
How Unfair can Weighted Fair Queuing be?

Goncalo Quadros, Antonio Alves, Edmundo Monteiro, Fernando Boavida
CISUC – Centro de Informática e Sistemas da Universidade de Coimbra

Departamento de Engenharia Informática
{quadros, aalves, edmundo, boavida}@dei.uc.pt

Abstract
This paper presents a study carried out on a Weighted
Fair Queuing implementation for Unix routers - the WFQ
implementation of the ALTQ project. It shows the
WFQ/ALTQ weaknesses and explains why we cannot
expect an interesting behavior from a system using such a
scheduler.
The conclusions here presented are supported by a set of
tests using UDP traffic only. With a tool developed in our
laboratory, we were able to show that changing the
classes' weights does not necessarily result on a different
Quality of Service for each of the existing classes. To
achieve this differentiation, the lengths of the queues
which serve the scheduler (one for each class) must be
increased beyond reasonable values.
We found that the low-level dynamics of FreeBSD
systems practically turns WFQ schedulers useless. The
same is applicable to any other work-conserving
discipline. Thus, an important conclusion of this paper, is
that one must design very carefully the platforms that
support work conserving disciplines in order to expect
adequate behaviors from those systems, in terms of QoS
provision.

1. Introduction

At the Communications and Telematics Laboratory of
the University of Coimbra we have been working in a
new service model applicable to the Internet environment.
The idea is to conceive a quite simple model able to
differentiate the quality of service given to different
traffic classes. By simplicity we mean a model easy to
implement, supported to a great extent by the
technologies and concepts currently in use on the
Internet.

The packet scheduler is a very important component in
our model. From the beginning we knew that the service
model usefulness and effectiveness would mainly depend
on the behavior of this component. In fact, the capacity
to differentiate the performance given to different traffic
classes, in a controllable way, strongly depends on the
scheduler operation.

Our lab is equipped with Intel/FreeBSD hosts. Our
foremost approach was to look for schedulers developed
for this platform, able to substitute the traditional FIFO
mechanism and to give systems the characteristics we
wanted. We admitted that the weighted fair queuing
implementation developed in the ALTQ project –
WFQ/ALTQ [Cho98, Cho99], would be an interesting
starting platform. Thus, we submitted this scheduler to a
diverse set of tests. The purpose was to determine the real
WFQ/ALTQ capacity to differentiate and control the
performance provided to different traffic classes.

This document presents and analyses the tests made to
WFQ/ALTQ using UDP traffic flows only. Section 2
presents the used testbed and the general approach to the
tests. Section 3 presents the test results, which are
discussed in section 4. Section 5 concludes this paper and
presents some directions for future work.

2. General test environment

The testbed used to perform the tests is presented in
figure 1. It consists of a small isolated network with 4
Intel Pentium PC machines configured with a Celeron
333Mhz CPU, 32 MB RAM and Intel EtherExpress
Pro100B network cards. The prototype PC Router
(named HOST_R in the figure) runs FreeBSD 2.2.6,
patched with ALTQ version 1.0.1, with 64MB RAM.
HOST_S1 and HOST_S2 are used to generate traffic
directed towards HOST_D, through HOST_R.

The main motivation of the tests that were carried out
was to determine the effectiveness of the WFQ/ALTQ
capacity to provide different qualities of service to
different classes of traffic. We wanted to know if – and
exactly how – the scheduler could be used to control the
performance given to different types of traffic.

As in our testbed we had two hosts available for traffic
generation, we used them to create two independent data
flows, simulating two independent classes of traffic. In
the tests presented here we exclusively used UDP traffic,
as this is the most favorable situation to obtain a good
behavior related with QoS provision with this type of
schedulers. The flows were constituted by long packets
(1400 bytes), to enable loads as high as possible.

We used two tools to perform our tests: Nttcp
[NTTCP] for generating data flows – each flow
competing for all the resources available in the
communication system; QoStat for setting scheduler
parameters and monitoring the system, namely its
parameters related with QoS.

QoStat was implemented in our laboratory and it has
been fundamental for our work. Through it, we can
dynamically change the most important operational
parameters of the scheduler, and continuously get the
most important values related to QoS provision. Thus,
QoStat turns the evaluation of a scheduler easier. All the
graphics presented in this paper were produced using this
tool. A deeper presentation of its capacities can be found
in [Alves99].

Figure 2 presents a logical scheme of the tested
system. We will return to this figure below, in order to
better understand the meaning of some measurements.
For now we just want to refer that we have modified the
drop mechanism used by WFQ/ALTQ. In fact, we found
that the mechanism distributed with the WFQ/ALTQ
biases the operation of the scheduler [Quadros99a], so we
decided to substitute it by a simple tail-drop one.

3. WFQ/ALTQ testing with UDP exclusive
traffic

3.1 The tests and their results

The general test strategy can be presented in three
points:

1. to use two different classes, composed of traffic
generated by two independent hosts;

2. to fix the weight associated with one of the classes
(we chose class 11 and the weight 100), and

3. to vary the weight associated with the other class
(we chose class 3 and successively the weights 30,
70, 100, 500 and 1000)2 after each time interval of
25s.

In the first set of tests we exclusively used UDP
traffic. We did not change the default WFQ/ALTQ
configuration, which means, maximum queue length
equal to 50 packets and a base quota3 of 512 bytes. The
results are presented in figure 3.

The figure illustrates the following results:
- Packets average transit delay at IP level, measured

over 1 second time intervals. A packet transit delay is the
time that lasts between its enqueuing at IP input queue,
and its dequeuing from the IP output queue (see figure 2);

- The number of IP packets sent by the output
interface per second;

- The number of IP dropped packets per second;
- The instantaneous IP output queue length, sampled

every second.
As it is clearly seen, under the present test conditions

the scheduler does not show any capacity to differentiate
traffic. The variation of the class weight does not have
any impact on the way the correspondent traffic is
treated.

Given the complete absence of traffic differentiation
capacity, and the very high level of dropped packets, we
decided to repeat the tests augmenting the maximum IP
output queue lengths. Figure 4 presents the results. As
can be seen, the increase of the maximum length of the
referred queues to 200 (instead of the previous 50) has a
very positive impact on the capacity of traffic
differentiation of the scheduler. Naturally, it also results
in much higher transit delay.

In order to confirm, and better evaluate, the influence
of queue length in the WFQ/ALTQ behavior, we
executed the following test: using the same testbed, we
assigned two independently generated data flows to two
different classes with fixed weights of 100 and 1000;
given this, we changed the maximum IP output queue
lengths (for both queues) from 50, successively to 100,
150 and 200 packets, respectively after 25, 50 and 75
seconds. The results are shown in figure 5 and clearly
reveal a relation between output queue length and
WFQ/ALTQ capacity to differentiate traffic.

1 Whose queue name in figures is q1.
2 We didn’t use class 2 in the tests. Moreover, class 0 is always shown –
because it is the default class. As we are only using traffic of classes 1 and 3
the measured values connected to class 0 are always null.
3 Bytes processed in each scheduler visit to a queue with weight equal to 100.

Figure 1 – The testbed

IP
Processing

C
l
a
s
s
i
f
i
e
r

IP Level

Ethernet Card

Input queue

Ethernet Card

Ouput queues
ALTQ Technology

IP
Packets

Figure 2 – Prototype logical architecture

S
c
h
e
d
u
l
e
r

3.2 Analysis of the tests results

To understand why the WFQ/ALTQ scheduler is
unable to differentiate traffic it is important to make some
comments about its operational characteristics. It is, for
instance, important, to realize that this is a work-
conserving scheduler, which means that whenever, in a
given iteration, the scheduler finds packets in only one
queue, it will process them at grossly the maximum
possible rate. Thus, whenever the packets belonging to
different classes reach the IP level alternately, or not
simultaneously, they will be treated the same way,
independently of the weight assigned to classes.

We decided to verify if this was the case. In order to
do this, we modified the QoStat tool to monitor also the
percentage of time the scheduler found packets in one,
more than one or none of the queues. Table 1 presents the
results when using IP output queues with maximum
lengths of 50, 100 and 200 packets.

Max IP output
queue length

Situation

50 packets

times %

100 packets

times %

200 packets

times %

Queues without
packets

2016 18 0 0 0 0

One queue with
packets

5290 47 1368 15 0 0

More than one
queue with pcks

3900 35 7848 85 9100 100

Table 1 – Number of times (and percentage) the
scheduler finds packets in none, one or more than one

queue, for 1 second time intervals

We can see that when the maximum length of IP
output queues is 50 packets, only in a minority of
occasions the scheduler finds packets to send in more
than one queue. This happens even when using very high
loads composed of UDP traffic (which does not adapt to
the available capacity in the communication system).
Given this, the incapacity of the scheduler to differentiate
traffic is not a surprise.

Conversely, we can see that when the maximum IP
output queues are 200 packets long, the scheduler finds
packets in more than one queue at all times. As we allow
the storage of more packets on the queues, the probability
of finding packets simultaneously on those queues is
higher. Therefore, the effective capacity of the scheduler
to differentiate traffic in these conditions is also not a
surprise.

What is important to highlight is that, as seen above,
with maximum IP output queue of 200 packets the WFQ
is, in fact, able to effectively differentiate traffic.

By effective capacity to differentiate traffic we mean a
good capacity to control the QoS provided to traffic
classes. This capacity is observable in figure 4. In fact, it
is possible to see that we can easily change the QoS given
to classes varying their weights. It is also possible to see
that there is proportionality between the weight assigned
to classes and the performance they get.

At this time it is interesting to deeper discuss the
results shown in figure 5. This figure shows that there are
no significant changes on the number of processed and
dropped packets per second when we evolve the
maximum length of IP output queues from 150 to 200
packets. Conversely, those values vary when we change
the referred length from 50 to 100 packets and, after, to
150 packets.

This happens because when the maximum IP output
queue length is 150 packets, like when it is 200 packets,
the scheduler always finds packets in both queues. So, in
either case, the ratio between packets sent (or dropped) in
each class is equal to the ratio between the classes’
weight (1:10). The only noticeable difference is a natural
one: with longer queues the average transit delay is
higher. Thus, it is evident that in the conditions of the
tests it can only be negative to have IP maximum output
queue lengths greater than 150 packets.

When the maximum IP output queue length is lower
than 150, the scheduler doesn’t always find packets in
both queues. Thus, it cannot always process 10 times
more packets from one queue than from another. So, the
average ratio between processed packets from the two
classes stands behind 1:10, and, as discussed before, it is
1:1 if the maximum IP output queue length is 50 packets.

This behavior is unacceptable from a fair scheduling
point of view, taking into account that even 50 packets is
a too big maximum for the queue lengths. In fact, we are
talking about only one out of several output queues and in
current routers the total capacity of the output queuing
systems is typically 40-50 packets. For instance, in a
router using 4 classes with 50 packets maximum output
queue lengths, we would have potentially 4 times more
packets in the output queuing system than what we would
have in current routers. As a consequence the transit
delay would be much higher.

It is evident that the lack of simultaneous presence of
packets in both queues is, in fact, responsible for the
scheduler inability to differentiate traffic. Figure 5, in
conjunction with table 1, makes this clear. But what can
be the cause of this? This is a difficult question to answer,
even more because of the conditions used to make the
tests (very high loads and UDP traffic). We can only say
that the dynamics of the operating system and the
protocol stack, including NIC hardware and software, is
causing some kind of packet serialization in queues. In
our tests, with normal queues lengths, they tend to appear

on different queues at different times. Only deeper (and
harder) tests could shed some light on the exact cause of
this, which, much probably, will vary from system to
system (in [Bennett99] the influence of NIC buffers
capacity on this kind of issues is discussed). It is,
nevertheless, important to highlight that there is no reason
to suppose that this kind of problems couldn’t happen in
WFQ implementations other than the ALTQ one.

To finish this section we would like to say that we
have made some other tests: using a different traffic mix
(TCP traffic only and a TCP-UDP traffic), different
packet sizes and different loads. Because of the lack of
space we will not present their results here (they will be
published soon). Nevertheless, we can say that all of them
corroborate the analysis presented here.

Concluding this analysis, we decided not to use the
WFQ/ALTQ scheduler in our model, as it proved highly
unsatisfactory.

4. Conclusion and Future Work

At LCT-UC laboratory we are working-on a new IP
service model and we needed to choose a scheduler to be
used on it. Because of its simplicity, availability, and the
characteristics we thought it had, we decided to test the
WFQ/ALTQ scheduler, to support its eventual choice. In
this paper the results of these tests are presented.

The tests show that we can not expect adequate QoS
capabilities from routers using the WFQ/ALTQ
scheduler. This happens because, normally, the scheduler
doesn’t find packets in more than one queue
simultaneously, even when the most favorable conditions
hold. As this is a work-conserving scheduler, when that
doesn’t happen the scheduler is unable to differentiate
traffic.

Nevertheless, we show that for huge maximum output
queue lengths the scheduler is, conversely, able to
differentiate traffic classes. In this case, the probability of
finding more than one queue with packets is higher,
which is determinant to the scheduler better QoS
behavior. The problem is that the transit delay is also
higher, too much higher.

Summing up, we have shown that at least with the
ALTQ implementation we can not expect good results of
the weighted fair queuing discipline. Its work-conserving
nature is a killing characteristic when the system
dynamics results in difficulties to guarantee the
simultaneous presence of packets in more than one queue.
We noticed that the same type of problems can possibly
appear in other types of platforms, such as dedicated
router platforms.

Given the results of the tests presented here we
decided to implement a new scheduler. Our idea is to pick
the best part of both worlds: to use a work-conserving

scheduling when it makes sense and to use a non-work-
conserving scheduling when work-conserving scheduling
destroys the desired QoS behavior. This strategy was also
considered by other researchers [Liebeherr99], and work
already under way in our laboratory has proved – with
promising results – that this is possible. In [Quadros00b]
these results are presented and discussed.

Acknowledgements
This work was partially supported by the Portuguese ministry
of science and technology (MCT), under the program praxis
XXI - PRAXIS/P/EEI/10168/1998.

References
[Alves99] Antonio Alves, Goncalo Quadros,

Edmundo Monteiro, Fernando Boavida, QoStat – A Tool
for the Evaluation of QoS Capable FreeBSD Routers,
Technical Report, CISUC, July 99.

[Bennett99] Jon Bennett and Christopher Stein, 2-Bit
Diff-Serv Routing in the ALTQ FreeBSD Kernel,
Harvard University, January 1999.
orvieto.eecs.harvard.edu/ALTQ_Diff3.html

 [Cho98] Kenjiro Cho, A Framework for Alternate
Queueing: Towards Traffic Management by PC Based
Routers, in Proceedings of USENIX 1998 Annual
Technical Conference, New Orleans LA, June 1998.
www.csl.sony.co.jp/person/kjc/kjc/papers/usenix98

 [Cho99] Kenjiro Cho, Managing Traffic with ALTQ,
in Proceedings of USENIX 1999 Annual Technical
Conference: FREENIX Track, Monterey CA, June 1999.
www.usenix.org/events/usenix99/technical_freenix.html

 [NTTCP] New TTCP Program,
www.leo.org/~bartel/nttcp/

[Liebeherr99] Jorg Liebeherr, Erhan Yilmaz,
Workconserving vs. Non-Workconserving Packet
Scheduling: An Issue Revisited, in Proceedings of
IWQoS'99, London, May 31-June 4, 1999.

[Quadros99a] Goncalo Quadros, Antonio Alves,
Edmundo Monteiro, Fernando Boavida, The role of
packet-dropping mechanisms in QoS Differentiation,
Technical Report, CISUC, July 99.
lct.dei.uc.pt/papers/RPDM_TR.PDF

[Quadros00b] Goncalo Quadros, António Alves,
Edmundo Monteiro, Fernando Boavida, An
Effective Scheduler for IP Routers, in proceedings of the
Fifth IEEE Symposium on Computers and
Communications (ISCC 2000), Antibes, France, 4-6 July
2000. lct.dei.uc.pt/papers/NewScheduler_TR.PDF

Figure 3 – Variation of the following values with class weight: �) Average IP transit delay (over 1 second
intervals); �) Number of packets sent per second; �) Number of dropped packets per second; �) Instantaneous IP

output queue length (sampled every second)

q1 - 100
q3 - 100

q1 - 100
q3 - 1000

q1 - 100
q3 - 70

q1 - 100
q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 30

q1 - 100
q3 - 100

q1 - 100
q3 - 1000

q1 - 100
q3 - 70

q1 - 100
q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 30

q1 - 100
q3 - 100

q1 - 100
q3 - 1000q1 - 100

q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 70

q1 - 100
q3 - 30

q1 - 100
q3 - 100

q1 - 100
q3 - 1000

q1 - 100
q3 - 70

q1 - 100
q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 30

q1 - 100
q3 - 100

q1 - 100
q3 - 1000

q1 - 100
q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 70

q1 - 100
q3 - 30

q1 - 100
q3 - 100

q1 - 100
q3 - 1000

q1 - 100
q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 70

q1 - 100
q3 - 30

q1 - 100
q3 - 100

q1 - 100
q3 - 1000

q1 - 100
q3 - 500

Flows'
weight

change to
q1 - xx
q3 - yy

q1 - 100
q3 - 70

q1 - 100
q3 - 30

Figure 4 – Variation of the following values with class 3 weight, for IP output queues with maximum length of
200 packets: �) Average IP transit delay (over 1 second intervals); �) Number of packets sent per second;

�) Number of dropped packets per second

150100 200

Output
Queue Length

change to
Y packets50

150100 200

Output
Queue Length

change to
Y packets

50

150100

200

Output
Queue Length

change to
Y packets

50

100 200

Output
Queue Length

change to
Y packets

50 150

Figure 5 – Variation of the following values with IP output queue maximum length: �) Average IP transit delay
(over 1 second intervals) �) Number of packets sent per second; �) Number of dropped packets per second;

�) Instantaneous IP output queue length (sampled every second)

