at which its packets
are dropped decreases.

Moreover, the sharp transition shown in the graphs reveals that the system has a
good capacity to react to changes. Thus, in this test, the prototype reveals a good
capacity to effectively control the classes' loss level.

Notice that, as the classes are configured to have the same sensitivity to delay
degradation, the average packet transit delay experienced by packets of both queues is
grossly the same in all the tests - as can be verified in figure 3. It is possible to see that
the delay increases as the classes sensitivities diverge. This is natural given that the
asymmetry of classes sensitivity induces asymmetry of queue lengths. This
asymmetry changes the delay reference, which is obviously determined by the bigger
queue.

Table I shows some average values got by the QoStat tool during our experiments.
The transfer of buffer space from the class with less sensitivity to the other class is

quantified. It is possible to understand that the prototype reacts to changes in the
classes' degradation slope (which induces asymmetry on the correspondent loss
congestion indexes), transferring buffer space from one class to the other. When both
classes have the same sensitivity, the prototype gives nearly the same number of
buffers (29 and 31) to each class.

It is also possible to see that, in fact, the prototype reacts to changes in the classes'
DSLOPE giving the same loss congestion index to both classes. As expected, the
congestion index is lower when the difference between degradation slopes is bigger.

Class 1 Class2 Class 1 Class2
DSlope
Class1/

Class2 Q_virtual_limit Q_virtual_limit CI CI

45/45 29 31 50 49
40/50 22 38 49 48
30/60 11 49 43 43
25/65 6 54 38 38
20/70 2 58 32 32

Table I. Prototype operational values for the first set of tests

Figure 4 shows the results of one additional test, carried out using the same
methodology as in the test just presented, but now having configured different
sensitivities to delay degradation of classes, instead the same delay sensitivity. In the
test presented in Figure 4 the delay DSLOPE of class 1 was fixed at 40 degrees and
the one of class 2 fixed at 50 degrees. As expected, the prototype still reveals the
capacity to differentiate traffic classes, but now, coherently, providing different
average transit delay to packets belonging to different classes.

In order to evaluate the real influence of the queue management system on the
router behaviour, some tests were carried out activating and deactivating it. To
deactivate the QM system means to use the traditional tail-drop scheme, with
maximum queue lengths of 50 packets for the queues of both classes.

The tests follow the approach mentioned before. The sensitivity to delay
degradation was fixed - DSLOPE was made equal to 45 degrees during all the test.

In the first 25-second time interval, a loss degradation slope equal to 45 was used
in both classes, and the QM system was activated. In the second 25s interval the QM
system was deactivated. In the third interval, loss degradation slopes equal to 30 and
60 degrees were used respectively in class1 and class2, and the QM system was again
activated. In the fourth time interval it was, once more, deactivated.

Figure 5 presents the results of this test. During the first time interval, as the
DSLOPEs related to delay and loss were equal to 45 degrees for both classes, the
classes received the same treatment in terms of average transit delay seen by packets,
as well as in terms of number of packets forwarded by second. When the QM system
was deactivated the average transit delay raised substantially. This corresponds to the
growth of the maximum output queues length, and reveals an important fact about the
efficiency of the QM system under test. In fact, with the QM system running, the
same loss level can be achieved with a much lower average transit delay. That is, for a
given loss level, the QM system leads to much shorter average queue lengths.

The third and forth time intervals clearly show the importance of the QM system.
When the classes' sensitivities to loss degradation are different, the prototype is only
able to differentiate them accordingly when the QM system is activated.

Fig. 3. Variation of average transit
delay, number of packets sent, and
number of dropped packets with
classes' sensitiveness to loss
degradation - delay dslope fixed to
45/45 (class1/class2)

q1 - 45
q2 - 45

q1 - 40
q2 - 50

q1 - 30
q2 - 60

q1 - 25
q2 - 65

q1 - 20
q2 - 70

q1 - 45
q2 - 45

q1 - 40
q2 - 50

q1 - 30
q2 - 60 q1 - 25

q2 - 65 q1 - 20
q2 - 70

q1 - 45
q2 - 45

q1 - 40
q2 - 50

q1 - 30
q2 - 60 q1 - 25

q2 - 65 q1 - 20
q2 - 70

Flow’s
Drop

DSlope
change to:

q1 - y

q2 - x

Flow’s
Drop

DSlope
change to:

q1 - y

q2 - x

Flow’s
Drop

DSlope
change to:

q1 - y

q2 - x

Fig. 4. Variation of average packet
delay and number of packets sent with
classes' sensitivity to loss degradation -
delay dslope fixed to 40/50
(class1/class2)

q1 - 45
q2 - 45

q1 - 50
q2 - 40

q1 - 30
q2 - 60

q1 - 25
q2 - 65

q1 - 20
q2 - 70

Flow’s
Drop

DSlope
change to:

q1 - y
q2 - x

q1 - 45
q2 - 45

q1 - 50
q2 - 40

q1 - 30
q2 - 60 q1 - 25

q2 - 65 q1 - 20
q2 - 70

Flow’s
Drop

DSlope
change to:

q1 - y
q2 - x

4.2 Test of the Packet Drop Management Module

The main goals of the tests presented in this section are to evaluate the capacity of the
prototype to tolerate bursts and to evaluate the effectiveness of the drop strategy. The
idea was to evaluate the improvements that can be expected from the prototype
behaviour, when compared to a normal router behaviour.

The general test strategy consisted of generating two packet streams (PS) – one
probe PS and one load PS – and to measure the impact of the queuing and dropping
process on the probe stream.

The first set of tests were executed using a normal FreeBSD computer as Router,
and generating packets streams in Source1 and Source2 hosts. As normal router, a
FreeBSD v2.2.6 system running on a PC was used. The Mgen_m tool was used for
packet generation purposes, which was motivated by the reasons referred above.

The second set of tests was executed using the router prototype, and generating the
two packet streams on the same class. This was done in order for the tests to be
comparable. As there is only one IP output queue when using a normal router, packet
streams of the same class were generated to guarantee also that only one queue was
used in the tests with the router prototype.

The tolerance to packet bursts was evaluated measuring the number of packets
dropped in sequence – a higher tolerance to bursts means less packets dropped in
sequence.

The effectiveness of the dropper strategy was evaluated using a metric developed
by Koodli and Ravikanth [9]. In general terms, the intention was to measure whether
or not the prototype was able to spread out the drop of UDP packets using the referred
loss-distance-stream metric. This metric determines a spread factor associated with
the packet loss rate.

Consider a stream of packets characterised by a sequence number that starts at zero
and increases monotonically by one. The difference between the sequence number of
a lost packet and the one of the previously lost packet is named the loss distance.

Fig. 5. Variation of average packet delay and number of packets sent with classes' sensitiveness to
loss degradation with and without QM

q1 - 45
q2 - 45

q1 - 45
q2 - 45

q1 - 30
q2 - 60

q1 - 30
q2 - 60

Flow’s
Drop

DSlope
change to:

q1 - y
q2 - x

With
QM active

Without
QM active

With
QM active

Without
QM active

Flow’s
Drop

DSlope
change to:

q1 - y
q2 - x

q1 - 45
q2 - 45

q1 - 45
q2 - 45

q1 - 30
q2 - 60

q1 - 30
q2 - 60

With
QM active

Without
QM active

With
QM active

Without
QM active

According to the used metric, a lost packet is noticeable if its loss distance is no
greater than delta - where delta is a positive integer named loss constraint .

The following subsections present (1) the general test conditions, (2) the tests
carried out for evaluating the burst tolerance and (3) the test performed to evaluate the
effectiveness of the drop strategy.

General Test Conditions

The tests were carried out using two different load settings – LD1 and LD2 – and two
settings for traffic pattern: smooth traffic, SMT, and bursty traffic, BST. In short, the
tests were performed in the following 4 different scenarios: SMT-LD1, SMT-LD2,
BST-LD1, and BST-LD2.

The size of generated packets was fixed to 1000 bytes. The LD1 scenario was
constructed generating each of the two packet streams at a rate of 52 Mbps. In the
LD2 scenario, each packet stream was generated at 60 Mbps. SMT corresponds to
traffic that follows a uniform distribution whereas BST corresponds to traffic that
follows a Poisson distribution – four back-to-back packets generated at exponential
time intervals. The tests result was the log file of the probe PS on Sink. Through it, the
drop distribution was analysed.

For each of the referred scenarios ten tests were executed using the normal router,
and another ten tests using the prototype router. Each test involved the generation of
approximately 200.000 packets. The values presented below correspond to the
average of the values obtained in each test.

Additionally, one of the scenarios was chosen (the LD2-BST scenario) and again
two sets of ten tests were carried out, now using as probe flow a stream of IP Raw
packets. The idea was to emulate a TCP packet stream without using any congestion
control mechanism (and thus, to evaluate the differences of the prototype drop
behaviour when dealing with TCP traffic instead of UDP traffic). The results of the
tests are presented in the following sub-sections.

Evaluation of the Tolerance to Packet Bursts

Figures 6 through 9 show the percentage of total dropped packets in bursts of 1, 2,
3… n packets.

It is possible to see that, when the router prototype is used, the histogram shifts to
left. Using other words, packets are dropped in sequences of only a few packets – in
most cases only one packet. This is evident in all the scenarios used in tests.

Thus, the prototype reveals good characteristics in what respects its capacity to
accommodate bursts of packets, leading to much better behaviour than in the case of a
normal router, using the traditional tail-drop approach for queue management. This is
also apparent even in the BST scenarios, where there are bursts of packets, and where
the use of the prototype does not result in long sequences of dropped packets.

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 3 4 5 6 7 8 9 10

0,0

2,0

4,0

6,0

8,0

10,0

12,0

1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 20 2 2 2 2 2 2 2 2 2 30

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

1 2 3 4 5 6 7 8 9 10 1 1 1 1 1 1 1 1 1 20 2 2 2 2 2 2 2 2 2 30

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7 8 9 10

0,00

5,00

10,00

15,00

20,00

25,00

1 2 3 4 5 6 7 8 9 10

%
 p

ac
ke

ts
 d

ro
pp

e
d

%
 p

ac
ke

ts
 d

ro
pp

e
d

%
 p

ac
ke

ts
 d

ro
pp

e
d

%
 p

ac
ke

ts
 d

ro
pp

e
d

packets in sequence

packets in sequence

packets in sequence

packets in sequence

Fig. 6. Burst Tolerance (scenario LD1-SMT)

Fig. 7. Burst Tolerance (scenario LD1-BST)

Fig. 8. Burst Tolerance (scenario LD2-SMT)

no
tic

ea
b

le
 p

ac
ke

ts
 d

ro
pp

ed
no

tic
ea

b
le

 p
ac

ke
ts

 d
ro

pp
ed

Loss constraint

no
tic

ea
b

le
 p

ac
ke

ts
 d

ro
pp

ed

Loss constraint

no
tic

ea
b

le
 p

ac
ke

ts
 d

ro
pp

ed

Loss constraint

Fig. 10. Noticeable Loss (scenario LD1-SMT)

Fig. 12. Noticeable Loss (scenario LD2-SMT)

Fig. 13. Noticeable Loss (scenario LD2-BST)
Loss constraint

Without prototype With prototype

Fig. 11. Noticeable Loss (scenario LD1-BST)

Fig. 9. Burst Tolerance (scenario LD2-BST)

Evaluation of the drop effectiveness

Figures 10 through 13 show the evolution of the noticeable loss with loss constraint,
for the different load scenarios. The figures show that the prototype tends to spread
out the drop of packets. In fact, it can be seen that, when using a normal router, almost
all the packet drops are "noticeable" when the loss constraint is 1 (using other words,
noticeable losses immediately reach a value near the maximum when the loss
constraint is only 1). When using the router prototype, the percentage of noticeable
losses when the loss constraint is 1 is much lower, and it grows gradually until its
maximum value.

This happens in all the scenarios. It is, nevertheless, more evident with lower loads
(LD1) than with higher loads (LD2); in turn, it is more evident with smooth traffic
than with bursty traffic. In fact, in such conditions, the noticeable loss for low loss
constraint falls more deeply, taking as reference the maximum noticeable loss. This
was to be expected: higher loads and bursty traffic will tend to increase the drop level
and, thus, drops cannot be as "spread out" as in the others scenarios.

Figure 14 presents the results of the same type of tests as the ones presented before
(scenario LD2-BST), but now using a TCP packet stream as probe traffic. The IP raw
capability of FreeBSD was used for this purpose, generating datagrams in such a way
that they are processed by router as if they correspond to TCP traffic.

One of the most evident conclusions (see figure 14) is that the prototype effectively
protects TCP traffic from UDP traffic. Noticeable losses are much lower when the
prototype is in use.

In short, despite the low level of drops, the prototype shows the expected
behaviour.

0,00

5,00

10 ,00

15 ,00

20 ,00

25 ,00

1 2 3 4 5 6 7 8 9 10

no
tic

ea
b

le
 p

ac
ke

ts
 d

ro
pp

ed

Loss constraint

Fig. 14. Noticeable Loss (scenario LD2-BST)

Without prototype With prototype

5 Conclusions and Future Work

Network elements are essential for the provision of predictable and controlled quality
of service. Inside network elements, scheduling and queue management are important
building blocks of per-hop behaviours that can lead to the desired quality of service.

This paper presented a queue management system developed for the support of
differentiated services. After the presentation of the queue management system
principles and general architecture, tests to its main blocks were presented. The tests
revealed a good capacity for class differentiation, with good performance both in
terms of packet drops and burst tolerance, showing that it is possible to overcome the
drawbacks that characterise the traditional approach in use in the Internet for queue
management.

The presented queue management system is part of QoS-capable router prototype
being developed by the authors. Further work will be carried in the context of this
prototype, namely the execution of further tests (scalability tests and tests with real
load patterns) and the refining of dropping and queue-length management algorithms.
Additionally, work addressing issues such as scheduling, QoS-aware routing and QoS
management in under way, in more complex scenarios.

References

1. Alves, A., Quadros, G., Monteiro, E., Boavida, F.: QoStat – A Tool for the Evaluation of QoS
Capable FreeBSD Routers, Technical Report, CISUC, July 99.
http://lct.dei.uc.pt/papers/QoStat_TR.PDF

2. Braden, B., Clark,, D., Crowcroft, J., Davie, B., Deering, S., Estrin D., Floyd, S., Jacobson,
V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J.,
Zhang, L.: Re-commendations on Queue Management and Congestion Avoidance in the
Internet, RFC 2309, April 98.

3. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: "An Architecture for
Differentiated Services", RFC 2475, December 1998. ftp://ftp.isi.edu/in-notes/rfc2475.txt

4. Cho, K: A Framework for Alternate Queueing: Towards Traffic Management by PC Based
Routers, in Proceedings of USENIX 1998 Annual Technical Conference, New Orleans LA,
June 1998. http://www.csl.sony.co.jp/person/kjc/kjc/papers/usenix98

5. http://www.ietf.org/html.charters/diffserv-charter.html.
6. http://www.freebsd.org
7. Feng, W., Kandlur, D., Saha, D., Shin, K.: "Blue: A New Class of Active Queue

Management Algorithms" U. Michigan CSE-TR-387-99, April 1999.
http://www.eecs.umich.edu/~wuchang/work/CSE-TR-387-99.pdf

8. Floyd, S., Jacobson, V.: Random Early Detection Gateways for Congestion Avoidance,
ACM/IEEE Transactions on Networking, Volume 1, Number 4, August 93.

9. Koodli, R., Ravikanth, R.: One-way Loss Pattern Sample Metrics, Internet Draft, October
1999. http://www.ietf.org/internet-drafts/draft-ietf-ippm-loss-pattern-02.txt

10. The MGEN Toolset. http://manimac.itd.nrl.navy.mil/MGEN/
11. Nichols, K., et al., "Definition of the Differentiated Services Field (DS Field) in the IPv4

and IPv6 Headers", RFC 2474, December 1998.
12. New TTCP Program, http://www.leo.org/~bartel/nttcp/
13. Quadros, G., Alves, A., Monteiro, E., Boavida, F.: An Approach to Support Traffic Classes

in IP Networks, Proceedings of QofIS’2000. http://lct.dei.uc.pt/papers/SupportTC_TR.PDF

14. Quadros, G., Alves, A., Monteiro, E., Boavida, F.: An Effective Scheduler for IP Routers,
to be published in the proceedings of the Fifth IEEE Symposium on Computers and
Communications (ISCC 2000), Antibes, France, 4-6 July 2000.
http://lct.dei.uc.pt/papers/NewScheduler_TR.PDF

15. Quadros, G., Monteiro, E., Boavida, F.: “A QoS Metric for Packet Networks”, Proceedings
of SPIE International Symposium on Voice, Video, and Data Communications, Conference
3529A, Hynes Convention Center, Boston, Massachusetts, USA, 1-5 November 1998.

