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Abstract
At the Communications and Telematics Laboratory of the
University of Coimbra is being developed a router
prototype with the aim to provide QoS to different traffic
classes. One of the most important mechanisms of this
router is the IP packet scheduler.
It is well known that the common scheduling discipline of
current routers (first come first serve) turns them useless
when QoS is needed - a different type of scheduler must
be used. Our first idea to overcome this problem was to
use a simple, open, and available scheduler,  easy to
adapt to the system we wanted to implement. We thought
of the WFQ discipline, and, as we are using a testbed of
Intel machines running FreeBSD OS, we admitted that
the WFQ/ALTQ implementation would be an interesting
choice.
Nevertheless, a broad set of tests carried out at our
laboratory proved the contrary. Most important, these
tests guided us to a deep knowledge about the problems,
and causes, that can weaken the effectiveness of IP
schedulers. Given the importance of that surplus
information, we decided to implement our own scheduler.
The idea was to take advantage of a most pragmatic view
of scheduling activities to construct a scheduler with the
best possible characteristics, but also very simple, thus,
able to reach very good performance levels. This paper
presents the scheduler that resulted from our attempts.
The proposed scheduler was subject to a set of tests that
proved its ability to effectively differentiate traffic classes.
The results of these tests are also presented and analyzed.

1. Introduction

This paper presents a new IP packet scheduler
implemented at the Communications and Telematics
Laboratory of the University of Coimbra (LCT-UC). This
work was conducted to fulfill the requirements of a
broader project which main goal is to develop a new
service model for IP networks. This model should be able
to provide different QoS to the various traffic classes,
using essentially the same technologies as the ones
currently used in the Internet.

A fundamental step for the development of the
intended service model was the selection of an alternative
for the common – but useless for this purpose – FIFO
discipline used in routers.

As we are using Intel/FreeBSD platforms at LCT-UC,
we decided to use the ALTQ technology [Cho98, Cho99]
as an alternative for the IP queuing system. Given the
architectural aspects of the model we are working on, we
admitted that the WFQ discipline would be an interesting
choice. Summing up, we decided to use the ALTQ
implementation of WFQ in our project, and so we
submitted it to tests. The results stood behind what we
expected [Quadros99a], so this option was abandoned.

The lessons learned with the performed tests
convinced us that the best approach to the development of
the desired model was to construct our own scheduler.
This paper presents this work. Section 2 details the
proposed scheduler, its architecture and main operational
characteristics. Section 3 presents the tests made to
evaluate the scheduler behavior, whose results are
discussed in section 4. Section 5 concludes this paper and
positions it in the global LCT on-going project for the
implementation of a new service model.

2. The Scheduler

2.1 Operational Principles

The basic idea behind the model is to differentiate the
QoS given to classes1 controlling the transit delay and the
loss level provided to each one. As we want to avoid
complexity, traffic specifications and explicit resource
reservations are uninteresting. As in the current Internet
paradigm, our model strategy is to forward as well as
possible the data that reaches the IP level of routers and
switches – but now considering the different nature of the
handled data. In other words, in our model the statement
“as well as possible” means different things according to
the considered traffic class.

                                                          
1 The traffic is organized in different classes according to the types of
applications.



Through transit delay we prioritize traffic, giving a
relatively better treatment to some traffic at the expense
of the other. Through losses, we can grossly control the
assignment of communication resources to classes. Each
class will have varying bandwidth requirements. For a
given class, no loss means that the resources assigned to
it are enough for its needs. Conversely, high loss levels
mean those resources are scarce.

Nevertheless, we will not use the absolute measures of
delay and losses to control the systems but, rather,
relative measures. To understand the reason for this one
can consider, for instance, that a delay of 50 ms for one
particular application may be catastrophic while for
others it can be meaningless.  Thus, the taken approach
uses a quantification of the impact on applications of the
degradation of such QoS characteristics, taking into
account their known normal values [Quadros99b]. Traffic
classes typify this impact, which means that through the
traffic class the impact of a given delay or loss
degradation can be determined. We use a QoS metric
developed at LCT-UC for the purpose of the
quantification of the impact of QoS degradation on
applications [Quadros98].

2.2 Why not use WFQ?

In short, in our model we redistribute communication
resources in such a way that the impact of losses and
delay, as measured by the referred metric, will be the
same for all classes. One fundamental component to
achieve this is the scheduler. Initially we thought that the
ALTQ implementation of the WFQ discipline would be a
good choice: it was simple, available, and seemed to fit
very well in the model we wanted to develop. The tests,
nevertheless, revealed important WFQ/ALTQ flaws
[Quadros99a] and so we abandoned this idea.

It is worthwhile to mention the problem we found with
our WFQ/ALTQ tests. Despite the load, most of the times
the scheduler only finds packets in one of the queues (that
is, packets belonging to a single class). Due to its work-
conserving nature, the scheduler injects packets in the
network at the maximum possible rate and thus – as it
usually finds packets in only one queue – these packets
will be processed without taking into account the class
weight (there are no packets waiting in other classes).
Therefore, despite eventual different weights assigned to
each class, the treatment given to their packets is
essentially the same.

For short, the WFQ discipline can only work if the
correspondent scheduler finds packets in more than one
queue. The system dynamics turns this situation rare –
even with very favorable load conditions. Only by
significantly raising the maximum output queue lengths
(and so augmenting the probability of simultaneously

having packets in more than one queue) the scheduler can
reveal some QoS differentiation characteristics. In this
case, nevertheless, we are also raising the transit delay
beyond reasonable limits.

2.3 Scheduler Architecture

Therefore, we soon understood that WFQ disciplines
can, in practice, be unable to differentiate traffic classes.
The problem has to do with the work-conserving nature
of the discipline. Thus, besides the advantages of this
type of disciplines there are some important
disadvantages. We also understood, like other researchers
[Liebeherr99], that it makes sense to develop a scheduler
able to pick the best part of the work-conserving and non-
work-conserving worlds. Namely, (1) the simplicity and
good level of communications resource utilization and (2)
the capacity to reserve resources or to maintain some part
of them available for high priority traffic.

We worked out this idea and developed the scheduler
logically presented in the following figure. The scheduler
behaves as a work-conserving one when processing
packets from the highest priority queue, but as a non-
work-conserving one when processing packets from the
remainder queues.

To better understand our idea, we will first discuss the
module 1 of the scheduler (see figure 1) and then module
2.

Module 1 corresponds to a work-conserving rate based
scheduler. The scheduler visits the queues using a round
robin discipline. Each queue has a DEQUEUE_TIME
associated with it. When the visit happens after the
queue’s DEQUE_TIME, or when there is only a single
queue with packets, the packet in the head of the queue is
processed. When none of these two conditions occur, the
scheduler goes to the next queue (until it finds one packet
to process). Therefore, the scheduler processes packets at
full speed whenever there is no competition for the
transmitter, or when there are no packets in more than
one queue.

X_DELAY is also an important queue’s characteristic
used to update the correspondent DEQUEUE_TIME.
X_DELAY is the time interval (in µs) that should elapse
between the processing of consecutive packets of the
considered class. Through it, it is possible to effectively
control the performance given to each class.

Module 2 makes the difference in our proposal. It
guarantees that:

- For the queue with more stringent requirements
(related with transit delay) the scheduler processes
packets at full speed; it has a work-conserving behavior.

- For all the other queues, the scheduler processes
packets at a fraction of the full speed, thus reserving some



capacity for processing traffic that is more important; it
has a non-work-conserving behavior.

The following points concisely present the scheduler
operation:

- The scheduler visits each queue (the same is to say,
each class) in a round robin fashion;

- In each visit, it compares the current TIME with the
queue’s DEQUEUE_TIME. If the former is greater than
the latter, a packet is processed;

- For the most important class at a given moment
(considering transit delay) X_DELAY is always zero;  so
the scheduler behaves as a work conserving one;

- For the remaining classes, the X_DELAY will be
greater than zero and it will reflect the relative
importance of the class; the scheduler behaves as a non-
work-conserving one.

Therefore, even when the system dynamics turns rare
the situations where there are packets in more than one
queue, packets belonging to a class different from the
most important one cannot monopolize the transmitter.
Thus, even when that happens, the most important class
will receive a better treatment than the next most
important one, which will be better treated than the next,
and so on.

As said before, we constructed our scheduler
systematically integrating the lessons learned from the
tests carried out on the WFQ/ALTQ scheduler. Its
diagram, presented in figure 1, reflects this. In fact, this
diagram could have been optimized, through the
elimination of redundant paths (for instance, connecting
point A directly to point B). We decided to present the
scheduler this way to highlight its characteristics and the

main decisions made during its implementation.
The logical level software calls the scheduler

whenever a packet arrives or leaves the router. It exits
returning one packet (there is only one exception,
mentioned below, when the scheduler returns no
packets). Before exiting, it updates its round robin pointer
(RR) to the next queue in the ring. The following
paragraphs discuss some decisions taken during the
scheduler implementation (referencing some points
marked in figure 1).

In position 1, the scheduler searches for the single
queue with packets. As it has found a queue without
packets with a past DEQUEUE_TIME, it updates this
value (adding X_DELAY to the current time). The same
happens in position 2. In this case there is more than one
queue with packets, and the DEQUEUE_TIME of empty
queues is also updated.

In position 3, the scheduler loops searching for a
queue with packets. As can be seen there are no
DEQUEUE_TIME updates in the loop. In fact, this is
unnecessary because we assume that the most important
queue has a X_DELAY equal to zero, which avoids an
infinite loop.

In position 4 there is only one queue with packets,
found before its DEQUEUE_TIME is past. This is the
single case where the scheduler exits without returning a
packet. In this particular situation we trigger a timeout.
Without it, packets would be locked in the queue if there
was no activity at the input and output interfaces. This is
a reasonable approach because we assume that it should
not happen often.

Figure 1 – Scheduler logical presentation
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Lastly, we have introduced a switch to activate or
deactivate scheduler module 2 (position 5) during the
tests. Through it, we intent to show its usefulness.

In short, the scheduler presented here is conceptually
very simple and provides effective means to control the
performance given to different traffic classes. We intent
to use it in the new IP service model we are developing at
LCT-UC. With this scheduler, we will dynamically
control the QoS (transit delay) for each class. The idea is
to continuously measure the impact of transit delay on
applications and, according to this impact, to dynamically
modify the treatment given to the traffic - the same it to
say, the X_DELAY associated with each class. The
highest priority class, in a given time window, will have a
null X_DELAY. The other ones will have an X_DELAY
greater than zero, which will increase as the needs of the
class decrease, in the considered time window. We will
present soon, with more detail, this approach.

3. Test Environment

3.1 Goals

The main goals of the tests carried out on our
scheduler were twofold:

- to evaluate its real capacity to differentiate traffic;
- to evaluate how well, and how easy, its possible to

control the treatment given to different traffic.
We compared these results with the ones obtained for

the WFQ/ALTQ, which was our first (and abandoned)
scheduler choice for our model. The idea was to evaluate
if, despite its simplicity, our scheduler could solve the
flaws we identified in the WFQ/ALTQ case. Also
because of this, the tests carried out on our scheduler
followed the general principles established for the
WFQ/ALTQ tests [Quadros99a].

The next section presents the testbed. Afterwards, we
introduce the main test tools used.

3.2 The Testbed

Figure 2 presents the testbed used to perform the tests.
It consists of a small isolated network with 4 Intel
Pentium PC machines configured with a Celeron 333Mhz
CPU, 32 MB RAM and Intel EtherExpress Pro100B
network cards. The prototype PC Router (named
HOST_R in the figure) runs FreeBSD 2.2.6, patched with
ALTQ version 1.0.1, with 64MB RAM. HOST_S1 and
HOST_S2 generate traffic directed towards HOST_D
through HOST_R. Each host only generates traffic for a
given class.

To perform broader tests than the ones carried out on
WFQ/ALTQ scheduler, namely involving one more class,
we have installed another generator host in the testbed.

Moreover, to enable loads as high as possible, long
packets (1400 bytes) constituted all the generated flows.

We used two tools to perform our tests:
- Nttcp [NTTCP]; to generate data flows able to

compete for all the resources available in the
communication system.

- QoStat [Alves99]; implemented in our laboratory and
used to monitor the kernel, namely the operation of the
installed scheduler. Through it, we can dynamically
change the most important operational parameters of the
scheduler. We can also obtain, in real time, some of the
most important figures related to QoS provision. QoStat
produced all the graphics presented in the present paper.

Figure 3 presents a logical scheme of the tested
system. Notice that the dropper mechanism is a simple
tail-drop (we are now working on a different approach for
this mechanism, which will be incorporate in our work in
the near future).

4. Tests Results and their Analysis

We exclusively used UDP traffic and a simple tail-
drop mechanism for the tests presented here. The general
test strategy was the following:

- to use two different classes, composed of traffic
generated by two independent hosts;

- to set the X_DELAY associated with class 12 to zero,
- to vary the X_DELAY associated with class 3.

                                                          
2 Whose queue is named q1 in the figures.

Figure 2 –  The testbed
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In the first set of tests, we used the default ALTQ
configuration, which means maximum queue length of 50
packets. The X_DELAY values chosen for class 3 were
successively 0, 10, 15, 50, 200. We used the qostat tool
to dynamically change those values at the end of each 25
seconds time interval3.

The values shown in the graphs are:
- the average transit delay of packets at IP level,

measured over 1-second time intervals. A packet transit
delay is the time that elapses between its enqueuing at IP
input queue, and its dequeuing from the IP output queue
(see figure 3);

- the number of packets sent by the output interface
per 1-second interval;

- the number of dropped packets per 1-second interval;
- the instantaneous IP output queue length sampled

every second.
As can be seen in figure 4, it is evident that for the

referred conditions our scheduler is able to differentiate
traffic. This contrasts with the behavior of the
WFQ/ALTQ scheduler, which, for maximum queue
lengths of 50 packets, does not have this capacity - as
shown in figure 5 [Quadros99a]. This last figure presents
the result of a test carried out on the WFQ scheduler
implementation of the ALTQ project, using the same load
conditions as before. In that test we assigned the weight
100 to one of the classes and successively the weight 30,
70, 100, 500 and 1000 to the other.

Our scheduler is able to benefit one class at the
expense of the other. Taking as reference the situation
where both classes are equally important, it is evident that
for the class with growing X_DELAY the average transit
delay and the number of packets sent per unit of time
becomes worst. Conversely, for the other class these
figures become better.

Figure 6 shows the importance of the scheduler
module 2. The test presented in this figure is the same as
the previously discussed one, but now we divided each 25
seconds time interval with fixed X_DELAY in two. On
the first part we activated module 2, on the second one
we deactivated it. It is clear that, without the action of this
module the scheduler is not able to differentiate traffic.

Therefore, it is useful to guarantee that when there are
packets on only one queue, other than the most important
one, they can not use all the communication resources
available. Notice that this is not a pure non-work-
conserving behavior. In fact, the most important of the
active classes in the system can always use all the
available communication resources.

Until now we have been presenting tests carried out
using maximum output queue lengths of 50 packets. This

                                                          
3 We didn’t use class 2 in the tests. As we are only using traffic of classes 1
and 3 the measured values of class 0 are always null.

is the default value for FreeBSD systems and ALTQ
technology. We referred that the WFQ/ALTQ does not
behave as expected for such a maximum length (it needs
bigger queues). Conversely, we showed here that our
scheduler does behave well with this maximum length.

Nevertheless, to admit 50 packets in each queue is not
reasonable. This is obvious if we recall that in current
routers the space available on the single output queue is
more or less the same value. So 50 packets should be the
maximum space available on all the output queues, not in
a single one. The importance of this is not related to
memory scarcity or price, but to the maximum transit
delay routers might introduce. Thus, independently of the
final value to define for the maximum space that should
exist in output queues on these new routers, 50 packets
per class seems too high. In this case, in a system with
only 4 classes, we could have 200 queued packets waiting
for their opportunity to be processed, which is too much.

Given this, it does not suffice to demonstrate that the
scheduler is able to work well with maximum output
queues of 50 packets. It must behave correctly with
shorter queues as well. Therefore, we repeated the tests
with maximum output queue lengths of only 20 packets.
Again, we fixed the X_DELAY value associated with
class 1 to zero. The one associated with class 3 was set
initially to zero, and afterwards successively to 3000,
5000, 10000 and 20000. The results presented in figure 7
prove that, despite the shorter queues, the scheduler still
exhibits a quite good capacity to give different treatment
to different classes.

Given the good results obtained, we decided to test the
scheduler with more flows. So we joined a new host to
the testbed – to increase the independence of the
generated traffic – and we made some more tests.

Figure 8 presents a test carried out with a maximum
output queue length of 50 packets. Each host generated a
45 Mbps flow, composed of 1400 bytes packets,
associated to one exclusive class. Initially, we assigned a
null X_DELAY to all the traffic classes. This value never
changed for class 3. At the 25th second we changed the
X_DELAY of classes 1 and 2 to 7500 and 10000
respectively, with the scheduler module 2 disabled. At the
50th second, we enabled the module, maintaining the
X_DELAY values. At the 75th second we exchanged
class 1 and 2 X_DELAYs, maintaining the module 2
enabled. At the 100th second we disabled module 2.

It is clear that the scheduler is able to give different
performance levels to the flows, for all the measured QoS
characteristics– transit delay, drops and losses. Having as
reference the starting situation, when all classes have a
null X_DELAY, we can see that its possible to give a
better treatment to some classes at the expense of the
others. Thus, the redistribution of resources produced by
changing X_DELAY is effective – it has a consistent



reflection on transit delay, losses and packets sent for
each class.

Lastly, it is clear that for this particular situation the
operation of module 2 is not relevant. In fact, no
substantial difference comes out from figure 8.
Comparing, for instance, the intervals [25s 50s] and [50s
75s] we can, nevertheless, say that a more stable situation
is expectable with the operation of the module.

The tests presented in figure 9 are the repetition of the
ones just referred with a single difference: we set the
maximum length of the output queues to 20 packets.
Despite the shorter queues, the scheduler still reveals
capacity to treat differently the classes of traffic.

However, the differences introduced by module 2
operation are now evident. In fact, without the module,
we can see that for the number of dropped or sent packets
different classes are equally treated. For the average
transit delay module 2 is also useful. Without it, the
scheduler introduces additional delay on classes 1 and 2
traffic, without any positive impact on class 3 delay. On
the other hand, with the module, the most important class
gets an improvement on transit delay, which nevertheless
is very small and corresponds to a strong penalization of
the other classes.

5. Conclusion and Future Work

At the Communications and Telematics Laboratory of
the University of Coimbra we have been developing a
new scheduler for IP routers. Our main motivation was to
solve some flaws we found when we tested the WFQ
implementation of the ALTQ project.

Those tests revealed some weaknesses in terms of the
WFQ/ALTQ capacity to differentiate the performance
given to different traffic classes. From the lessons learned
during their execution, we were able to conceive and
develop a new scheduler, with a very simple architecture
but, nevertheless, able to differentiate traffic in a way we
could control.

This paper presents the developed scheduler and some
tests that show its effectiveness. It reveals a good
behavior even under those situations where we found
weaknesses in the WFQ/ALTQ operation – for instance,
when there is much less space in output queues.

Our idea is to use this scheduler with the QoS metric
conceived in LCT-UC. By integrating the scheduler and
the metric, we expect to construct a router with an
effective traffic differentiation capacity. Our intention is
to continuously measure the QoS provided to each class,
and to dynamically redistribute the communication
resources according to the measured quality of service
[Quadros99b]. In the near future, we are going to use a
different dropping mechanism with our scheduler that we
are now implementing at LCT-UC. With it, we expect to

enhance the characteristics of the proposed scheduler,
namely its ability to deal with TCP traffic.
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Figure 6 – Tests made to the scheduler with max output queue length equal to 50 pckts, activating and deactivating its module 2.
Variation of the following values with X_DELAY: �) Average IP transit delay (over 1-sec intervals); �) Number of pckts sent

per sec; �) Number of dropped pckts per sec; �) Instantaneous IP output queue length (sampled every sec).
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Figure 8 – Tests made to the scheduler with maximum output queue length equal to 50 pcks. Variation of the following values
with X_DELAY: �) Average IP transit delay (over 1 second intervals); �) Number of packets sent per second; �) Number of

dropped packets per second; �) Instantaneous IP output queue length (sampled every second).
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Figure 9 – Tests made to the scheduler with maximum output queue length equal to 20 pcks. Variation of the following
values with X_DELAY: �) Average IP transit delay (over 1 second intervals); �) Number of packets sent per second; �)

Number of dropped packets per second; �) Instantaneous IP output queue length (sampled every second).


